Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 212
Filter
1.
BMC Cancer ; 24(1): 554, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38698344

ABSTRACT

BACKGROUND: Prostate cancer is dependent on androgen receptor (AR) signaling, and androgen deprivation therapy (ADT) has proven effective in targeting prostate cancer. However, castration-resistant prostate cancer (CRPC) eventually emerges. AR signaling inhibitors (ARSI) have been also used, but resistance to these agents develops due to genetic AR alterations and epigenetic dysregulation. METHODS: In this study, we investigated the role of OCT1, a member of the OCT family, in an AR-positive CRPC patient-derived xenograft established from a patient with resistance to ARSI and chemotherapy. We conducted a genome-wide analysis chromatin immunoprecipitation followed by sequencing and bioinformatic analyses using public database. RESULTS: Genome-wide analysis of OCT1 target genes in PDX 201.1 A revealed distinct OCT1 binding sites compared to treatment-naïve cells. Bioinformatic analyses revealed that OCT1-regulated genes were associated with cell migration and immune system regulation. In particular, C-terminal Binding Protein 2 (CTBP2), an OCT1/AR target gene, was correlated with poor prognosis and immunosuppressive effects in the tumor microenvironment. Metascape revealed that CTBP2 knockdown affects genes related to the immune response to bacteria. Furthermore, TISIDB analysis suggested the relationship between CTBP2 expression and immune cell infiltration in prostate cancer, suggesting that it may contribute to immune evasion in CRPC. CONCLUSIONS: Our findings shed light on the genome-wide network of OCT1 and AR in AR-positive CRPC and highlight the potential role of CTBP2 in immune response and tumor progression. Targeting CTBP2 may represent a promising therapeutic approach for aggressive AR-positive CRPC. Further validation will be required to explore novel therapeutic strategies for CRPC management.


Subject(s)
Alcohol Oxidoreductases , Co-Repressor Proteins , Gene Expression Regulation, Neoplastic , Octamer Transcription Factor-1 , Prostatic Neoplasms, Castration-Resistant , Receptors, Androgen , Male , Humans , Prostatic Neoplasms, Castration-Resistant/genetics , Prostatic Neoplasms, Castration-Resistant/pathology , Prostatic Neoplasms, Castration-Resistant/metabolism , Receptors, Androgen/metabolism , Receptors, Androgen/genetics , Mice , Animals , Octamer Transcription Factor-1/metabolism , Octamer Transcription Factor-1/genetics , Alcohol Oxidoreductases/genetics , Alcohol Oxidoreductases/metabolism , Up-Regulation , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Xenograft Model Antitumor Assays , Cell Line, Tumor , Drug Resistance, Neoplasm/genetics , Tumor Microenvironment , Signal Transduction
2.
Commun Biol ; 7(1): 185, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38360857

ABSTRACT

Humoral immunity is vital for host protection, yet aberrant antibody responses can trigger harmful inflammation and immune-related disorders. T follicular helper (Tfh) cells, central to humoral immunity, have garnered significant attention for unraveling immune mechanisms. This study shows the role of B-cell Oct-binding protein 1 (Bob1), a transcriptional coactivator, in Tfh cell regulation. Our investigation, utilizing conditional Bob1-deficient mice, suggests that Bob1 plays a critical role in modulating inducible T-cell costimulator expression and cellular respiration in Tfh cells. This regulation maintains the long-term functionality of Tfh cells, enabling their reactivation from central memory T cells to produce antibodies during recall responses. In a bronchial asthma model induced by house dust mite (HDM) inhalation, Bob1 is observed to enhance HDM-specific antibodies, including IgE, highlighting its pivotal function in Tfh cell regulation. Further exploration of Bob1-dependent mechanisms in Tfh cells holds promise for governing protective immunity and addressing immune-related disorders.


Subject(s)
Immunity, Humoral , Octamer Transcription Factor-1 , T Follicular Helper Cells , Animals , Mice , Antibody Formation , T Follicular Helper Cells/immunology , T-Lymphocytes, Helper-Inducer/immunology , Octamer Transcription Factor-1/genetics , Octamer Transcription Factor-1/metabolism
3.
Int J Biol Sci ; 20(4): 1125-1141, 2024.
Article in English | MEDLINE | ID: mdl-38385081

ABSTRACT

Previous studies have demonstrated that diallyl disulfide (DADS) exhibits potent anti-tumor activity. However, the pharmacological actions of DADS in inhibiting the growth of colorectal cancer (CRC) cells have not been clarified. Herein, we show that DADS treatment impairs the activation of the pentose phosphate pathway (PPP) to decrease PRPP (5-phosphate ribose-1-pyrophosphate) production, enhancing DNA damage and cell apoptosis, and inhibiting the growth of CRC cells. Mechanistically, DADS treatment promoted POU2F1 K48-linked ubiquitination and degradation by attenuating the PI3K/AKT signaling to up-regulate TRIM21 expression in CRC cells. Evidently, TRIM21 interacted with POU2F1, and induced the K272 ubiquitination of POU2F1. The effects of DADS on the enhanced K272 ubiquitination of POU2F1, the PPP flux, PRPP production, DNA damage and cell apoptosis as well as the growth of CRC tumors in vivo were significantly mitigated by TRIM21 silencing or activating the PI3K signaling in CRC cells. Conversely, the effects of DADS were enhanced by TRIM21 over-expression or inhibiting the PI3K/AKT signaling in CRC cells. Collectively, our findings reveal a novel mechanism by which DADS suppresses the growth of CRC by promoting POU2F1 ubiquitination, and may aid in design of novel therapeutic intervention of CRC.


Subject(s)
4-Acetamido-4'-isothiocyanatostilbene-2,2'-disulfonic Acid/analogs & derivatives , Allyl Compounds , Colorectal Neoplasms , Disulfides , Humans , Proto-Oncogene Proteins c-akt/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Apoptosis/genetics , Allyl Compounds/pharmacology , Allyl Compounds/therapeutic use , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/genetics , DNA Damage , Octamer Transcription Factor-1/genetics
4.
Yonsei Med J ; 63(6): 591-600, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35619584

ABSTRACT

PURPOSE: SOX12 is overexpressed in many cancers, and we aimed to explore the biological function and mechanism of SOX12 in thyroid cancer. MATERIALS AND METHODS: We first analyzed the expression of SOX12 in thyroid cancer using data in The Cancer Genome Atlas. Immunohistochemistry and qRT-PCR were performed to identify SOX12 expression in thyroid cancer tissue and cells. Thyroid cancer cells were transfected with small interfering RNA targeting SOX12, and cellular functional experiments, including CCK8, wound healing, and Transwell assays, were performed. Protein expression was examined by Western blot analysis. A xenograft model was developed to evaluate the effect of SOX12 on tumor growth in vivo. RESULTS: SOX12 expression was increased in thyroid cancer tissue and cells. SOX12 promoted cell proliferation, migration, and invasion and accelerated tumor growth in vivo. The expression of PCNA, Cyclin D1, E-cadherin, Snail, MMP-2, and MMP-9 was affected by SOX12 knockdown. Bioinformatic analysis showed that SOX12 could interact with the POU family. SOX12 knockdown inhibited the expression of POU2F1, POU2F2, POU3F1 and POU3F2, and SOX12 expression showed a positive correlation with POU2F1, POU3F1, and POU3F2 expression in clinical data. POU2F1 and POU3F1 were able to reverse the effect of SOX12 knockdown on thyroid cancer cells. CONCLUSION: SOX12 affects the progression of thyroid cancer by regulating epithelial-mesenchymal transition and interacting with POU2F1 and POU3F1, which may be novel targets for thyroid cancer molecular therapy.


Subject(s)
SOXC Transcription Factors , Thyroid Neoplasms , Cell Proliferation/genetics , Epithelial-Mesenchymal Transition/genetics , Gene Expression Regulation, Neoplastic , Humans , Octamer Transcription Factor-1/genetics , Octamer Transcription Factor-1/metabolism , SOXC Transcription Factors/genetics , Thyroid Neoplasms/genetics
5.
Dokl Biochem Biophys ; 503(1): 76-79, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35538282

ABSTRACT

Overexpression of the transcription factor POU2F1 (Oct-1) increases the malignant potential of the tumor and determines the unfavorable prognosis for both solid and hematological cases of the disease in human carcinogenesis. The Oct-1 level determines the rate of development of the disease in acute myelodysplastic leukemia (AML), and a decrease in its expression significantly delays the development of leukemia in mice; however, a complete knockout of Oct-1 leads to the death of the animals. POU2F1 (Oct-1) is expressed as several isoforms transcribed from alternative promoters. They include both ubiquitous and tissue-specific isoforms. It was shown that in Burkitt's lymphoma Namalwa cells 5-azacytidine specifically suppresses the expression of the tissue-specific isoform Oct-1L mRNA (level of Oct-1L is abnormally increased in these cells), while not causing changes in the amount of the ubiquitous isoform Oct-1A mRNA. These results show that it is possible to selectively reduce the transcription level of the Oct-1L isoform aberrantly expressed in human tumor cells.


Subject(s)
Azacitidine , Burkitt Lymphoma , Leukemia , Octamer Transcription Factor-1 , Animals , Azacitidine/pharmacology , Burkitt Lymphoma/metabolism , Burkitt Lymphoma/pathology , Cell Culture Techniques , Mice , Octamer Transcription Factor-1/antagonists & inhibitors , Octamer Transcription Factor-1/genetics , Octamer Transcription Factor-1/metabolism , Protein Isoforms , RNA, Messenger/genetics , RNA, Messenger/metabolism , Tumor Cells, Cultured
6.
J Transl Med ; 20(1): 220, 2022 05 13.
Article in English | MEDLINE | ID: mdl-35562740

ABSTRACT

BACKGROUND: An increasing number of studies have demonstrated that long non-coding RNAs (lncRNAs) serve as key regulators in tumor development and progression. However, only a few lncRNAs have been functionally characterized in gastric cancer (GC). METHODS: Bioinformatics analysis was conducted to find lncRNAs that are associated with GC metastasis. RNA FISH, RIP, and RNA pull down assays were used to study the complementary binding of LINC01564 complementary to the 3'UTR of transcription factor POU2F1. The transcription activation of LINC01564 by POU2F1 as a transcription factor was examined by ChIP assay. In vitro assays such as MTT, cell invasion assay, and clonogenic assay were conducted to examined the impacts of LINC01564 and POU2F1 on GC cell proliferation and invasion. Experiments in vivo were performed to access the impacts of LINC01564 and POU2F1 on GC metastasis. RESULTS: The results showed that LINC01564 complementary bound to the 3'UTR of POU2F1 to form an RNA duplex, whereby stabilizing POU2F1 mRNA and increasing the enrichment in cells. The level of LINC01564 was also increased by POU2F1 through transcription activation. In vitro assays showed that LINC01564 promoted the proliferation, invasion and migration of GC cells through increasing POU2F1. In vivo experiments indicate the promotion of GC proliferation and metastasis by the interaction between LINC01564 and POU2F1. CONCLUSION: Taken together, our results indicate that the interaction between LINC01564 and POU2F1 promotes the proliferation, migration and invasion of GC cells.


Subject(s)
MicroRNAs , RNA, Long Noncoding , Stomach Neoplasms , 3' Untranslated Regions , Cell Line, Tumor , Cell Movement/genetics , Cell Proliferation/genetics , Gene Expression Regulation, Neoplastic , Humans , MicroRNAs/genetics , Octamer Transcription Factor-1/genetics , Octamer Transcription Factor-1/metabolism , RNA, Long Noncoding/genetics , Stomach Neoplasms/pathology , Transcription Factors/metabolism
7.
Genomics ; 114(2): 110314, 2022 03.
Article in English | MEDLINE | ID: mdl-35167937

ABSTRACT

Farnesyltransferase (FTase) enables about 100 proteins to interact with cellular membranes by catalyzing the posttranslational addition of a farnesyl group. Farnesylated proteins provide important functions and inhibitors against the ß-subunit of the heterodimer of FTase are intensively studied in clinical and preclinical trials. However, very little is known about the transcriptional regulation of the ß-subunit. The examined promoter region of the human FTase ß-subunit gene (FNTB) showed significant basal promoter activity in HEK-293 and in HeLa cells. We were able to locate the core promoter at -165 to -74. Ten potential binding sites of the transcription factor OCT-1 were detected. Three could be confirmed using EMSA super shift experiments. OCT-1 overexpression and knockdown confirmed it as an important regulator of FNTB expression. Our results provide a basis for further research on FNTB/OCT-1 regulation, its inhibitors and diseases influenced by both such as colon carcinoma or diabetes mellitus.


Subject(s)
Alkyl and Aryl Transferases , Alkyl and Aryl Transferases/genetics , Alkyl and Aryl Transferases/metabolism , Farnesyltranstransferase/genetics , Farnesyltranstransferase/metabolism , HEK293 Cells , HeLa Cells , Humans , Octamer Transcription Factor-1/genetics , Octamer Transcription Factor-1/metabolism , Promoter Regions, Genetic
8.
Mol Med Rep ; 25(1)2022 Jan.
Article in English | MEDLINE | ID: mdl-34796909

ABSTRACT

Numerous studies have previously demonstrated that long non­coding RNAs (lncRNAs) serve an important regulatory role in osteoarthritis (OA). In particular, the lncRNA family with sequence similarity 201 member A (FAM201A) was previously found to be downregulated in necrotic femoral head samples. However, the role of FAM201A in IL­1ß­induced chondrocyte injury remains unclear. It was hypothesized that FAM201A may exert a protective effect on IL­1ß­induced chondrocyte injury in OA by sponging microRNAs (miRNAs/miRs). The purpose of the present study was to explore the role and molecular mechanism of FAM201A in IL­1ß­induced chondrocyte injury. A model of OA was established by stimulation C­28/I2 cell with IL­1ß in vitro. The expression levels of FAM201A following IL­1ß­induced chondrocyte injury were detected via reverse transcription­quantitative PCR. Luciferase reporter assay was used to assess the possible associations among FAM201A, miR­146a­5p and POU class 2 homeobox 1 (POU2F1). Chromatin immunoprecipitation assay was performed to analyze the interaction between POU2F1 and miR­146a­5p. ELISA, TUNEL and western blotting were performed to measure the level of inflammation, lactate dehydrogenase release, apoptosis and the expression of apoptosis­related proteins (Bcl­2, Bax, cleaved caspase 3 and cleaved caspase 9), respectively. The expression levels of FAM201A were found to be downregulated following IL­1ß­induced chondrocyte injury. Overexpression of FAM201A exerted a protective effect against IL­1ß­induced chondrocyte injury. In addition, FAM201A could upregulate the expression levels of POU2F1 by sponging miR­146a­5p. Further experiments revealed that POU2F1 could bind to the promoter region of FAM201A and subsequently regulate the expression levels of POU2F1, indicating a role for the FAM201A/miR­146a­5p/POU2F1 positive feedback loop in IL­1ß­induced chondrocyte injury. The present study revealed the protective effects of the FAM201A/miR­146a­5p/POU2F1 positive feedback loop on IL­1ß­induced chondrocyte injury and provided a potential therapeutic target for OA.


Subject(s)
Chondrocytes/metabolism , Interleukin-1beta/metabolism , MicroRNAs/metabolism , Octamer Transcription Factor-1/metabolism , Osteoarthritis/metabolism , RNA, Long Noncoding/metabolism , Apoptosis/drug effects , Apoptosis Regulatory Proteins/metabolism , Cell Line , Down-Regulation , Feedback , Humans , Interleukin-1beta/genetics , Interleukin-1beta/pharmacology , MicroRNAs/genetics , Octamer Transcription Factor-1/genetics , Osteoarthritis/genetics , Proto-Oncogene Proteins c-bcl-2/metabolism , RNA, Long Noncoding/genetics
9.
Cancer Sci ; 113(2): 540-552, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34897892

ABSTRACT

An insufficient oxygen supply within the intratumoral environment, also known as hypoxia, induces glioblastoma multiforme (GBM) invasion, stemness, and temozolomide (TMZ) drug resistance. Long noncoding (lnc)RNAs have been reported to be involved in hypoxia and GBM progression. However, their roles in hypoxic GBM malignancy are still unclear. We investigated the mechanisms of hypoxia-mediated lncRNAs in regulating GBM processes. Using The Cancer Genome Atlas (TCGA) and data mining, hypoxia-correlated lncRNAs were identified. A hypoxia-upregulated lncRNA, MIR210HG, locating in nuclear regions, predicted poor prognoses of patients and modulated hypoxia-promoted glioma stemness, TMZ resistance, and invasion. Depletion of hypoxic MIR210HG suppressed GBM and patient-derived cell growth and increased TMZ sensitivity in vitro and vivo. Using RNA sequencing and gene set enrichment analysis (GSEA), MIR210HG-upregulated genes significantly belonged to the targets of octamer transcription factor 1 (OCT1) transcription factor. The direct interaction between OCT1 and MIR210HG was also validated. Two well-established worse prognostic factors of GBM, insulin-like growth factor-binding protein 2 (IGFBP2) and fibroblast growth factor receptor 1 (FGFR1), were identified as downstream targets of OCT1 through MIR210HG mediation in hypoxia. Consequently, the lncRNA MIR210HG is upregulated by hypoxia and interacts with OCT1 for modulating hypoxic GBM, leading to poor prognoses. These findings might provide a better understanding in functions of hypoxia/MIR210HG signaling for regulating GBM malignancy.


Subject(s)
Glioblastoma/genetics , Octamer Transcription Factor-1/genetics , RNA, Long Noncoding/genetics , Tumor Hypoxia/genetics , Animals , Antineoplastic Agents, Alkylating/pharmacology , Cell Line, Tumor , Cell Transformation, Neoplastic , Drug Resistance, Neoplasm/drug effects , Drug Resistance, Neoplasm/genetics , Gene Expression Regulation, Neoplastic , Glioblastoma/metabolism , Glioblastoma/pathology , Humans , Insulin-Like Growth Factor Binding Protein 2/genetics , Mice , Prognosis , Receptor, Fibroblast Growth Factor, Type 1/genetics , Signal Transduction , Temozolomide/pharmacology
10.
Biochem Pharmacol ; 197: 114871, 2022 03.
Article in English | MEDLINE | ID: mdl-34902340

ABSTRACT

Stereoselectivity is important in many pharmacological processes but its impact on drug membrane transport is scarcely understood. Recent studies showed strong stereoselective effects in the cellular uptake of fenoterol by the organic cation transporters OCT1 and OCT2. To provide possible molecular explanations, homology models were developed and the putative interactions between fenoterol enantiomers and key residues explored in silico through computational docking, molecular dynamics simulations, and binding free energy calculations as well as in vitro by site-directed mutagenesis and cellular uptake assays. Our results suggest that the observed 1.9-fold higher maximum transport velocity (vmax) for (R,R)- over (S,S)-fenoterol in OCT1 is because the enantiomers bind to two distinct binding sites. Mutating PHE355 and ILE442, predicted to interact with (R,R)-fenoterol, reduced the vmax ratio to 1.5 and 1.3, respectively, and to 1.2 in combination. Mutating THR272, predicted to interact with (S,S)-fenoterol, slightly increased stereoselectivity (vmax ratio of 2.2), while F244A resulted in a 35-fold increase in vmax and a lower affinity (29-fold higher Km) for (S,S)-fenoterol. Both enantiomers of salbutamol, for which almost no stereoselectivity was observed, were predicted to occupy the same binding pocket as (R,R)-fenoterol. Unlike for OCT1, both fenoterol enantiomers bind in the same region in OCT2 but in different conformations. Mutating THR246, predicted to interact with (S,S)-fenoterol in OCT2, led to an 11-fold decreased vmax. Altogether, our mutagenesis results correlate relatively well with our computational predictions and thereby provide an experimentally-corroborated hypothesis for the strong and contrasting enantiopreference in fenoterol uptake by OCT1 and OCT2.


Subject(s)
Fenoterol/chemistry , Fenoterol/metabolism , Octamer Transcription Factor-1/chemistry , Octamer Transcription Factor-1/metabolism , Organic Cation Transporter 2/chemistry , Organic Cation Transporter 2/metabolism , Adrenergic beta-2 Receptor Agonists/chemistry , Adrenergic beta-2 Receptor Agonists/metabolism , Biological Transport/physiology , HEK293 Cells , Humans , Molecular Docking Simulation/methods , Mutagenesis, Site-Directed/methods , Octamer Transcription Factor-1/genetics , Organic Cation Transporter 2/genetics , Point Mutation/genetics , Protein Structure, Secondary , Stereoisomerism
11.
Basic Clin Pharmacol Toxicol ; 130(1): 93-102, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34599645

ABSTRACT

We investigated the impact of genetic variants in OCT1 (SLC22A1) on morphine, morphine-3-glucuronide (M3G) and morphine-6-glucuronide (M6G) pharmacokinetics in adult patients scheduled for major surgery. Blood samples were taken before and 5, 10, 15, 30, 45, 60 and 90 min after a bolus of morphine (0.15 mg/kg). Patients were genotyped for the genetic variants (rs12208357, rs34059508, rs72552763 and rs34130495) in OCT1. Eighty-six patients completed the trial. The mean difference (95% confidence interval) for dose adjusted morphine, M3G and M6G AUC was 0.9 (-0.7-2.4), -5.9 (-11.8 to -0.03) and -1.1 (-2.5-0.4) h/L*10-6 , respectively, in patients with two reduced function alleles compared to patients with no reduced function alleles in OCT1. Accordingly, the (AUCM3G/Dose )/(AUCmorphine/Dose ) and (AUCM6G/Dose )/(AUCmorphine/Dose ) ratio was reduced, -1.8 (-3.2 to -0.4) and -0.4 (-0.7 to -0.03), respectively, when comparing the same groups. OCT1 variants had no influence on the experience of pain, adverse events or the number of PCA doses used. In conclusion, genetic variants in OCT1 had a small and clinically unimportant impact on the exposure of morphine after intravenous administration. Our results do not support pre-emptive genotyping for OCT1 prior to morphine administration in patients scheduled for major surgery.


Subject(s)
Analgesics, Opioid/pharmacokinetics , Morphine/pharmacokinetics , Octamer Transcription Factor-1/genetics , Aged , Analgesics, Opioid/administration & dosage , Area Under Curve , Female , Genetic Variation , Genotype , Humans , Male , Middle Aged , Morphine/administration & dosage , Morphine Derivatives/pharmacokinetics , Pain, Postoperative/drug therapy , Time Factors
12.
Int J Mol Sci ; 22(21)2021 Oct 25.
Article in English | MEDLINE | ID: mdl-34768935

ABSTRACT

Octamer transcription factor 1 (OCT1) is a transcriptional factor reported to be a poor prognostic factor in various cancers. However, the clinical value of OCT1 in breast cancer is not fully understood. In the present study, an immunohistochemical study of OCT1 protein was performed using estrogen receptor (ER)-positive breast cancer tissues from 108 patients. Positive OCT1 immunoreactivity (IR) was associated with the shorter disease-free survival (DFS) of patients (p = 0.019). Knockdown of OCT1 inhibited cell proliferation in MCF-7 breast cancer cells as well as its derivative long-term estrogen-deprived (LTED) cells. On the other hand, the overexpression of OCT1 promoted cell proliferation in MCF-7 cells. Using microarray analysis, we identified the non-structural maintenance of chromosomes condensin I complex subunit H (NCAPH) as a novel OCT1-taget gene in MCF-7 cells. Immunohistochemical analysis showed that NCAPH IR was significantly positively associated with OCT1 IR (p < 0.001) and that positive NCAPH IR was significantly related to the poor DFS rate of patients (p = 0.041). The knockdown of NCAPH inhibited cell proliferation in MCF-7 and LTED cells. These results demonstrate that OCT1 and its target gene NCAPH are poor prognostic factors and potential therapeutic targets for patients with ER-positive breast cancer.


Subject(s)
Breast Neoplasms/genetics , Breast Neoplasms/mortality , Cell Cycle Proteins/genetics , Cell Proliferation/genetics , Nuclear Proteins/genetics , Octamer Transcription Factor-1/genetics , Biomarkers, Tumor/metabolism , Cell Cycle Proteins/metabolism , Cell Line, Tumor , Female , HEK293 Cells , Humans , MCF-7 Cells , Middle Aged , Neoplasm Invasiveness/genetics , Nuclear Proteins/metabolism , Octamer Transcription Factor-1/metabolism , Prognosis , RNA Interference , RNA, Small Interfering/genetics , Receptors, Estrogen/metabolism
13.
Nat Commun ; 12(1): 6115, 2021 10 21.
Article in English | MEDLINE | ID: mdl-34675193

ABSTRACT

Genome-wide association studies (GWAS) have implicated the IL33 locus in asthma, but the underlying mechanisms remain unclear. Here, we identify a 5 kb region within the GWAS-defined segment that acts as an enhancer-blocking element in vivo and in vitro. Chromatin conformation capture showed that this 5 kb region loops to the IL33 promoter, potentially regulating its expression. We show that the asthma-associated single nucleotide polymorphism (SNP) rs1888909, located within the 5 kb region, is associated with IL33 gene expression in human airway epithelial cells and IL-33 protein expression in human plasma, potentially through differential binding of OCT-1 (POU2F1) to the asthma-risk allele. Our data demonstrate that asthma-associated variants at the IL33 locus mediate allele-specific regulatory activity and IL33 expression, providing a mechanism through which a regulatory SNP contributes to genetic risk of asthma.


Subject(s)
Asthma/genetics , Enhancer Elements, Genetic , Interleukin-33/genetics , Alleles , Animals , Asthma/metabolism , Chromatin/genetics , Chromatin/metabolism , Female , Genetic Predisposition to Disease , Humans , Interleukin-33/metabolism , Male , Mice, Transgenic , Octamer Transcription Factor-1/genetics , Octamer Transcription Factor-1/metabolism , Polymorphism, Single Nucleotide , Promoter Regions, Genetic , Zebrafish
14.
Mol Cell Biochem ; 476(9): 3423-3431, 2021 Sep.
Article in English | MEDLINE | ID: mdl-33970409

ABSTRACT

Reprogramming of energy metabolism is a hallmark of cancer which is prevalent worldwide. Octamer transcription factor-1 (OCT1) is a well-known transcription factor. However, the role of OCT1 in metabolism remodeling has not been well defined. In the present study, we found that OCT1 was up-regulated in non-small cell lung cancer (NSCLC) and correlated with poor patient survival. Further data identified that OCT1 increased glycolysis flux, promoting proliferation in lung cancer cells. Mechanistically, OCT1 facilitated the aerobic glycolysis and cell proliferation via up-regulation of hexokinase 2 (HK2), a crucial enzyme of the Warburg effect. Hence, our findings indicate that, in NSCLC, high levels of OCT1 contribute to the Warburg effect through up-regulation of HK2, linking up the OCT1/HK2 axis and cancer progression, which provide a potential biomarker and therapeutic target for NSCLC treatment.


Subject(s)
Biomarkers, Tumor/metabolism , Carcinoma, Non-Small-Cell Lung/pathology , Gene Expression Regulation, Neoplastic , Hexokinase/metabolism , Lung Neoplasms/pathology , Octamer Transcription Factor-1/metabolism , Warburg Effect, Oncologic , Apoptosis , Biomarkers, Tumor/genetics , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/metabolism , Cell Proliferation , Glycolysis , Hexokinase/genetics , Humans , Lung Neoplasms/genetics , Lung Neoplasms/metabolism , Octamer Transcription Factor-1/genetics , Prognosis , Survival Rate , Tumor Cells, Cultured
15.
Life Sci ; 277: 119521, 2021 Jul 15.
Article in English | MEDLINE | ID: mdl-33891940

ABSTRACT

Hepatocellular carcinoma (HCC) is one of the most prevalent fatal malignancies in the Chinese population, due to high rates of hepatitis virus infection. Molecular targeted drugs such as sorafenib are the anti-tumor agents of choice for HCC treatment, but their results are generally unsatisfactory. In the present study the use of Pit-Oct-Unc transcription factor 1 (OCT1/POU2F1) as a potential therapeutic target for HCC was investigated, and a novel small molecular inhibitor of OCT1 (SMIO-1) was designed and its therapeutic efficacy against HCC was assessed. OCT1 expression was higher in HCC specimens than in corresponding non-tumor tissues, and higher OCT1 was associated with poorer prognosis in advanced HCC patients undergoing sorafenib treatment. For the first time, the novel SMIO-1 was investigated in conjunction with OCT1 via molecular docking. Interaction between SMIO-1 and OCT1 was confirmed via OCT1 point mutation. Treatment with SMIO-1 repressed OCT1 transcription factor activation by disrupting the interaction between OCT1 and its cofactors. It also repressed the proliferation and metastasis of HCC cells, and inhibited proliferation-related and metastasis-related genes downstream of OCT1. Therefore, SMIO-1 is a promising strategy for HCC treatment.


Subject(s)
Carcinoma, Hepatocellular/metabolism , Octamer Transcription Factor-1/genetics , Octamer Transcription Factor-1/metabolism , Animals , Antineoplastic Agents/pharmacology , Carcinoma, Hepatocellular/genetics , Cell Line, Tumor , Cell Proliferation/drug effects , China , HEK293 Cells , Humans , Liver Neoplasms/genetics , Liver Neoplasms/metabolism , Male , Mice , Mice, Nude , Molecular Docking Simulation , Octamer Transcription Factor-1/antagonists & inhibitors , Prognosis , Sorafenib/pharmacology , Transcription Factor Pit-1/pharmacology
16.
Inflammation ; 44(4): 1518-1528, 2021 Aug.
Article in English | MEDLINE | ID: mdl-33710444

ABSTRACT

Sepsis is considered to be a systemic inflammatory response, which results in organ dysfunction. LncRNA nuclear-enriched abundant transcript 1 (NEAT1) involved in sepsis progression has been reported. However, the underlying mechanism of NEAT1 in sepsis-induced inflammatory response remains to be revealed. In this study, NEAT1 and POU domain class 2 transcription factor 1 (POU2F1) were highly expressed in LPS-induced septic RAW264.7 cells, opposite to miR-31-5p expression. Furthermore, we found that NEAT1 silencing inhibited LPS-induced inflammatory response and cell proliferation, and promoted cell apoptosis. Subsequently, we found that miR-31-5p interacted with NEAT1 and targeted the 3'UTR of POU2F1, and in LPS-induced RAW264.7 cells, the inhibition of NEAT1 silencing was reversed by miR-31-5p knockdown, while POU2F1 downregulation could cover the functions of miR-31-5p knockdown. In a word, this study indicates that NEAT1 inhibits the LPS-induced progression of sepsis in RAW264.7 cells by modulating miR-31-5p/POU2F1 axis, suggesting that NEAT1 will be the potential therapeutic target for sepsis.


Subject(s)
MicroRNAs/biosynthesis , Octamer Transcription Factor-1/biosynthesis , RNA, Long Noncoding/biosynthesis , Sepsis/metabolism , Animals , Lipopolysaccharides/toxicity , Mice , MicroRNAs/antagonists & inhibitors , MicroRNAs/genetics , Octamer Transcription Factor-1/antagonists & inhibitors , Octamer Transcription Factor-1/genetics , RAW 264.7 Cells , RNA, Long Noncoding/antagonists & inhibitors , RNA, Long Noncoding/genetics , Sepsis/chemically induced , Sepsis/genetics
17.
Dokl Biochem Biophys ; 496(1): 32-35, 2021 May.
Article in English | MEDLINE | ID: mdl-33689071

ABSTRACT

POU2F1 (Oct-1) is a transcription factor, the overexpression of which is found in many human malignant tumors; a significant increase in its level in cells determines the malignant potential of the tumor. POU2F1 is represented in cells by several isoforms that are transcribed from alternative promoters. In Burkitt's B-cell lymphoma Namalwa, the concentration of tissue-specific isoform Oct-1L is several times higher than in normal B cells. We tested the potential to inhibit the transcription of individual Oct-1 isoforms using the GSK3 kinase inhibitor CHIR, an aminopyrimidine derivative. We have shown that CHIR specifically affects the expression of the tissue-specific isoform Oct-1L, significantly reducing the level of mRNA and Oct-1L protein. However, CHIR does not change the amount of mRNA and protein of the ubiquitous isoform Oct-1A in Namalwa tumor cells. The results obtained show that it is possible to develop a system for selective inhibition of Oct-1 transcription factor isoforms in human cells to suppress drug resistance of tumor cells with a high POU2F1 content.


Subject(s)
Burkitt Lymphoma/drug therapy , Glycogen Synthase Kinase 3/antagonists & inhibitors , Octamer Transcription Factor-1/metabolism , Protein Kinase Inhibitors/pharmacology , Pyrimidines/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Burkitt Lymphoma/genetics , Burkitt Lymphoma/metabolism , Burkitt Lymphoma/pathology , Cell Line, Tumor , Humans , Octamer Transcription Factor-1/antagonists & inhibitors , Octamer Transcription Factor-1/genetics , Organ Specificity , Promoter Regions, Genetic , Protein Isoforms , Pyrimidines/chemistry , Transcription, Genetic/drug effects
18.
Blood ; 137(21): 2920-2934, 2021 05 27.
Article in English | MEDLINE | ID: mdl-33512466

ABSTRACT

OBF1 is a specific coactivator of the POU family transcription factors OCT1 and OCT2. OBF1 and OCT2 are B cell-specific and indispensable for germinal center (GC) formation, but their mechanism of action is unclear. Here, we show by chromatin immunoprecipitation-sequencing that OBF1 extensively colocalizes with OCT1 and OCT2. We found that these factors also often colocalize with transcription factors of the ETS family. Furthermore, we showed that OBF1, OCT2, and OCT1 bind widely to the promoters or enhancers of genes involved in GC formation in mouse and human GC B cells. Short hairpin RNA knockdown experiments demonstrated that OCT1, OCT2, and OBF1 regulate each other and are essential for proliferation of GC-derived lymphoma cell lines. OBF1 downregulation disrupts the GC transcriptional program: genes involved in GC maintenance, such as BCL6, are downregulated, whereas genes related to exit from the GC program, such as IRF4, are upregulated. Ectopic expression of BCL6 does not restore the proliferation of GC-derived lymphoma cells depleted of OBF1 unless IRF4 is also depleted, indicating that OBF1 controls an essential regulatory node in GC differentiation.


Subject(s)
Germinal Center/metabolism , Octamer Transcription Factor-1/physiology , Octamer Transcription Factor-2/therapeutic use , Trans-Activators/therapeutic use , Transcription, Genetic/genetics , Animals , B-Lymphocytes/drug effects , B-Lymphocytes/metabolism , Cell Line, Tumor , Chromatin Immunoprecipitation , Gene Ontology , HEK293 Cells , Humans , Lipopolysaccharides/pharmacology , Lymphoma, Non-Hodgkin/genetics , Lymphoma, Non-Hodgkin/pathology , Mice , Mice, Inbred C57BL , Mice, Transgenic , Octamer Transcription Factor-1/deficiency , Octamer Transcription Factor-1/genetics , Octamer Transcription Factor-2/deficiency , Octamer Transcription Factor-2/genetics , Proto-Oncogene Protein c-ets-1/analysis , RNA Interference , RNA, Small Interfering/genetics , Recombinant Proteins/metabolism , Trans-Activators/deficiency , Trans-Activators/genetics
19.
J Biomol Struct Dyn ; 39(3): 1093-1105, 2021 Feb.
Article in English | MEDLINE | ID: mdl-32081083

ABSTRACT

POU domain class 2 homebox 1 or POU2F1 is broadly known as an important transcription factor. Due to its association with different types of malignancies, POU2F1 became one of the key factors in pancancer analysis. However, in spite of considering this protein as a potential drug target, none of the drug targeting POU2F1 has been designed as of yet due to the extreme structural flexibility of this protein. In this article, we have proposed a three-level comprehensive framework for understanding the structural conservation and co-variation of POU2F1. First, a gene regulatory network based on the normal and pathological functions of POU2F1 has been created for better understanding the strong association between POU2F1 deregulation and cancers. After that, based on the evolutionary sequence space analysis, the comparative sequence dynamics of the protein members of POU domain family has been studied mostly between non-human and human species. Subsequently, the reciprocity effect of the residual co-variation has been identified through direct coupling analysis. Along with that, the structure of POU2F1 has been analyzed depending on quality assessment and normal mode-based structure network. Comparing the sequence and structure space information, the most significant set of residues viz., 3, 9, 13, 17, 20, 21, 28, 35, and 36 have been identified as structural facet for function. This study demonstrates that the structural malleability of POU2F1 serves as one of the prime reason behind its functional multiplicity in terms of protein moonlighting. Communicated by Ramaswamy H. Sarma.


Subject(s)
Gene Expression Regulation , Octamer Transcription Factor-1/chemistry , Transcription Factors , Humans , Octamer Transcription Factor-1/genetics , Octamer Transcription Factor-1/metabolism
20.
Genomics ; 113(1 Pt 2): 755-766, 2021 01.
Article in English | MEDLINE | ID: mdl-33075481

ABSTRACT

Non-synonymous single nucleotide polymorphisms (nsSNPs) in hOCT1 (encoded by SLC22A1 gene) are expected to affect Imatinib uptake in chronic myeloid leukemia (CML). In this study, sequence homology-based genetic analysis of a set of 270 coding SNPs identified 18 nsSNPs to be putatively damaging/deleterious using eight different algorithms. Subsequently, based on conservation of amino acid residues, stability analysis, posttranscriptional modifications, and solvent accessibility analysis, the possible structural-functional relationship was established for high-confidence nsSNPs. Furthermore, based on the modeling results, some dissimilarities of mutant type amino acids from wild-type amino acids such as size, charge, interaction and hydrophobicity were revealed. Three highly deleterious mutations consisting of P283L, G401S and R402G in SLC22A1 gene that may alter the protein structure, function and stability were identified. These results provide a filtered data to explore the effect of uncharacterized nsSNP and find their association with Imatinib resistance in CML.


Subject(s)
Drug Resistance, Neoplasm/genetics , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics , Octamer Transcription Factor-1/genetics , Polymorphism, Single Nucleotide , Amino Acid Substitution , Antineoplastic Agents/therapeutic use , Humans , Imatinib Mesylate/therapeutic use , Molecular Dynamics Simulation , Octamer Transcription Factor-1/chemistry , Octamer Transcription Factor-1/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...