Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.486
Filter
1.
Brain Behav ; 14(7): e3597, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38956811

ABSTRACT

INTRODUCTION: Chemosensory function in pregnant women is far from being fully understood due to the lack of data and inconsistencies between the results of self-reports and objective studies. METHODS: In the present study in pregnant and non-pregnant women (npregnant = 14, nnon-pregnant = 13), we measured EEG-derived electrophysiological response measures supported by psychophysical olfactory and trigeminal tests. RESULTS: Results indicate that the olfactory event-related potential amplitudes or latencies of the P1, N1, and P2 components remain unchanged in pregnant women. In accordance with these findings, no difference was observed between pregnant and non-pregnant women in psychophysical olfactory tests. However, pregnant women displayed a lower degree of sensitivity to trigeminal stimuli compared to non-pregnant controls, which was also reflected in the electrophysiological responses to trigeminal stimuli. CONCLUSION: Counterintuitive as they may seem, our findings demonstrate a "flattening" of chemosomatosensory responses. Psychological processes occurring during pregnancy, such as changes in socioemotional perception of odors resulting from the diminished stress response, may provide a background to these results. Overall, the present results indicate the absence of major differences between non-pregnant and pregnant women in terms of measured olfactory function though chemosomatosensory function of the pregnant women appears to be decreased.


Subject(s)
Electroencephalography , Trigeminal Nerve , Humans , Female , Pregnancy , Adult , Trigeminal Nerve/physiology , Electroencephalography/methods , Evoked Potentials/physiology , Young Adult , Olfactory Perception/physiology , Smell/physiology , Odorants
2.
Hum Brain Mapp ; 45(10): e26772, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38962966

ABSTRACT

Humans naturally integrate signals from the olfactory and intranasal trigeminal systems. A tight interplay has been demonstrated between these two systems, and yet the neural circuitry mediating olfactory-trigeminal (OT) integration remains poorly understood. Using functional magnetic resonance imaging (fMRI), combined with psychophysics, this study investigated the neural mechanisms underlying OT integration. Fifteen participants with normal olfactory function performed a localization task with air-puff stimuli, phenylethyl alcohol (PEA; rose odor), or a combination thereof while being scanned. The ability to localize PEA to either nostril was at chance. Yet, its presence significantly improved the localization accuracy of weak, but not strong, air-puffs, when both stimuli were delivered concurrently to the same nostril, but not when different nostrils received the two stimuli. This enhancement in localization accuracy, exemplifying the principles of spatial coincidence and inverse effectiveness in multisensory integration, was associated with multisensory integrative activity in the primary olfactory (POC), orbitofrontal (OFC), superior temporal (STC), inferior parietal (IPC) and cingulate cortices, and in the cerebellum. Multisensory enhancement in most of these regions correlated with behavioral multisensory enhancement, as did increases in connectivity between some of these regions. We interpret these findings as indicating that the POC is part of a distributed brain network mediating integration between the olfactory and trigeminal systems. PRACTITIONER POINTS: Psychophysical and neuroimaging study of olfactory-trigeminal (OT) integration. Behavior, cortical activity, and network connectivity show OT integration. OT integration obeys principles of inverse effectiveness and spatial coincidence. Behavioral and neural measures of OT integration are correlated.


Subject(s)
Brain Mapping , Magnetic Resonance Imaging , Olfactory Cortex , Humans , Male , Female , Adult , Olfactory Cortex/physiology , Olfactory Cortex/diagnostic imaging , Young Adult , Olfactory Perception/physiology , Phenylethyl Alcohol , Psychophysics , Trigeminal Nerve/physiology , Trigeminal Nerve/diagnostic imaging , Odorants
3.
Nat Commun ; 15(1): 5572, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38956072

ABSTRACT

Olfaction is influenced by contextual factors, past experiences, and the animal's internal state. Whether this information is integrated at the initial stages of cortical odour processing is not known, nor how these signals may influence odour encoding. Here we revealed multiple and diverse non-olfactory responses in the primary olfactory (piriform) cortex (PCx), which dynamically enhance PCx odour discrimination according to behavioural demands. We performed recordings of PCx neurons from mice trained in a virtual reality task to associate odours with visual contexts to obtain a reward. We found that learning shifts PCx activity from encoding solely odours to a regime in which positional, contextual, and associative responses emerge on odour-responsive neurons that become mixed-selective. The modulation of PCx activity by these non-olfactory signals was dynamic, improving odour decoding during task engagement and in rewarded contexts. This improvement relied on the acquired mixed-selectivity, demonstrating how integrating extra-sensory inputs in sensory cortices can enhance sensory processing while encoding the behavioural relevance of stimuli.


Subject(s)
Odorants , Reward , Smell , Animals , Mice , Smell/physiology , Male , Olfactory Cortex/physiology , Piriform Cortex/physiology , Mice, Inbred C57BL , Olfactory Perception/physiology , Neurons/physiology , Female , Discrimination, Psychological/physiology
4.
NPJ Syst Biol Appl ; 10(1): 76, 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-39019918

ABSTRACT

Predicting olfactory perceptions from odorant molecules is challenging due to the complex and potentially discontinuous nature of the perceptual space for smells. In this study, we introduce a deep learning model, Mol-PECO (Molecular Representation by Positional Encoding of Coulomb Matrix), designed to predict olfactory perceptions based on molecular structures and electrostatics. Mol-PECO learns the efficient embedding of molecules by utilizing the Coulomb matrix, which encodes atomic coordinates and charges, as an alternative of the adjacency matrix and its Laplacian eigenfunctions as positional encoding of atoms. With a comprehensive dataset of odor molecules and descriptors, Mol-PECO outperforms traditional machine learning methods using molecular fingerprints and graph neural networks based on adjacency matrices. The learned embeddings by Mol-PECO effectively capture the odor space, enabling global clustering of descriptors and local retrieval of similar odorants. This work contributes to a deeper understanding of the olfactory sense and its mechanisms.


Subject(s)
Odorants , Olfactory Perception , Static Electricity , Odorants/analysis , Olfactory Perception/physiology , Humans , Deep Learning , Molecular Structure , Neural Networks, Computer , Machine Learning , Smell/physiology , Algorithms
5.
Front Neural Circuits ; 18: 1414452, 2024.
Article in English | MEDLINE | ID: mdl-38978957

ABSTRACT

As an evolutionarily ancient sense, olfaction is key to learning where to find food, shelter, mates, and important landmarks in an animal's environment. Brain circuitry linking odor and navigation appears to be a well conserved multi-region system among mammals; the anterior olfactory nucleus, piriform cortex, entorhinal cortex, and hippocampus each represent different aspects of olfactory and spatial information. We review recent advances in our understanding of the neural circuits underlying odor-place associations, highlighting key choices of behavioral task design and neural circuit manipulations for investigating learning and memory.


Subject(s)
Odorants , Animals , Olfactory Pathways/physiology , Smell/physiology , Humans , Olfactory Perception/physiology , Space Perception/physiology , Brain/physiology
6.
Front Neural Circuits ; 18: 1437575, 2024.
Article in English | MEDLINE | ID: mdl-39036422

ABSTRACT

The olfactory system plays crucial roles in perceiving and interacting with their surroundings. Previous studies have deciphered basic odor perceptions, but how information processing in the olfactory system is associated with learning and memory is poorly understood. In this review, we summarize recent studies on the anatomy and functional dynamics of the mouse olfactory learning pathway, focusing on how neuronal circuits in the olfactory bulb (OB) and olfactory cortical areas integrate odor information in learning. We also highlight in vivo evidence for the role of the lateral entorhinal cortex (LEC) in olfactory learning. Altogether, these studies demonstrate that brain regions throughout the olfactory system are critically involved in forming and representing learned knowledge. The role of olfactory areas in learning and memory, and their susceptibility to dysfunction in neurodegenerative diseases, necessitate further research.


Subject(s)
Learning , Olfactory Pathways , Animals , Learning/physiology , Olfactory Pathways/physiology , Olfactory Bulb/physiology , Olfactory Perception/physiology , Humans , Smell/physiology , Mice , Olfactory Cortex/physiology , Entorhinal Cortex/physiology
7.
Learn Mem ; 31(5)2024 May.
Article in English | MEDLINE | ID: mdl-38862177

ABSTRACT

Associative learning enables the adaptive adjustment of behavioral decisions based on acquired, predicted outcomes. The valence of what is learned is influenced not only by the learned stimuli and their temporal relations, but also by prior experiences and internal states. In this study, we used the fruit fly Drosophila melanogaster to demonstrate that neuronal circuits involved in associative olfactory learning undergo restructuring during extended periods of low-caloric food intake. Specifically, we observed a decrease in the connections between specific dopaminergic neurons (DANs) and Kenyon cells at distinct compartments of the mushroom body. This structural synaptic plasticity was contingent upon the presence of allatostatin A receptors in specific DANs and could be mimicked optogenetically by expressing a light-activated adenylate cyclase in exactly these DANs. Importantly, we found that this rearrangement in synaptic connections influenced aversive, punishment-induced olfactory learning but did not impact appetitive, reward-based learning. Whether induced by prolonged low-caloric conditions or optogenetic manipulation of cAMP levels, this synaptic rearrangement resulted in a reduction of aversive associative learning. Consequently, the balance between positive and negative reinforcing signals shifted, diminishing the ability to learn to avoid odor cues signaling negative outcomes. These results exemplify how a neuronal circuit required for learning and memory undergoes structural plasticity dependent on prior experiences of the nutritional value of food.


Subject(s)
Drosophila melanogaster , Mushroom Bodies , Neuronal Plasticity , Animals , Mushroom Bodies/physiology , Mushroom Bodies/metabolism , Drosophila melanogaster/physiology , Neuronal Plasticity/physiology , Dopaminergic Neurons/physiology , Dopaminergic Neurons/metabolism , Eating/physiology , Optogenetics , Association Learning/physiology , Smell/physiology , Olfactory Perception/physiology , Reward , Animals, Genetically Modified
8.
Curr Protoc ; 4(6): e1072, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38884352

ABSTRACT

Working memory capacity (WMC), a crucial component of working memory (WM), has consistently drawn the attention of researchers. Exploring the underlying neurobiological mechanisms behind it is currently a prominent focus in the field of neuroscience. Previously, we developed a novel behavioral paradigm for rodents called the olfactory working memory capacity (OWMC) paradigm, which serves as an effective tool for quantifying the WMC of rodents. The OWMC task comprises five phases: context adaptation, digging training, rule-learning for nonmatching to a single sample odor (NMSS), rule-learning for nonmatching to multiple sample odors (NMMS), and capacity testing. In the first phase, mice are handled to reduce stress and acclimate to the training cage. The second phase involves training mice to dig in a bowl of unscented sawdust to locate a piece of cheese. In the third phase, mice are trained to locate the cheese pellet in a bowl with a noveal odor. The fourth phase requires mice to distinguish the novel odor among multiple scented bowls to locate the cheese pellet. Finally, in the fifth phase, mice undergo several WMC tests until they achieve a stable level of performance. In this protocol paper, we will provide detailed instructions on how to implement the behavioral paradigm. © 2024 Wiley Periodicals LLC. Basic Protocol 1: Context adaptation Basic Protocol 2: Digging training Basic Protocol 3: Rule-learning for NMSS Basic Protocol 4: Rule-learning for NMMS Basic Protocol 5: Capacity testing.


Subject(s)
Memory, Short-Term , Odorants , Memory, Short-Term/physiology , Animals , Mice , Odorants/analysis , Behavior, Animal/physiology , Smell/physiology , Olfactory Perception/physiology
9.
Elife ; 122024 Jun 04.
Article in English | MEDLINE | ID: mdl-38832493

ABSTRACT

Animals are adapted to their natural habitats and lifestyles. Their brains perceive the external world via their sensory systems, compute information together with that of internal states and autonomous activity, and generate appropriate behavioral outputs. However, how do these processes evolve across evolution? Here, focusing on the sense of olfaction, we have studied the evolution in olfactory sensitivity, preferences, and behavioral responses to six different food-related amino acid odors in the two eco-morphs of the fish Astyanax mexicanus. To this end, we have developed a high-throughput behavioral setup and pipeline of quantitative and qualitative behavior analysis, and we have tested 489 six-week-old Astyanax larvae. The blind, dark-adapted morphs of the species showed markedly distinct basal swimming patterns and behavioral responses to odors, higher olfactory sensitivity, and a strong preference for alanine, as compared to their river-dwelling eyed conspecifics. In addition, we discovered that fish have an individual 'swimming personality', and that this personality influences their capability to respond efficiently to odors and find the source. Importantly, the personality traits that favored significant responses to odors were different in surface fish and cavefish. Moreover, the responses displayed by second-generation cave × surface F2 hybrids suggested that olfactory-driven behavior and olfactory sensitivity is a quantitative genetic trait. Our findings show that olfactory processing has rapidly evolved in cavefish at several levels: detection threshold, odor preference, and foraging behavior strategy. Cavefish is therefore an outstanding model to understand the genetic, molecular, and neurophysiological basis of sensory specialization in response to environmental change.


Subject(s)
Behavior, Animal , Biological Evolution , Characidae , Smell , Animals , Smell/physiology , Characidae/physiology , Behavior, Animal/physiology , Odorants , Personality/physiology , Swimming/physiology , Olfactory Perception/physiology , Caves , Larva/physiology
10.
Nat Commun ; 15(1): 4809, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38844444

ABSTRACT

The direct access of olfactory afferents to memory-related cortical systems has inspired theories about the role of the olfactory pathways in the development of cortical neurodegeneration in Alzheimer's disease (AD). In this study, we used baseline olfactory identification measures with longitudinal flortaucipir and PiB PET, diffusion MRI of 89 cognitively normal older adults (73.82 ± 8.44 years; 56% females), and a transcriptomic data atlas to investigate the spatiotemporal spreading and genetic vulnerabilities of AD-related pathology aggregates in the olfactory system. We find that odor identification deficits are predominantly associated with tau accumulation in key areas of the olfactory pathway, with a particularly strong predictive power for longitudinal tau progression. We observe that tau spreads from the medial temporal lobe structures toward the olfactory system, not the reverse. Moreover, we observed a genetic background of odor perception-related genes that might confer vulnerability to tau accumulation along the olfactory system.


Subject(s)
Aging , Alzheimer Disease , Olfactory Perception , Positron-Emission Tomography , tau Proteins , Humans , Female , tau Proteins/metabolism , tau Proteins/genetics , Male , Aged , Olfactory Perception/physiology , Aging/physiology , Alzheimer Disease/genetics , Alzheimer Disease/metabolism , Alzheimer Disease/diagnostic imaging , Alzheimer Disease/physiopathology , Aged, 80 and over , Olfactory Pathways/metabolism , Olfactory Pathways/diagnostic imaging , Smell/physiology , Brain/metabolism , Brain/diagnostic imaging , Temporal Lobe/metabolism , Temporal Lobe/diagnostic imaging , Middle Aged
11.
Nat Commun ; 15(1): 5476, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38942759

ABSTRACT

Desert locust plagues threaten the food security of millions. Central to their formation is crowding-induced plasticity, with social phenotypes changing from cryptic (solitarious) to swarming (gregarious). Here, we elucidate the implications of this transition on foraging decisions and corresponding neural circuits. We use behavioral experiments and Bayesian modeling to decompose the multi-modal facets of foraging, revealing olfactory social cues as critical. To this end, we investigate how corresponding odors are encoded in the locust olfactory system using in-vivo calcium imaging. We discover crowding-dependent synergistic interactions between food-related and social odors distributed across stable combinatorial response maps. The observed synergy was specific to the gregarious phase and manifested in distinct odor response motifs. Our results suggest a crowding-induced modulation of the locust olfactory system that enhances food detection in swarms. Overall, we demonstrate how linking sensory adaptations to behaviorally relevant tasks can improve our understanding of social modulation in non-model organisms.


Subject(s)
Bayes Theorem , Grasshoppers , Odorants , Smell , Social Behavior , Animals , Grasshoppers/physiology , Smell/physiology , Behavior, Animal/physiology , Crowding , Feeding Behavior/physiology , Olfactory Perception/physiology , Male , Female , Cues
12.
Soc Cogn Affect Neurosci ; 19(1)2024 May 27.
Article in English | MEDLINE | ID: mdl-38850226

ABSTRACT

The smell of the own baby is a salient cue for human kin recognition and bonding. We hypothesized that infant body odors function like other cues of the Kindchenschema by recruiting neural circuits of pleasure and reward. In two functional magnetic resonance imaging studies, we presented infantile and post-pubertal body odors to nulliparae and mothers (N = 78). All body odors increased blood-oxygen-level-dependent (BOLD) response and functional connectivity in circuits related to olfactory perception, pleasure and reward. Neural activation strength in pleasure and reward areas positively correlated with perceptual ratings across all participants. Compared to body odor of post-pubertal children, infant body odors specifically enhanced BOLD signal and functional connectivity in reward and pleasure circuits, suggesting that infantile body odors prime the brain for prosocial interaction. This supports the idea that infant body odors are part of the Kindchenschema. The additional observation of functional connectivity being related to maternal and kin state speaks for experience-dependent priming.


Subject(s)
Brain , Magnetic Resonance Imaging , Odorants , Smell , Humans , Female , Magnetic Resonance Imaging/methods , Male , Infant , Adult , Smell/physiology , Brain/physiology , Olfactory Perception/physiology , Brain Mapping/methods , Oxygen/blood , Young Adult , Child , Reward , Pleasure/physiology
13.
J Physiol ; 602(14): 3519-3543, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38837412

ABSTRACT

In mammals, odour information within the olfactory bulb (OB) is processed by complex neural circuits before being ultimately represented in the action potential activity of mitral/tufted cells (M/Ts). Cholecystokinin-expressing (CCK+) superficial tufted cells (sTCs) are a subset of tufted cells that potentially contribute to olfactory processing in the OB by orchestrating M/T activity. However, the exact role of CCK+ sTCs in modulating odour processing and olfactory function in vivo is largely unknown. Here, we demonstrate that manipulating CCK+ sTCs can generate perception and induce place avoidance. Optogenetic activation/inactivation of CCK+ sTCs exerted strong but differing effects on spontaneous and odour-evoked M/T firing. Furthermore, inactivation of CCK+ sTCs disrupted M/T odour encoding and impaired olfactory detection and odour discrimination. These results establish the role of CCK+ sTCs in odour representation and olfactory behaviours. KEY POINTS: Mice could perceive the activity of CCK+ sTCs and show place avoidance to CCK+ sTC inactivation. Optical activation of CCK+ sTCs increased the percentage of cells with odour response but reduced the odour-evoked response in M/Ts in awake mice. Optical inactivation of CCK+ sTCs greatly decreased spontaneous firing and odour-evoked response in M/Ts. Inactivation of CCK+ sTCs impairs the odour decoding performance of M/Ts and disrupts odour detection and discrimination behaviours in mice. These results indicate that CCK+ sTCs participate in modulating the odour representation and maintaining normal olfactory-related behaviours.


Subject(s)
Cholecystokinin , Olfactory Bulb , Animals , Female , Male , Mice , Cholecystokinin/metabolism , Mice, Inbred C57BL , Mice, Transgenic , Neurons/physiology , Odorants , Olfactory Bulb/physiology , Olfactory Perception/physiology , Optogenetics , Smell/physiology
14.
Int J Mol Sci ; 25(11)2024 May 30.
Article in English | MEDLINE | ID: mdl-38892173

ABSTRACT

A-to-I RNA editing, catalyzed by the ADAR protein family, significantly contributes to the diversity and adaptability of mammalian RNA signatures, aligning with developmental and physiological needs. Yet, the functions of many editing sites are still to be defined. The Unc80 gene stands out in this context due to its brain-specific expression and the evolutionary conservation of its codon-altering editing event. The precise biological functions of Unc80 and its editing, however, are still largely undefined. In this study, we first demonstrated that Unc80 editing occurs in an ADAR2-dependent manner and is exclusive to the brain. By employing the CRISPR/Cas9 system to generate Unc80 knock-in mouse models that replicate the natural editing variations, our findings revealed that mice with the "gain-of-editing" variant (Unc80G/G) exhibit heightened basal neuronal activity in critical olfactory regions, compared to the "loss-of-editing" (Unc80S/S) counterparts. Moreover, an increase in glutamate levels was observed in the olfactory bulbs of Unc80G/G mice, indicating altered neurotransmitter dynamics. Behavioral analysis of odor detection revealed distinctive responses to novel odors-both Unc80 deficient (Unc80+/-) and Unc80S/S mice demonstrated prolonged exploration times and heightened dishabituation responses. Further elucidating the olfactory connection of Unc80 editing, transcriptomic analysis of the olfactory bulb identified significant alterations in gene expression that corroborate the behavioral and physiological findings. Collectively, our research advances the understanding of Unc80's neurophysiological functions and the impact of its editing on the olfactory sensory system, shedding light on the intricate molecular underpinnings of olfactory perception and neuronal activity.


Subject(s)
Adenosine Deaminase , Olfactory Perception , RNA Editing , Animals , Mice , Olfactory Perception/physiology , Adenosine Deaminase/metabolism , Adenosine Deaminase/genetics , Olfactory Bulb/metabolism , RNA-Binding Proteins/metabolism , RNA-Binding Proteins/genetics , Neurons/metabolism , CRISPR-Cas Systems , Male , Mice, Inbred C57BL , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism
15.
Nat Rev Neurosci ; 25(7): 453-472, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38806946

ABSTRACT

The olfactory system is an ideal and tractable system for exploring how the brain transforms sensory inputs into behaviour. The basic tasks of any olfactory system include odour detection, discrimination and categorization. The challenge for the olfactory system is to transform the high-dimensional space of olfactory stimuli into the much smaller space of perceived objects and valence that endows odours with meaning. Our current understanding of how neural circuits address this challenge has come primarily from observations of the mechanisms of the brain for processing other sensory modalities, such as vision and hearing, in which optimized deep hierarchical circuits are used to extract sensory features that vary along continuous physical dimensions. The olfactory system, by contrast, contends with an ill-defined, high-dimensional stimulus space and discrete stimuli using a circuit architecture that is shallow and parallelized. Here, we present recent observations in vertebrate and invertebrate systems that relate the statistical structure and state-dependent modulation of olfactory codes to mechanisms of perception and odour-guided behaviour.


Subject(s)
Invertebrates , Odorants , Olfactory Pathways , Smell , Vertebrates , Animals , Invertebrates/physiology , Vertebrates/physiology , Smell/physiology , Humans , Olfactory Pathways/physiology , Olfactory Perception/physiology
16.
Exp Brain Res ; 242(7): 1561-1571, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38753044

ABSTRACT

In the human brain, the regions responsible for emotion processing, motivation, and memory are heavily influenced by olfaction, whose neural pathway is directly exposed to the outer world. In this study, we used fMRI to examine how different olfactory conditions might affect the functional connectivity circuit underlying working memory in the brain. To this end, 30 adults (aged 20-35), 13 males and 17 females, with high educational levels were chosen. Participants were screened for potential olfactory issues before undergoing the Sniffin' sticks test, which was part of the inclusion criteria. Before imaging, each participant was given the required level of training and was then asked to complete four olfactory tests involving pleasant and unpleasant odors, air, and null stimulation. The results of Seed-based analysis suggested a function connection between the inferior parietal region and the left frontal pole region upon olfactory stimulation with vanilla scent in contrast to null stimulation in this comparison, ROI-based analysis revealed an inverse synchronous among the entorhinal cortex, orbitofrontal cortex, and dorsolateral prefrontal cortex (dlPFC). Both dlPFC and hippocampus were involved in olfactory discrimination between two different stimulants. Our findings indicate the presence of inverse correlations between several regions associated with olfaction and working memory, with pleasant scents leaving a stronger impact on the working memory-related areas, particularly the inferior parietal region.


Subject(s)
Magnetic Resonance Imaging , Memory, Short-Term , Odorants , Olfactory Perception , Humans , Male , Female , Adult , Memory, Short-Term/physiology , Young Adult , Olfactory Perception/physiology , Brain Mapping , Nerve Net/physiology , Nerve Net/diagnostic imaging , Brain/physiology , Brain/diagnostic imaging , Smell/physiology , Neural Pathways/physiology
17.
Physiol Behav ; 282: 114579, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38710351

ABSTRACT

Olfactory and cognitive performance share neural correlates profoundly affected by physiological aging. However, whether odor identification and discrimination scores predict global cognitive status and executive function in healthy older people with intact cognition is unclear. Therefore, in the present study, we set out to elucidate these links in a convenience sample of 204 independently living, cognitively intact healthy Czech adults aged 77.4 ± 8.7 (61-97 years) over two waves of data collection (one-year interval). We used the Czech versions of the Montreal Cognitive Assessment (MoCA) to evaluate global cognition, and the Prague Stroop Test (PST), Trail Making Test (TMT), and several verbal fluency (VF) tests to assess executive function. As a subsidiary aim, we aimed to examine the contribution of olfactory performance towards achieving a MoCA score above vs. below the published cut-off value. We found that the MoCA scores exhibited moderate associations with both odor identification and discrimination. Furthermore, odor identification significantly predicted PST C and C/D scores. Odor discrimination significantly predicted PST C/D, TMT B/A, and standardized composite VF scores. Our findings demonstrate that olfaction, on the one hand, and global cognition and executive function, on the other, are related even in healthy older people.


Subject(s)
Aging , Cognition , Discrimination, Psychological , Executive Function , Odorants , Humans , Aged , Male , Female , Executive Function/physiology , Aged, 80 and over , Discrimination, Psychological/physiology , Aging/physiology , Middle Aged , Cognition/physiology , Olfactory Perception/physiology , Neuropsychological Tests , Smell/physiology , Cognitive Dysfunction/physiopathology , Cognitive Dysfunction/diagnosis , Mental Status and Dementia Tests
18.
Sci Rep ; 14(1): 12351, 2024 05 29.
Article in English | MEDLINE | ID: mdl-38811746

ABSTRACT

Research into dogs' olfactory ability is growing rapidly. However, generalising based on scientific results is challenging, because research has been typically conducted on a few specially trained subjects of a few breeds tested in different environmental conditions. We investigated the effects of temperature and humidity (outdoors), age, test location, sex, neutering status, and repeated testing (outdoors and indoors) on the olfactory performance of untrained family dogs (N = 411) of various breeds. We employed the Natural Detection Task with three difficulty levels, from which we derived two performance metrics: Top Level and Success Score. Temperature (0-25 °C) and humidity (18-90%) did not affect olfactory performance. Young adult dogs surpassed other age groups in reaching the Top Level. Sex and neutering status showed no discernible influence on Top Level and Success Score. Dogs performed better in both metrics when tested indoors compared to outdoors. In the test-retest procedure no significant learning effect was observed. We confirmed on untrained companion dogs that olfactory performance declines with age and rejected some factors that have been previously hypothesised to significantly affect dogs' olfactory success. The influence of the testing environment was notable, emphasising the need to consider various factors in understanding dogs' olfactory capabilities.


Subject(s)
Smell , Animals , Dogs , Male , Smell/physiology , Female , Behavior, Animal/physiology , Temperature , Humidity , Age Factors , Olfactory Perception/physiology
19.
Article in English | MEDLINE | ID: mdl-38795823

ABSTRACT

OBJECTIVE: Patients with psychotic diseases have been reported to exhibit abnormalities in their olfactory discrimination. These alterations have also been identified in people at high genetic or clinical risk for psychosis, suggesting olfactory discrimination dysfunction may be a potential risk factor for developing psychosis. Thus, the purpose of our study is to explore the difference in olfactory discrimination ability in the prosal stage and early stage of psychosis and to explore the potential risk factor of developed psychosis. METHODS: We compared olfactory identification and cognitive function in 89 ultra-high-risk (UHR) individuals, 103 individuals with Drug-naïve first-episode schizophrenia (FES), 81 genetic high-risk (GHR) individuals, and 97 healthy controls (HC). Additionally, we compared olfactory identification and cognitive function between two groups; UHR individuals who later transitioned to psychosis (UHR-T; n = 33) and those who did not transition (UHR-NT; n = 42)). Furthermore, we analyzed the correlations between olfactory discrimination ability and cognitive function and symptoms and compared the olfactory function between men and women. RESULTS: Patients with first-episode schizophrenia (FES) and those at ultra-high risk (UHR) for psychosis exhibited more significant deficits in olfactory identification than healthy controls (HC), while no differences in olfactory identification dysfunction were observed between the genetic high risk (GHR) and HC groups. Notably, individuals in the UHR group who later developed psyhchosis displayed a steeper marked decline in their baseline olfactory identification ability than that of those in the UHR group who did not develop psychosis. Cognitive dysfunction is widely observed in both the FES and UHR groups, with a distinct correlation identified between olfactory discrimination function and cognitive performance. Finally, overall, women exhibit significantly superior olfactory function than men. CONCLUSION: In conclusion, these findings suggest that impairment of olfactory identification exists in the early stage of psychosis. Olfactory identification dysfunction may therefore be a potential marker of predicting the transition to schizophrenia.


Subject(s)
Olfaction Disorders , Psychotic Disorders , Humans , Male , Female , Psychotic Disorders/complications , Young Adult , Adult , Schizophrenia/physiopathology , Schizophrenia/complications , Discrimination, Psychological/physiology , Risk Factors , Adolescent , Olfactory Perception/physiology , Smell/physiology
20.
Brain Behav ; 14(5): e3524, 2024 May.
Article in English | MEDLINE | ID: mdl-38702902

ABSTRACT

INTRODUCTION: The combination of apolipoprotein E ε4 (ApoE ε4) status, odor identification, and odor familiarity predicts conversion to mild cognitive impairment (MCI) and Alzheimer's disease (AD). METHODS: To further understand olfactory disturbances and AD risk, ApoE ε4 carrier (mean age 76.38 ± 5.21) and ε4 non-carrier (mean age 76.8 ± 3.35) adults were given odor familiarity and identification tests and performed an odor identification task during fMRI scanning. Five task-related functional networks were detected using independent components analysis. Main and interaction effects of mean odor familiarity ratings, odor identification scores, and ε4 status on network activation and task-modulation of network functional connectivity (FC) during correct and incorrect odor identification (hits and misses), controlling for age and sex, were explored using multiple linear regression. RESULTS: Findings suggested that sensory-olfactory network activation was positively associated with odor identification scores in ε4 carriers with intact odor familiarity. The FC of sensory-olfactory, multisensory-semantic integration, and occipitoparietal networks was altered in ε4 carriers with poorer odor familiarity and identification. In ε4 carriers with poorer familiarity, connectivity between superior frontal areas and the sensory-olfactory network was negatively associated with odor identification scores. CONCLUSIONS: The results contribute to the clarification of the neurocognitive structure of odor identification processing and suggest that poorer odor familiarity and identification in ε4 carriers may signal multi-network dysfunction. Odor familiarity and identification assessment in ε4 carriers may contribute to the predictive value of risk for MCI and AD due to the breakdown of sensory-cognitive network integration. Additional research on olfactory processing in those at risk for AD is warranted.


Subject(s)
Apolipoprotein E4 , Magnetic Resonance Imaging , Humans , Female , Male , Aged , Apolipoprotein E4/genetics , Olfactory Perception/physiology , Smell/physiology , Recognition, Psychology/physiology , Aged, 80 and over , Cognitive Dysfunction/physiopathology , Odorants , Alzheimer Disease/physiopathology , Alzheimer Disease/genetics , Heterozygote , Brain/diagnostic imaging , Brain/physiopathology
SELECTION OF CITATIONS
SEARCH DETAIL