Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 9.228
Filter
1.
Theriogenology ; 229: 214-224, 2024 Nov.
Article in English | MEDLINE | ID: mdl-39217650

ABSTRACT

Vitrification of oocyte has become an important component of assisted reproductive technology and has important implications for animal reproduction and the preservation of biodiversity. However, vitrification adversely affects mitochondrial function and oocyte developmental potential, mainly because of oxidative damage. Rutin is a highly effective antioxidant, but no information is available to the effect of rutin on the mitochondrial function and development in vitrified oocytes. Therefore, we studied the effects of rutin supplementation of vitrification solution on mitochondrial function and developmental competence of ovine germinal vesicle (GV) stage oocytes post vitrification. The results showed that supplementation of vitrification solution with 0.6 mM rutin significantly increased the cleavage rate (71.6 % vs. 59.3 %) and blastocyst rate (18.9 % vs. 6.8 %) compared to GV-stage oocytes in the vitrified group. Then, we analyzed the reactive oxygen species (ROS), glutathione (GSH), mitochondrial activity and membrane potential (ΔΨm), endoplasmic reticulum (ER) Ca2+, and annexin V (AV) of vitrified sheep GV-stage oocytes. Vitrified sheep oocytes exhibited increased levels of ROS and Ca2+, higher rate of AV-positive oocytes, and decreased mitochondrial activity, GSH and ΔΨm levels. However, rutin supplementation in vitrification solution decreased the levels of ROS, Ca2+ and AV-positive oocytes rate, and increased the GSH and ΔΨm levels in vitrified oocytes. Results revealed that rutin restored mitochondrial function, regulated Ca2+ homeostasis and decreased apoptosis potentially caused by mitophagy in oocytes. To understand the mechanism of rutin functions in vitrified GV-stage oocytes in sheep, we analyzed the transcriptome and found that rutin mediated oocytes development and mitochondrial function, mainly by affecting oxidative phosphorylation and the mitophagy pathways. In conclusion, supplementing with 0.6 mM rutin in vitrification solution significantly enhanced developmental potential through improving mitochondrial function and decreased apoptosis potentially caused by mitophagy after vitrification of ovine GV-stage oocytes.


Subject(s)
Cryopreservation , Mitochondria , Oocytes , Rutin , Vitrification , Animals , Rutin/pharmacology , Oocytes/drug effects , Oocytes/physiology , Sheep/physiology , Mitochondria/drug effects , Vitrification/drug effects , Cryopreservation/veterinary , Reactive Oxygen Species/metabolism , Female , Membrane Potential, Mitochondrial/drug effects , In Vitro Oocyte Maturation Techniques/veterinary , In Vitro Oocyte Maturation Techniques/methods , Antioxidants/pharmacology , Embryonic Development/drug effects
2.
Food Chem Toxicol ; 192: 114941, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39153727

ABSTRACT

The present paper provides the first integrative assessment of the capacity of dietary, endogenous and other agents to induce hormetic dose responses in oocytes, their supportive cells such as granulosa cells, blastocyst formation and early stage embryo development with the goal of improving fertility and reproductive success. The analysis showed that numerous agents enhance oocyte maturation and blastocyst/embryonic development in an hormetic fashion. These findings indicate that numerous agents improve oocyte-related biological functioning under normal conditions as well as enhancing its capacity to prevent damage from numerous chemical toxins and related stressor agents, including heat and age-related processes in pre-post conditioning and concurrent exposures. The present assessment suggests that hormetic-based lifestyles and dietary interventions may offer the potential to enhance healthy reproductive performance with applications to animal husbandry and human biology. The present findings also significantly extend the generality of the hormesis dose response concept to multiple fundamental biological processes (i.e., oocyte maturation, fertilization and blastocyst/embryo development).


Subject(s)
Blastocyst , Embryonic Development , Hormesis , Oocytes , Oocytes/drug effects , Oocytes/physiology , Embryonic Development/drug effects , Blastocyst/drug effects , Blastocyst/physiology , Humans , Animals , Female
3.
Cryobiology ; 116: 104952, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39128509

ABSTRACT

In recent years, the challenge of preserving amphibian biodiversity has increasingly been addressed through technologies for the short-term storage of unfertilized spawn at low positive temperatures. Previously the possibility of using a 6.5 atm gaseous mixture of carbon monoxide and oxygen for prolonged hypothermic preservation of unfertilized oocytes for more than 4 days was shown. This study aimed to investigate the viability of oocytes R. temporaria preserved under conditions of hypothermia at 2.5, 3 and 6.5 excess atm pressure in the various gas mixture compositions (CO, N2O, O2) and pure oxygen. The use of pressure up to 3 excess atmospheres was significantly beneficial compared to 6.5 atm at the 7 days storage period. The results indicate that oxygen pressure is a critical factor in maintaining oocyte viability. Admixing CO or N2O to oxygen reduced variability in the results but did not significantly affect the measured indicators (fertilization, hatching) in the experimental groups. The composition CO + O2 (0.5/3.5 ratio, 3 excess atm) reliably extended the shelf life of viable oocytes, indistinguishable from native controls by fertilization and hatching rates, to 4 days. After 7 days, oocytes exhibited fertilization and hatching rates that were 79 % and 48 % compared to native control. Reducing the pressure of the preserving gas mixture to 3 atm, as utilized in this study, simplifies the practical implementation of gas preservation technology for maintaining endangered amphibian species during breeding in laboratory conditions.


Subject(s)
Carbon Monoxide , Cryopreservation , Nitrous Oxide , Oocytes , Oxygen , Rana temporaria , Animals , Oocytes/drug effects , Oocytes/cytology , Oxygen/metabolism , Cryopreservation/methods , Cryopreservation/veterinary , Carbon Monoxide/pharmacology , Female , Cell Survival/drug effects , Pressure
4.
Commun Biol ; 7(1): 925, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39090373

ABSTRACT

Plasma membrane damage in vitrified oocytes is closely linked to mitochondrial dysfunction. However, the mechanism underlying mitochondria-regulated membrane stability is not elucidated. A growing body of evidence indicates that mitochondrial activity plays a pivotal role in cell adaptation. Since mitochondria work at a higher temperature than the constant external temperature of the cell, we hypothesize that suppressing mitochondrial activity would protect oocytes from extreme stimuli during vitrification. Here we show that metformin suppresses mitochondrial activity by reducing mitochondrial temperature. In addition, metformin affects the developmental potential of oocytes and improves the survival rate after vitrification. Transmission electron microscopy results show that mitochondrial abnormalities are markedly reduced in vitrified oocytes pretreated with metformin. Moreover, we find that metformin transiently inhibits mitochondrial activity. Interestingly, metformin pretreatment decreases cell membrane fluidity after vitrification. Furthermore, transcriptome results demonstrate that metformin pretreatment modulates the expression levels of genes involved in fatty acid elongation process, which is further verified by the increased long-chain saturated fatty acid contents in metformin-pretreated vitrified oocytes by lipidomic profile analysis. In summary, our study indicates that metformin alleviates cryoinjuries by reducing membrane fluidity via mitochondrial activity regulation.


Subject(s)
Membrane Fluidity , Metformin , Mitochondria , Oocytes , Metformin/pharmacology , Animals , Membrane Fluidity/drug effects , Oocytes/drug effects , Oocytes/metabolism , Mitochondria/drug effects , Mitochondria/metabolism , Swine , Female , Cryopreservation , Vitrification/drug effects
5.
J Nanobiotechnology ; 22(1): 460, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39090717

ABSTRACT

BACKGROUND: Nanoplastics (NPs) are emerging pollutants that pose risks to living organisms. Recent findings have unveiled the reproductive harm caused by polystyrene nanoparticles (PS-NPs) in female animals, yet the intricate mechanism remains incompletely understood. Under this research, we investigated whether sustained exposure to PS-NPs at certain concentrations in vivo can enter oocytes through the zona pellucida or through other routes that affect female reproduction. RESULTS: We show that PS-NPs disrupted ovarian functions and decreased oocyte quality, which may be a contributing factor to lower female fertility in mice. RNA sequencing of mouse ovaries illustrated that the PI3K-AKT signaling pathway emerged as the predominant environmental information processing pathway responding to PS-NPs. Western blotting results of ovaries in vivo and cells in vitro showed that PS-NPs deactivated PI3K-AKT signaling pathway by down-regulating the expression of PI3K and reducing AKT phosphorylation at the protein level, PI3K-AKT signaling pathway which was accompanied by the activation of autophagy and apoptosis and the disruption of steroidogenesis in granulosa cells. Since PS-NPs penetrate granulosa cells but not oocytes, we examined whether PS-NPs indirectly affect oocyte quality through granulosa cells using a granulosa cell-oocyte coculture system. Preincubation of granulosa cells with PS-NPs causes granulosa cell dysfunction, resulting in a decrease in the quality of the cocultured oocytes that can be reversed by the addition of 17ß-estradiol. CONCLUSIONS: This study provides findings on how PS-NPs impact ovarian function and include transcriptome sequencing analysis of ovarian tissue. The study demonstrates that PS-NPs impair oocyte quality by altering the functioning of ovarian granulosa cells. Therefore, it is necessary to focus on the research on the effects of PS-NPs on female reproduction and the related methods that may mitigate their toxicity.


Subject(s)
Granulosa Cells , Nanoparticles , Oocytes , Polystyrenes , Signal Transduction , Animals , Female , Mice , Apoptosis/drug effects , Autophagy/drug effects , Fertility/drug effects , Granulosa Cells/drug effects , Granulosa Cells/metabolism , Nanoparticles/toxicity , Oocytes/drug effects , Oocytes/metabolism , Ovary/drug effects , Ovary/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Polystyrenes/toxicity , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction/drug effects
6.
Cryo Letters ; 45(5): 301-308, 2024.
Article in English | MEDLINE | ID: mdl-39126332

ABSTRACT

BACKGROUND: Vitrification is commonly used for in vitro fertilization and has significant impact on gametes. OBJECTIVE: To investigate changes in ultrastructure, membrane potential and distribution of mitochondria in mouse oocytes after vitrification. MATERIALS AND METHODS: Mouse oocytes were divided into three groups: one group as fresh control, one group for the toxicity test (treated with cryoprotectant but without vitrification), and the other for vitrification. RESULTS: Most mitochondria in oocytes were damaged after cooling and warming, being rough and fuzzy in appearance, even swollen and broken. The membrane potential of the toxicity test group and the vitrification group was 0.320 +/-0.030 and 0.244 +/- 0.038, respectively, in comparison to the fresh group (0.398 +/- 0.043). The membrane potential of the vitrified oocytes was significantly lower than fresh oocytes and the toxicity test oocytes (P % 0.05), but there was no significant difference between fresh oocytes and the toxicity test oocytes (P > 0.05). Mitochondria in fresh oocytes were denser and strained stronger, with 59.5> distributed homogeneously and 36.4> polarized. The majority of mitochondria in the toxicity-tested oocytes were clustered (69.3>) and only a small portion were distributed homogeneously (19.6>), while mitochondria in vitrified oocytes were clustered (56.3>) and deficient (24.4>), and their fluorescent staining was weak and blurred. There was a significant disruption in mitochondrial function after vitrification. CONCLUSION: Vitrification alters the ultrastructure, membrane potential and distribution of mitochondria in oocytes, most likely caused by toxicity and mechanical injury. Doi.org/10.54680/fr24510110212.


Subject(s)
Cryopreservation , Cryoprotective Agents , Membrane Potential, Mitochondrial , Mitochondria , Oocytes , Vitrification , Animals , Oocytes/drug effects , Oocytes/ultrastructure , Oocytes/cytology , Mice , Cryopreservation/methods , Mitochondria/drug effects , Mitochondria/ultrastructure , Mitochondria/metabolism , Female , Membrane Potential, Mitochondrial/drug effects , Cryoprotective Agents/pharmacology
7.
Methods Mol Biol ; 2818: 133-145, 2024.
Article in English | MEDLINE | ID: mdl-39126471

ABSTRACT

Oogenesis is the central process required to produce viable oocytes in female mammals. It is initiated during embryonic development, and it involves the specification of primordial germ cells (PGCs) and progresses through the activation of the meiotic program, reaching a crucial phase in prophase I before pausing at diplotene around the time of birth. The significance of meiosis, particularly the prophase I stage, cannot be overstated, as it plays a pivotal role in ensuring the formation of healthy gametes, a prerequisite for successful reproduction. While research has explored meiosis across various organisms, understanding how environmental factors, including radiation, drugs, endocrine disruptors, reproductive age, or diet, influence this complex developmental process remains incomplete. In this chapter, we describe an ex vivo culture method to investigate meiotic prophase I and beyond and the disruption of oogenesis by external factors. Using this methodology, it is possible to evaluate the effects of individual xenobiotics by administering chemicals at specific points during oogenesis. This culture technique was optimized to study the effects of two selected endocrine disruptors (vinclozolin and MEHP), demonstrating that vinclozolin exposure delayed meiotic differentiation and MEHP exposure reduced follicle size. This approach also opens avenues for future applications, involving the exploration of established or novel pharmaceutical substances and their influence on essential events during prophase I, such as homologous recombination and chromosome segregation. These processes collectively dictate the ultimate fitness of oocytes, with potential implications for factors relevant to the reproductive age and fertility.


Subject(s)
Meiosis , Ovary , Animals , Female , Mice , Ovary/cytology , Meiosis/drug effects , Oogenesis/drug effects , Oocytes/cytology , Oocytes/drug effects , Meiotic Prophase I/drug effects , Endocrine Disruptors/pharmacology , Oxazoles/pharmacology , Embryo, Mammalian/cytology , Embryo, Mammalian/drug effects
8.
Reprod Biol ; 24(3): 100929, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39154626

ABSTRACT

This study aims to evaluate the effects of nano-ozone solution (NZS) on canine oocyte nuclear maturation, associated with the alterations of antioxidant and oxidant status and cyclin-dependent kinase 1 (CDK1), cyclin B1 gene expressions. Oocytes were cultured in four distinct concentrations of NZS (0.5, 1, 2, and 5 µg/mL) and parthenogenetically activated. The rates of oocytes arrested at the Germinal Vesicle (GV), Germinal Vesicle Breakdown (GVBD), Metaphase I (MI), and Metaphase II (MII) stages were statistically different among groups (P < 0.05). The oocytes cultured in 1 µg/mL NZS yielded the best oocyte maturation rate at the MI and MII stages; however, the lowest maturation and high degeneration rates were observed in Group E. The measurements of Malondialdehyde (MDA), reduced Glutathione (GSH), Superoxide Dismutase (SOD), and Ferric Reducing/Antioxidant Power assay (FRAP) were performed from IVM culture media. No statistical difference was observed in SOD and MDA results (P > 0.05). GSH levels were statistically significant between Group A-Group E (p = 0.003), Group B-Group E (p = 0.045), and Group E-Group D (p = 0.021). The culture media in Group D and Group E had high FRAP concentrations and significantly differed between groups (P < 0.05). CDK1, and cyclin B1 genes, which are subunits of maturation-promoting factor (MPF), are upregulated in Group B and Group C, while are downregulated in oocytes of Group E. This study showed that low, controlled doses of NZS (1 µg/mL) supplementation could improve the meiotic competence of canine oocytes and lead to positive response in expressions of CDK1 and cyclin B1 on the gene level.


Subject(s)
Antioxidants , CDC2 Protein Kinase , Cyclin B1 , In Vitro Oocyte Maturation Techniques , Oocytes , Animals , Oocytes/drug effects , Oocytes/metabolism , Cyclin B1/metabolism , Cyclin B1/genetics , CDC2 Protein Kinase/metabolism , Dogs , Antioxidants/pharmacology , In Vitro Oocyte Maturation Techniques/veterinary , Female , Oxidants/pharmacology
9.
Cell Rep Med ; 5(8): 101678, 2024 Aug 20.
Article in English | MEDLINE | ID: mdl-39096912

ABSTRACT

Chemotherapy-induced premature ovarian insufficiency (CIPOI) triggers gonadotoxicity in women undergoing cancer treatment, leading to loss of ovarian reserves and subfertility, with no effective therapies available. In our study, fecal microbiota transplantation in a cisplatin-induced POI mouse model reveals that a dysbiotic gut microbiome negatively impacts ovarian health in CIPOI. Multi-omics analyses show a significant decrease in Limosilactobacillus reuteri and its catabolite, ß-resorcylic acid , in the CIPOI group in comparison to healthy controls. Supplementation with L. reuteri or ß-RA mitigates cisplatin-induced hormonal disruptions, morphological damages, and reductions in follicular reserve. Most importantly, ß-RA pre-treatment effectively preserves oocyte function, embryonic development, and fetus health, thereby protecting against chemotherapy-induced subfertility. Our results provide evidence that ß-RA suppresses the nuclear accumulation of sex-determining region Y-box 7, which in turn reduces Bcl-2-associated X activation and inhibits granulosa cell apoptosis. These findings highlight the therapeutic potential of targeting the gut-ovary axis for fertility preservation in CIPOI.


Subject(s)
Cisplatin , Limosilactobacillus reuteri , Ovary , Primary Ovarian Insufficiency , Female , Animals , Cisplatin/adverse effects , Cisplatin/toxicity , Mice , Primary Ovarian Insufficiency/chemically induced , Primary Ovarian Insufficiency/pathology , Ovary/drug effects , Ovary/pathology , Ovary/metabolism , Gastrointestinal Microbiome/drug effects , Apoptosis/drug effects , Fecal Microbiota Transplantation , Oocytes/drug effects , Oocytes/metabolism , Mice, Inbred C57BL , Antineoplastic Agents/toxicity , Antineoplastic Agents/adverse effects , Granulosa Cells/drug effects , Granulosa Cells/metabolism , Disease Models, Animal , Infertility
10.
Chem Biol Interact ; 402: 111213, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-39209017

ABSTRACT

Nicotinic acetylcholine receptors (nAChRs) are expressed in excitable and non-excitable cells of the organism. Extensive studies suggest that nAChR ligands have therapeutic potential, notably for neurological and psychiatric disorders. Organometallic ruthenium complexes are known to inhibit several medically important enzymes such as cholinesterases. In addition, they can also interact with muscle- and neuronal-subtype nAChRs. The present study aimed to investigate the direct effects of three organometallic ruthenium complexes, [(η6-p-cymene)Ru(II)(5-nitro-1,10-phenanthroline)Cl]Cl (C1-Cl), [(η6-p-cymene)Ru(II)(1-hydroxypyridine-2(1H)-thionato)Cl] (C1a) and [(η6-p-cymene)Ru(II)(1-hydroxy-3-methoxypyridine-2(1H)-thionato)pta]PF6 (C1), on muscle-subtype (Torpedo) nAChRs and on the two most abundant human neuronal-subtype nAChRs in the CNS (α4ß2 and α7) expressed in Xenopus laevis oocytes, using the two-electrode voltage-clamp. The results show that none of the three compounds had agonistic activity on any of the nAChR subtypes studied. In contrast, C1-Cl reversibly blocked Torpedo nAChR (half-reduction of ACh-evoked peak current amplitude by 332 nM of compound). When tested at 10 µM, C1-Cl was statistically more potent to inhibit TorpedonAChR than α4ß2 and α7 nAChRs. Similar results of C1 effects were obtained on Torpedo and α4ß2 nAChRs, while no action of the compound was detected on α7 nAChRs. Finally, the effects of C1a were statistically similar on the three nAChR subtypes but, in contrast to C1-Cl and C1, the inhibition was hardly reversible. These results, together with our previous studies on isolated mouse neuromuscular preparations, strongly suggest that C1-Cl is, among the three compounds studied, the only molecule that could be used as a potential myorelaxant drug.


Subject(s)
Oocytes , Receptors, Nicotinic , Xenopus laevis , Animals , Receptors, Nicotinic/metabolism , Humans , Oocytes/drug effects , Oocytes/metabolism , Ruthenium/chemistry , Ruthenium/pharmacology , Torpedo , Organometallic Compounds/pharmacology , Organometallic Compounds/chemistry , Patch-Clamp Techniques , Coordination Complexes/pharmacology , Coordination Complexes/chemistry , Pyridines/pharmacology , Pyridines/chemistry
11.
Exp Parasitol ; 265: 108812, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39127398

ABSTRACT

Infections caused by the ectoparasite Rhipicephalus microplus can cause major health problems in cattle, including death. Tick control is regularly made using a range of acaricide products. As a consequence, tick populations have been heavily selected for drug resistance. The objective of this work was to determine the in vitro efficacy of copper chloride and sulfate (CuCl2 and CuSO4) solutions against R. microplus. The adult immersion test (AIT), which measures the egg-laying and egg-hatch effects, was used for the Cu-II solutions at 30, 60, 120, 240, 480, and 1000 mM, in triplicates. Distilled water and the combination of cypermethrin 20% and chlorpyrifos 50% were used as controls. Histological sections were performed from the ovaries of adult engorged female ticks treated with 240, 480, and 1000 mM of CuCl2 and CuSO4. We have established a histological index of the damage caused by the solutions to the tick oocytes. The overall efficacy (egg laying & egg hatch) for CuCl2 and CuSO4 was 81.3, 82.5, 89.8, 84.5, 100.0, and 100%, and 61.7, 43.4, 62.5, 93.1, 100.0, and 98.5% respectively. Smaller oocytes were found in the Cu-II groups compared to the negative control. The histological data showed a concentration-dependent degenerative lesion of oocytes, described as cytoplasmic vacuolation and nuclear disorganization. The combination of cypermethrin and chlorpyriphos showed 100% efficacy. Cu-II solutions showed in vitro efficacy against adult engorged ticks being particularly harmful to oocytes. Thus, bioactive metals could be a complementary biofriendly treatment to control R. microplus and these injuries could be responsible for preventing egg hatch, and reducing pasture contamination. Safety studies are underway demonstrating the Cu-II potential in naturally infected cattle and their persistence in the environment.


Subject(s)
Acaricides , Copper Sulfate , Copper , Oocytes , Pyrethrins , Rhipicephalus , Animals , Rhipicephalus/drug effects , Female , Oocytes/drug effects , Copper/pharmacology , Copper Sulfate/pharmacology , Cattle , Acaricides/pharmacology , Pyrethrins/pharmacology , Tick Infestations/veterinary , Tick Infestations/parasitology , Tick Infestations/drug therapy , Tick Infestations/prevention & control , Chlorpyrifos/pharmacology , Cattle Diseases/parasitology , Cattle Diseases/drug therapy , Ovary/drug effects , Oviposition/drug effects
12.
Theriogenology ; 229: 53-65, 2024 Nov.
Article in English | MEDLINE | ID: mdl-39163803

ABSTRACT

In assisted fertility protocols, in vitro culture conditions mimic physiological conditions to preserve gametes in the best conditions. After collection, oocytes are maintained in a culture medium inside the incubator until in vitro fertilization (IVF) is performed. This time outside natural and physiological conditions exposes oocytes to an oxidative stress that renders in vitro aging. It has been described that in vitro aging produces a spontaneous cortical granule (CG) release decreasing the fertilization rate of oocytes. Nevertheless, this undesirable phenomenon has not been investigated, let alone prevented. In this work, we characterized the spontaneous CG secretion in in vitro aged oocytes. Using immunofluorescence indirect, quantification, and functional assays, we showed that the expression of regulatory proteins of CG exocytosis was affected. Our results demonstrated that in vitro oocyte aging by 4 and 8 h altered the expression and localization of alpha-SNAP and reduced the expression of NSF and Complexin. These alterations were prevented by supplementing culture medium with dithiothreitol (DTT), which in addition to having a protective effect on those proteins, also had an unexpected effect on the actin cytoskeleton. Indeed, DTT addition thickened the cortical layer of fibrillar actin. Both DTT effects, together, prevented the spontaneous secretion of CG and recovered the IVF rate in in vitro aged oocytes. We propose the use of DTT in culture media to avoid the spontaneous CG secretion and to improve the success rate of IVF protocols in in vitro aged oocytes.


Subject(s)
Actin Cytoskeleton , Dithiothreitol , Exocytosis , Oocytes , Animals , Oocytes/drug effects , Exocytosis/drug effects , Mice , Dithiothreitol/pharmacology , Actin Cytoskeleton/drug effects , Actin Cytoskeleton/metabolism , Female , Cytoplasmic Granules/metabolism , Cytoplasmic Granules/drug effects , Fertilization in Vitro/veterinary , Cellular Senescence/drug effects
13.
Theriogenology ; 229: 88-99, 2024 Nov.
Article in English | MEDLINE | ID: mdl-39167837

ABSTRACT

The wide application of ovine oocyte vitrification is limited by its relatively low efficiency. Nanoparticle is potentially to be used in cryopreservation technology for its unique characteristics with high biocompatibility, potent antioxidant property as well as superiority in membrane permeation and heat transduction. However, the effect of nanoparticle on ovine oocyte cryopreservation as well as the underlying mechanism has not been systematically evaluated. The objective of this study was to investigate the impact of nanoparticles on ovine oocytes cryopreservation and further identify the underlying mechanism. Firstly, the effects of Hydroxyapatite (HA) and Fe3O4 nanoparticles on the developmental potential of vitrified ovine oocytes were determined, and the results showed that neither HA (VC = 85.95 ± 6.23 % vs. VH = 92.47 ± 8.11 %, P > 0.05) nor Fe3O4 (VC = 85.95 ± 6.23 % vs. VF = 89.39 ± 6.32 %, P > 0.05) had adverse effect on the survival rate of vitrified-thawed oocytes. Notably, both HA (VC = 77.78 ± 0.09 % vs. VH = 44.00 ± 0.09 %, P<0.01) and Fe3O4 (VC = 77.78 ± 0.09 % vs. VF = 51.67 ± 0.15 %, P<0.01) nanoparticles effectively reduced the level of oocyte apoptosis after freezing and thawing. What's more, HA could significantly improve the cleavage rate of frozen oocytes (VC = 33.79 ± 2.83 % vs. VH = 59.54 ± 4.13 %, P<0.05). Moreover, reduced reactive oxygen species (ROS) level (VC = 13.66 ± 0.47 vs. VH = 12.61 ± 0.53, P < 0.05), increased glutathione (GSH) content (VC = 60.69 ± 7.89 vs. VH = 87.92 ± 1.05, P < 0.05) and elevated mitochondrial membrane potential (MMP) level (VC = 1.43 ± 0.04 vs. VH = 1.63 ± 0.01,P<0.01) were observed in oocytes treated with HA nanoparticles when compared with that of the control group. Furthermore, Smart-RNA sequence technology was utilized to identify differentially expressed mRNAs (DEMs) induced by nanoparticles during cryopreservation. When compared with the control counterparts, a total of 721 DEMs (309 up-regulated and 412 down-regulated mRNAs) were identified in oocytes treated with HA, while 702 DEMs (480 up-regulated and 222 down-regulated mRNAs) were identified in oocytes treated with Fe3O4. A comparison of DEMs showed that total 692 mRNAs were expressed in oocytes treated with HA and Fe3O4. Notably, we discovered that 15 mRNAs were specially highly expressed in oocytes treated with HA, and Focal adhesion signaling pathway mainly contributed to the improved ovine oocyte quality after vitrification by alleviating oxidative stress.


Subject(s)
Cryopreservation , Durapatite , Nanoparticles , Oocytes , Oxidative Stress , Vitrification , Animals , Oocytes/drug effects , Oocytes/physiology , Sheep/physiology , Oxidative Stress/drug effects , Durapatite/pharmacology , Cryopreservation/veterinary , Cryopreservation/methods , Female , Reactive Oxygen Species/metabolism
14.
Theriogenology ; 229: 108-117, 2024 Nov.
Article in English | MEDLINE | ID: mdl-39173460

ABSTRACT

Oocyte cryopreservation is not yet considered a reliable technique since it can reduce the quality and survival of oocytes in several species. This study determined the effect of different concentrations of antifreeze protein I (AFP I) on the vitrification solution of immature cat oocytes. For this, oocytes were randomly distributed in three groups and vitrified with 0 µg/mL (G0, 0 µM); 0.5 µg/mL (G0.5, 0.15 µM), or 1 µg/mL (G1, 0.3 µM) of AFP I. After thawing, oocytes were evaluated for morphological quality, and compared to a fresh group (FG) regarding actin integrity, mitochondrial activity and mass, reactive oxygen species (ROS) and glutathione (GSH) levels, nuclear maturation, expression of GDF9, BMP15, ZAR-1, PRDX1, SIRT1, and SIRT3 genes (normalized by ACTB and YWHAZ genes), and ultrastructure. G0.5 and G1 presented a higher proportion of COCs graded as I and while G0 had a significantly lower quality. G1 had a higher percentage of intact actin in COCs than G0 and G0.5 (P < 0.05). There was no difference (P > 0.05) in the mitochondrial activity between FG and G1 and they were both higher (P < 0.05) than G0 and G0.5. G1 had a significantly lower (P < 0.05) mitochondrial mass than FG and G0, and there was no difference among FG, G0, and G0.5. G1 had higher ROS than all groups (P < 0.05), and there was no difference in GSH levels among the vitrified groups (P > 0.05). For nuclear maturation, there was no difference between G1 and G0.5 (P > 0.05), but these were both higher (P < 0.05) than G0 and lower (P < 0.05) compared to FG. Regarding gene expression, in G0 and G0.5, most genes were downregulated compared to FG, except for SIRT1 and SIRT3 in G0 and SIRT3 in G0.5. In addition, G1 kept the expression more similar to FG. Regardless of concentration, AFP I supplementation in vitrification solution of immature cat oocytes improved maturation rates, morphological quality, and actin integrity and did not impact GSH levels. In the highest concentration tested (1 µg/mL), AFP maintained the mitochondrial activity, reduced mitochondrial mass, increased ROS levels, and had the gene expression more similar to FG. Altogether these data show that AFP supplementation during vitrification seems to mitigate some of the negative impact of cryopreservation improving the integrity and cryosurvival of cat oocytes.


Subject(s)
Cryopreservation , Oocytes , Vitrification , Animals , Cryopreservation/veterinary , Cryopreservation/methods , Cats , Oocytes/drug effects , Vitrification/drug effects , Female , Cryoprotective Agents/pharmacology , Antifreeze Proteins/pharmacology , Antifreeze Proteins/genetics , Reactive Oxygen Species/metabolism , Mitochondria/drug effects , Glutathione/pharmacology , Glutathione/metabolism
15.
Reprod Domest Anim ; 59(8): e14701, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39109447

ABSTRACT

This study aimed to evaluate the effect of chemical gasification and HEPES as alternative systems to pH control during in vitro maturation on bovine oocytes competence. Groups of 20 bovine cumulus oocytes complexes (COCs) were randomly distributed and cultured for 24 h in one of the following experimental groups: (i) chemical reaction (ChRG) system: CO2 generated from sodium bicarbonate and citric acid reaction (ii) culture media TCM-HEPES (HEPES-G); and (iii) control group (CNTG) in conventional incubator. After in vitro maturation (IVM), the COCs were in vitro fertilized (IVF), and in vitro cultivated (IVC) in a conventional incubator. We evaluated oocyte nuclear maturation, cleavage and blastocyst rates, in addition to the relative mRNA expression of BAX, BMP-15, AREG and EREG genes in oocytes and cumulus cells. The proportion of oocytes in metaphase II was higher in CNTG and ChRG (77.57% and 77.06%) than in the HEPES-G (65.32%; p = .0408 and .0492, respectively). The blastocyst production was similar between CNTG and ChRG (26.20% and 28.47%; p = .4232) and lower (p = .001) in the HEPES-G (18.71%). The relative mRNA expression of BAX gene in cumulus cells was significantly higher (p = .0190) in the HEPES-G compared to the CNTG. Additionally, the relative mRNA expression of BMP-15 gene was lower (p = .03) in oocytes from HEPES-G compared to the CNTG. In conclusion, inadequate atmosphere control has a detrimental effect on oocyte maturation. Yet, the use of chemical gasification can be an efficient alternative to bovine COCs cultivation.


Subject(s)
Fertilization in Vitro , In Vitro Oocyte Maturation Techniques , Oocytes , Animals , Cattle , In Vitro Oocyte Maturation Techniques/veterinary , In Vitro Oocyte Maturation Techniques/methods , Oocytes/drug effects , Fertilization in Vitro/veterinary , Female , Culture Media , Blastocyst/drug effects , Cumulus Cells/drug effects , Carbon Dioxide/pharmacology , Sodium Bicarbonate/pharmacology , Citric Acid/pharmacology , Embryo Culture Techniques/veterinary
16.
Sci Rep ; 14(1): 17937, 2024 08 02.
Article in English | MEDLINE | ID: mdl-39095405

ABSTRACT

Advanced glycation end products (AGEs) are the final products of the Maillard reaction, formed through the interaction of carbohydrates and proteins. Reactive dicarbonyl compounds such as methylglyoxal (MGO) serve as precursors for AGEs formation. Elevated levels of MGO/AGEs are observed in conditions like obesity, polycystic ovarian syndrome (PCOS), and diabetes, negatively impacting oocyte development. Previous studies have shown that hydrogen sulfide, a gasotransmitter with anti-AGEs effects, is produced in a process influenced by vitamin B6. R-α-lipoic acid (ALA) inhibits protein glycation and AGEs formation while stimulating glutathione (GSH) production. Taurine mitigates oxidative stress and acts as an anti-glycation compound, preventing in vitro glycation and AGEs accumulation. This study aimed to explore the ameliorative effects of a micronutrient support (Taurine, ALA and B6: TAB) on mouse oocytes challenged with MGO. Our results indicate that MGO reduces oocyte developmental competence, while TAB supplementation improves maturation, fertilization, and blastocyst formation rates. TAB also restores cell lineage allocation, redox balance and mitigates mitochondrial dysfunction in MGO-challenged oocytes. Furthermore, cumulus cells express key enzymes in the transsulfuration pathway, and TAB enhances their mRNA expression. However, TAB does not rescue MGO-induced damage in denuded oocytes, emphasizing the supportive role of cumulus cells. Overall, these findings suggest that TAB interventions may have significant implications for addressing reproductive dysfunctions associated with elevated MGO/AGEs levels. This study highlights the potential of TAB supplementation in preserving the developmental competence of COCs exposed to MGO stress, providing insights into mitigating the impact of dicarbonyl stress on oocyte quality and reproductive outcomes.


Subject(s)
Oocytes , Pyruvaldehyde , Taurine , Thioctic Acid , Vitamin B 6 , Animals , Taurine/pharmacology , Pyruvaldehyde/pharmacology , Pyruvaldehyde/metabolism , Oocytes/drug effects , Oocytes/metabolism , Mice , Thioctic Acid/pharmacology , Female , Vitamin B 6/pharmacology , Vitamin B 6/metabolism , Glycation End Products, Advanced/metabolism , Oxidative Stress/drug effects , Mitochondria/metabolism , Mitochondria/drug effects
17.
Reprod Toxicol ; 129: 108684, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39127149

ABSTRACT

Monobutyl phthalate (MBP) is the primary active metabolite of dibutyl phthalate (DBP), the key plasticizer component. A substantial body of evidence from studies conducted on both animals and humans indicates that MBP exposure could result in harmful impacts on toxicity pathways. In addition, it can seriously affect human and animal reproductive health. In our present study, we showed that exposure to MBP causes abnormal epigenetic modifications in porcine oocytes and failure of early embryonic development. However, glycine (Gly) can protect oocytes and early embryos from damage caused by MBP. Our study indicated a significant decrease in the percentage of porcine oocytes that reached the metaphase II (MII) phase when exposed to MBP. SET-domain-containing 2(SETD2)-mediated H3K36me3 histone methylation was detected, and the results showed that MBP significantly decreased the protein expression of H3K36me3 and SETD2. Moreover, the expression of the DNA break markers γH2AX and the mRNA expression of Asf1a, and Asf1b increased in the MBP group. The detection of DNA methylation marker proteins showed that MBP significantly increased the fluorescence intensity of 5-methylcytosine (5mC). The results from our RT-qPCR analysis demonstrated a significant decrease in the mRNA expression of the DNA methylation-related genes Dnmt1 and Dnmt3a, as well as the embryonic developmental potential-related genes Oct4 and Nanog, in porcine oocytes following exposure to MBP. Additionally, the mRNA expression of p53 significantly increased. Subsequently, the effects of MBP on early embryonic development were examined via parthenogenesis activation (PA) and in vitro fertilization (IVF). Exposure to MBP significantly impacted the development of embryos in both PA and IVF processes. The TUNEL staining data showed that MBP significantly increased embryonic apoptosis. However, Gly can ameliorate MBP-induced defects in oocyte epigenetic modifications and early embryonic development.


Subject(s)
DNA Methylation , Embryonic Development , Epigenesis, Genetic , Glycine , Oocytes , Phthalic Acids , Animals , Oocytes/drug effects , Oocytes/metabolism , Embryonic Development/drug effects , Swine , Epigenesis, Genetic/drug effects , Glycine/analogs & derivatives , Glycine/toxicity , Phthalic Acids/toxicity , DNA Methylation/drug effects , Female , Plasticizers/toxicity , Histones/metabolism
18.
J Ovarian Res ; 17(1): 178, 2024 Aug 31.
Article in English | MEDLINE | ID: mdl-39217393

ABSTRACT

Oocyte aging is a key constraint on oocyte quality, leading to fertilization failure and abnormal embryonic development. In addition, it is likely to generate unfavorable assisted reproductive technology (ART) outcomes. SCM-198, a synthetic form of leonurine, was found to rescue the rate of oocyte fragmentation caused by postovulatory aging. Therefore, the aim of this study was to conduct a more in-depth investigation of SCM-198 by exploring its relationship with aged oocytes after ovulation or maternal aging and clarifying whether it affects cell quality. The results indicate that, compared to the postovulatory aged group, the 50 µM SCM-198 group significantly improved sperm-egg binding and increased fertilization of aged oocytes, restoring the spindle apparatus/chromosome structure, cortical granule distribution, and ovastacin and Juno protein distribution. The 50 µM SCM-198 group showed significantly normal mitochondrial distribution, low levels of reactive oxygen species (ROS), and a small quantity of early oocyte apoptosis compared to the postovulatory aged group. Above all, in vivo supplementation with SCM-198 effectively eliminated excess ROS and reduced the spindle/chromosome structural defects in aged mouse oocytes. In summary, these findings indicate that SCM-198 inhibits excessive oxidative stress in oocytes and alters oocyte quality both in vitro and in vivo.


Subject(s)
Gallic Acid , Oocytes , Ovulation , Oxidative Stress , Reactive Oxygen Species , Oocytes/metabolism , Oocytes/drug effects , Animals , Oxidative Stress/drug effects , Female , Mice , Reactive Oxygen Species/metabolism , Ovulation/drug effects , Gallic Acid/pharmacology , Gallic Acid/analogs & derivatives , Cellular Senescence/drug effects , Apoptosis , Male
19.
J Ovarian Res ; 17(1): 175, 2024 Aug 28.
Article in English | MEDLINE | ID: mdl-39198920

ABSTRACT

BACKGROUND: Sterigmatocystin (STE) is a mycotoxin widely found in contaminated food and foodstuffs, and excessive long-term exposure to STE is associated with several health issues, including infertility. However, there is little information available regarding the effects of STE toxin on the female reproductive system, particularly concerning oocyte maturation. METHODS: In the present study, we investigated the toxic effects of STE on mouse oocyte maturation. We also used Western blot, immunofluorescence, and image quantification analyses to assess the impact of STE exposure on the oocyte maturation progression, mitochondrial distribution, oxidative stress, DNA damages, oocyte ferroptosis and asymmetric division defects. RESULTS: Our results revealed that STE exposure disrupted mouse oocyte maturation progression. When we examined the cellular changes following 100 µM STE treatment, we found that STE adversely affected polar body extrusion and induced asymmetric division defects in oocytes. RNA-sequencing data showed that STE exposure affects the expression of several pathway-correlated genes during oocyte meiosis in mice, suggesting its toxicity to oocytes. Based on the RNA-seq data, we showed that STE exposure induced oxidative stress and caused DNA damage in oocytes. Besides, ferroptosis and α-tubulin acetylation were also found in STE-exposed oocytes. Moreover, we determined that STE exposure resulted in reduced RAF1 protein expression in mouse oocytes, and inhibition of RAF1 activity also causes defects in asymmetric division of mouse oocytes. CONCLUSIONS: Collectively, our research provides novel insights into the molecular mechanisms whereby STE contributes to abnormal meiosis.


Subject(s)
Ferroptosis , Oocytes , Sterigmatocystin , Animals , Oocytes/drug effects , Oocytes/metabolism , Mice , Female , Ferroptosis/drug effects , Sterigmatocystin/toxicity , Oxidative Stress/drug effects , Meiosis/drug effects , DNA Damage
20.
Int J Mol Sci ; 25(16)2024 Aug 08.
Article in English | MEDLINE | ID: mdl-39201347

ABSTRACT

Many years ago, asbestos fibers were banned and replaced by synthetic vitreous fibers because of their carcinogenicity. However, the toxicity of the latter fibers is still under debate, especially when it concerns the early fiber interactions with biological cell membranes. Here, we aimed to investigate the effects of a synthetic vitreous fiber named FAV173 on the Xenopus laevis oocyte membrane, the cell model we have already used to characterize the effect of crocidolite asbestos fiber exposure. Using an electrophysiological approach, we found that, similarly to crocidolite asbestos, FAV173 was able to stimulate a chloride outward current evoked by step membrane depolarizations, that was blocked by the potent and specific TMEM16A channel antagonist Ani9. Exposure to FAV173 fibers also altered the oocyte cell membrane microvilli morphology similarly to crocidolite fibers, most likely as a consequence of the TMEM16A protein interaction with actin. However, FAV173 only partially mimicked the crocidolite fibers effects, even at higher fiber suspension concentrations. As expected, the crocidolite fibers' effect was more similar to that induced by the co-treatment with (Fe3+ + H2O2), since the iron content of asbestos fibers is known to trigger reactive oxygen species (ROS) production. Taken together, our findings suggest that FAV173 may be less harmful that crocidolite but not ineffective in altering cell membrane properties.


Subject(s)
Anoctamin-1 , Oocytes , Xenopus laevis , Animals , Oocytes/drug effects , Oocytes/metabolism , Anoctamin-1/metabolism , Asbestos, Crocidolite/toxicity , Reactive Oxygen Species/metabolism , Cell Membrane/metabolism , Cell Membrane/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL