Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 374
Filter
1.
New Phytol ; 243(4): 1490-1505, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39021210

ABSTRACT

Grapevine downy mildew, caused by the oomycete Plasmopara viticola (P. viticola, Berk. & M. A. Curtis; Berl. & De Toni), is a global threat to Eurasian wine grapes Vitis vinifera. Although resistant grapevine varieties are becoming more accessible, P. viticola populations are rapidly evolving to overcome these resistances. We aimed to uncover avirulence genes related to Rpv3.1-mediated grapevine resistance. We sequenced the genomes and characterized the development of 136 P. viticola strains on resistant and sensitive grapevine cultivars. A genome-wide association study was conducted to identify genomic variations associated with resistant-breaking phenotypes. We identified a genomic region associated with the breakdown of Rpv3.1 grapevine resistance (avrRpv3.1 locus). A diploid-aware reassembly of the P. viticola INRA-Pv221 genome revealed structural variations in this locus, including a 30 kbp deletion. Virulent P. viticola strains displayed multiple deletions on both haplotypes at the avrRpv3.1 locus. These deletions involve two paralog genes coding for proteins with 800-900 amino acids and signal peptides. These proteins exhibited a structure featuring LWY-fold structural modules, common among oomycete effectors. When transiently expressed, these proteins induced cell death in grapevines carrying Rpv3.1 resistance, confirming their avirulence nature. This discovery sheds light on the genetic mechanisms enabling P. viticola to adapt to grapevine resistance, laying a foundation for developing strategies to manage this destructive crop pathogen.


Subject(s)
Disease Resistance , Plant Diseases , Vitis , Vitis/genetics , Vitis/microbiology , Plant Diseases/microbiology , Plant Diseases/genetics , Plant Diseases/immunology , Disease Resistance/genetics , Oomycetes/pathogenicity , Genome-Wide Association Study , Sequence Deletion , Genes, Plant , Haplotypes/genetics , Gene Deletion , Phenotype
2.
New Phytol ; 243(1): 330-344, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38742296

ABSTRACT

Arabidopsis Col-0 RPP2A and RPP2B confer recognition of Arabidopsis downy mildew (Hyaloperonospora arabidopsidis [Hpa]) isolate Cala2, but the identity of the recognized ATR2Cala2 effector was unknown. To reveal ATR2Cala2, an F2 population was generated from a cross between Hpa-Cala2 and Hpa-Noks1. We identified ATR2Cala2 as a non-canonical RxLR-type effector that carries a signal peptide, a dEER motif, and WY domains but no RxLR motif. Recognition of ATR2Cala2 and its effector function were verified by biolistic bombardment, ectopic expression and Hpa infection. ATR2Cala2 is recognized in accession Col-0 but not in Ler-0 in which RPP2A and RPP2B are absent. In ATR2Emoy2 and ATR2Noks1 alleles, a frameshift results in an early stop codon. RPP2A and RPP2B are essential for the recognition of ATR2Cala2. Stable and transient expression of ATR2Cala2 under 35S promoter in Arabidopsis and Nicotiana benthamiana enhances disease susceptibility. Two additional Col-0 TIR-NLR (TNL) genes (RPP2C and RPP2D) adjacent to RPP2A and RPP2B are quantitatively required for full resistance to Hpa-Cala2. We compared RPP2 haplotypes in multiple Arabidopsis accessions and showed that all four genes are present in all ATR2Cala2-recognizing accessions.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Oomycetes , Plant Diseases , Arabidopsis/genetics , Arabidopsis/microbiology , Arabidopsis/immunology , Plant Diseases/microbiology , Plant Diseases/immunology , Arabidopsis Proteins/metabolism , Arabidopsis Proteins/genetics , Oomycetes/pathogenicity , NLR Proteins/metabolism , NLR Proteins/genetics , Nicotiana/genetics , Nicotiana/microbiology , Nicotiana/immunology , Amino Acid Sequence , Alleles
3.
Nat Commun ; 15(1): 4624, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38816389

ABSTRACT

Variations in chromosome number are occasionally observed among oomycetes, a group that includes many plant pathogens, but the emergence of such variations and their effects on genome and virulence evolution remain ambiguous. We generated complete telomere-to-telomere genome assemblies for Phytophthora sojae, Globisporangium ultimum, Pythium oligandrum, and G. spinosum. Reconstructing the karyotype of the most recent common ancestor in Peronosporales revealed that frequent chromosome fusion and fission drove changes in chromosome number. Centromeres enriched with Copia-like transposons may contribute to chromosome fusion and fission events. Chromosome fusion facilitated the emergence of pathogenicity genes and their adaptive evolution. Effectors tended to duplicate in the sub-telomere regions of fused chromosomes, which exhibited evolutionary features distinct to the non-fused chromosomes. By integrating ancestral genomic dynamics and structural predictions, we have identified secreted Ankyrin repeat-containing proteins (ANKs) as a novel class of effectors in P. sojae. Phylogenetic analysis and experiments further revealed that ANK is a specifically expanded effector family in oomycetes. These results revealed chromosome dynamics in oomycete plant pathogens, and provided novel insights into karyotype and effector evolution.


Subject(s)
Evolution, Molecular , Oomycetes , Phylogeny , Telomere , Telomere/genetics , Oomycetes/genetics , Oomycetes/pathogenicity , Virulence/genetics , Plant Diseases/microbiology , Plant Diseases/genetics , Pythium/genetics , Pythium/pathogenicity , Phytophthora/genetics , Phytophthora/pathogenicity , Chromosomes/genetics , Plants/microbiology , Plants/genetics , Genome/genetics
4.
BMC Plant Biol ; 24(1): 327, 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38658826

ABSTRACT

Oomycetes are filamentous organisms that resemble fungi in terms of morphology and life cycle, primarily due to convergent evolution. The success of pathogenic oomycetes lies in their ability to adapt and overcome host resistance, occasionally transitioning to new hosts. During plant infection, these organisms secrete effector proteins and other compounds during plant infection, as a molecular arsenal that contributes to their pathogenic success. Genomic sequencing, transcriptomic analysis, and proteomic studies have revealed highly diverse effector repertoires among different oomycete pathogens, highlighting their adaptability and evolution potential.The obligate biotrophic oomycete Plasmopara viticola affects grapevine plants (Vitis vinifera L.) causing the downy mildew disease, with significant economic impact. This disease is devastating in Europe, leading to substantial production losses. Even though Plasmopara viticola is a well-known pathogen, to date there are scarce reviews summarising pathogenicity, virulence, the genetics and molecular mechanisms of interaction with grapevine.This review aims to explore the current knowledge of the infection strategy, lifecycle, effector molecules, and pathogenicity of Plasmopara viticola. The recent sequencing of the Plasmopara viticola genome has provided new insights into understanding the infection strategies employed by this pathogen. Additionally, we will highlight the contributions of omics technologies in unravelling the ongoing evolution of this oomycete, including the first in-plant proteome analysis of the pathogen.


Subject(s)
Oomycetes , Plant Diseases , Vitis , Oomycetes/pathogenicity , Oomycetes/physiology , Plant Diseases/microbiology , Vitis/microbiology , Vitis/genetics , Virulence , Biological Evolution , Host-Pathogen Interactions
5.
Mol Plant Microbe Interact ; 37(6): 498-506, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38551366

ABSTRACT

Interactions between various microbial pathogens including viruses, bacteria, fungi, oomycetes, and their plant hosts have traditionally been the focus of phytopathology. In recent years, a significant and growing interest in the study of eukaryotic microorganisms not classified among fungi or oomycetes has emerged. Many of these protists establish complex interactions with photosynthetic hosts, and understanding these interactions is crucial in understanding the dynamics of these parasites within traditional and emerging types of farming, including marine aquaculture. Many phytopathogenic protists are biotrophs with complex polyphasic life cycles, which makes them difficult or impossible to culture, a fact reflected in a wide gap in the availability of comprehensive genomic data when compared to fungal and oomycete plant pathogens. Furthermore, our ability to use available genomic resources for these protists is limited by the broad taxonomic distance that these organisms span, which makes comparisons with other genomic datasets difficult. The current rapid progress in genomics and computational tools for the prediction of protein functions and interactions is revolutionizing the landscape in plant pathology. This is also opening novel possibilities, specifically for a deeper understanding of protist effectors. Tools like AlphaFold2 enable structure-based function prediction of effector candidates with divergent protein sequences. In turn, this allows us to ask better biological questions and, coupled with innovative experimental strategies, will lead into a new era of effector research, especially for protists, to expand our knowledge on these elusive pathogens and their interactions with photosynthetic hosts. [Formula: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Subject(s)
Photosynthesis , Plant Diseases , Plants , Plants/parasitology , Plants/microbiology , Plant Diseases/parasitology , Plant Diseases/microbiology , Host-Pathogen Interactions , Eukaryota/genetics , Genomics , Oomycetes/physiology , Oomycetes/pathogenicity , Oomycetes/genetics
6.
Phytopathology ; 114(6): 1226-1236, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38205803

ABSTRACT

A phenomenon of pathogenicity attenuation of Plasmopara viticola was consistently observed during its subculture on grape. To clarify the causes of attenuated pathogenicity of P. viticola, culturable microbes were isolated from the P. viticola mass (mycelia, sporangiophores, and sporangia) in each generation and tested for their biocontrol efficacies on grape downy mildew (GDM). The results showed that the incidence of GDM decreased with the increase in the number of subculture times on both vineyard-collected leaves and grape leaves from in vitro-grown seedlings. The number of culturable microbial taxa on the surface of P. viticola decreased, whereas the population densities of four specific strains (i.e., K2, K7, P1, and P5) increased significantly with the increase in subculture times. Compared with the control, the biocontrol efficacies of the bacterial strain K2 reached 87.5%, and those of both fungal strains P1 and P5 reached 100.0%. Based on morphological characteristics and molecular sequences, strains K2, P1, and P5 were identified as Curtobacterium herbarum, Thecaphora amaranthi, and Acremonium sclerotigenum, respectively, and these three strains survived very well and multiplied on the surface of P. viticola. As the number of times P. viticola was subcultured increased, all three of these strains became the predominant strains, leading to greater P. viticola inhibition, attenuated P. viticola pathogenicity, and effective GDM biological control. To the best of our knowledge, this is the first report of C. herbarum and T. amaranthi having biological control activity against GDM.


Subject(s)
Oomycetes , Plant Diseases , Vitis , Plant Diseases/microbiology , Plant Diseases/prevention & control , Oomycetes/pathogenicity , Oomycetes/physiology , Vitis/microbiology , Plant Leaves/microbiology , Biological Control Agents , Pest Control, Biological , Virulence
7.
New Phytol ; 242(4): 1630-1644, 2024 May.
Article in English | MEDLINE | ID: mdl-38105548

ABSTRACT

Nonmycorrhizal cluster root-forming species enhance the phosphorus (P) acquisition of mycorrhizal neighbours in P-impoverished megadiverse systems. However, whether mycorrhizal plants facilitate the defence of nonmycorrhizal plants against soil-borne pathogens, in return and via their symbiosis, remains unknown. We characterised growth and defence-related compounds in Banksia menziesii (nonmycorrhizal) and Eucalyptus todtiana (ectomycorrhizal, ECM) seedlings grown either in monoculture or mixture in a multifactorial glasshouse experiment involving ECM fungi and native oomycete pathogens. Roots of B. menziesii had higher levels of phytohormones (salicylic and jasmonic acids, jasmonoyl-isoleucine and 12-oxo-phytodienoic acid) than E. todtiana which further activated a salicylic acid-mediated defence response in roots of B. menziesii, but only in the presence of ECM fungi. We also found that B. menziesii induced a shift in the defence strategy of E. todtiana, from defence-related secondary metabolites (phenolic and flavonoid) towards induced phytohormone response pathways. We conclude that ECM fungi play a vital role in the interactions between mycorrhizal and nonmycorrhizal plants in a severely P-impoverished environment, by introducing a competitive component within the facilitation interaction between the two plant species with contrasting nutrient-acquisition strategies. This study sheds light on the interplay between beneficial and detrimental soil microbes that shape plant-plant interaction in severely nutrient-impoverished ecosystems.


Subject(s)
Mycorrhizae , Oomycetes , Phosphorus , Mycorrhizae/physiology , Phosphorus/metabolism , Oomycetes/physiology , Oomycetes/pathogenicity , Eucalyptus/microbiology , Eucalyptus/physiology , Plant Roots/microbiology , Plant Roots/metabolism , Plant Growth Regulators/metabolism , Seedlings/microbiology , Symbiosis/physiology , Species Specificity , Environment
8.
Plant Dis ; 106(7): 1952-1958, 2022 Jul.
Article in English | MEDLINE | ID: mdl-34941369

ABSTRACT

Cultivated sweet watermelon (Citrullus lanatus) is an important vegetable crop for millions of people around the world. There are limited sources of resistance to economically important diseases within C. lanatus, whereas C. amarus has a reservoir of traits that can be exploited to improve C. lanatus for resistance to biotic and abiotic stresses. Cucurbit downy mildew (CDM), caused by Pseudoperonospora cubensis, is an emerging threat to watermelon production. We screened 122 C. amarus accessions for resistance to CDM over two tests (environments). The accessions were genotyped by whole-genome resequencing to generate 2,126,759 single nucleotide polymorphic (SNP) markers. A genome-wide association study was deployed to uncover marker-trait associations and identify candidate genes underlying resistance to CDM. Our results indicate the presence of wide phenotypic variability (1.1 to 57.8%) for leaf area infection, representing a 50.7-fold variation for CDM resistance across the C. amarus germplasm collection. Broad-sense heritability estimate was 0.55, implying the presence of moderate genetic effects for resistance to CDM. The peak SNP markers associated with resistance to P. cubensis were located on chromosomes Ca03, Ca05, Ca07, and Ca11. The significant SNP markers accounted for up to 30% of the phenotypic variation and were associated with promising candidate genes encoding leucine-rich repeat receptor-like protein kinase and the WRKY transcription factor. This information will be useful in understanding the genetic architecture of the P. cubensis-Citrullus spp. patho-system as well as development of resources for genomics-assisted breeding for resistance to CDM in watermelon.


Subject(s)
Citrullus , Disease Resistance , Oomycetes , Peronospora , Plant Diseases , Chromosome Mapping , Citrullus/genetics , Citrullus/microbiology , Disease Resistance/genetics , Genetic Association Studies , Oomycetes/pathogenicity , Peronospora/pathogenicity , Plant Breeding , Plant Diseases/microbiology , Polymorphism, Single Nucleotide
9.
Int J Mol Sci ; 22(17)2021 Aug 28.
Article in English | MEDLINE | ID: mdl-34502268

ABSTRACT

Phytopathogenic fungi need to secrete different hydrolytic enzymes to break down complex polysaccharides in the plant cell wall in order to enter the host and develop the disease. Fungi produce various types of cell wall degrading enzymes (CWDEs) during infection. Most of the characterized CWDEs belong to glycoside hydrolases (GHs). These enzymes hydrolyze glycosidic bonds and have been identified in many fungal species sequenced to date. Many studies have shown that CWDEs belong to several GH families and play significant roles in the invasion and pathogenicity of fungi and oomycetes during infection on the plant host, but their mode of function in virulence is not yet fully understood. Moreover, some of the CWDEs that belong to different GH families act as pathogen-associated molecular patterns (PAMPs), which trigger plant immune responses. In this review, we summarize the most important GHs that have been described in eukaryotic phytopathogens and are involved in the establishment of a successful infection.


Subject(s)
Fungi/enzymology , Fungi/pathogenicity , Glycoside Hydrolases/physiology , Oomycetes/enzymology , Oomycetes/pathogenicity , Plant Diseases/microbiology , Cell Wall/chemistry , Cell Wall/metabolism , Cell Wall/microbiology , Plant Cells/microbiology , Virulence
10.
Plant J ; 108(2): 394-410, 2021 10.
Article in English | MEDLINE | ID: mdl-34318550

ABSTRACT

Glyoxalase I (GLYI) is part of the glyoxalase system; its major function is the detoxification of α-ketoaldehydes, including the potent and cytotoxic methylglyoxal (MG). Methylglyoxal disrupts mitochondrial respiration and increases production of reactive oxygen species (ROS), which also increase during pathogen infection of plant tissues; however, there have been few studies relating the glyoxalase system to the plant pathogen response. We used the promoter of VvGLYI-4 to screen the upstream transcription factors and report a NAC (NAM/ATAF/CUC) domain-containing transcription factor VvNAC72 in grapevine, which is localized to the nucleus. Our results show that VvNAC72 expression is induced by downy mildew, Plasmopara viticola, while the transcript level of VvGLYI-4 decreases. Further analysis revealed that VvNAC72 can bind directly to the promoter region of VvGLYI-4 via the CACGTG element, leading to inhibition of VvGLYI-4 transcription. Stable overexpression of VvNAC72 in grapevine and tobacco showed a decreased expression level of VvGLYI-4 and increased content of MG and ROS, as well as stronger resistance to pathogen stress. Taken together, these results demonstrate that grapevine VvNAC72 negatively modulates detoxification of MG through repression of VvGLYI-4, and finally enhances resistance to downy mildew, at least in part, via the modulation of MG-associated ROS homeostasis through a salicylic acid-mediated defense pathway.


Subject(s)
Lactoylglutathione Lyase/metabolism , Plant Diseases/microbiology , Plant Proteins/metabolism , Transcription Factors/metabolism , Vitis/microbiology , Disease Resistance , Gene Expression Regulation, Plant , Lactoylglutathione Lyase/genetics , Oomycetes/pathogenicity , Plant Proteins/genetics , Plants, Genetically Modified , Pyruvaldehyde/metabolism , Reactive Oxygen Species/metabolism , Salicylic Acid/metabolism , Nicotiana/genetics , Nicotiana/metabolism , Nicotiana/microbiology , Transcription Factors/genetics , Vitis/genetics , Vitis/metabolism
11.
Int J Mol Sci ; 22(11)2021 May 22.
Article in English | MEDLINE | ID: mdl-34067363

ABSTRACT

Grapevine downy mildew, caused by the biotrophic oomycete Plasmopara viticola, is one of the most severe and devastating diseases in viticulture. Unravelling the grapevine defence mechanisms is crucial to develop sustainable disease control measures. Here we provide new insights concerning fatty acid's (FA) desaturation, a fundamental process in lipid remodelling and signalling. Previously, we have provided evidence that lipid signalling is essential in the establishment of the incompatible interaction between grapevine and Plasmopara viticola. In the first hours after pathogen challenge, jasmonic acid (JA) accumulation, activation of its biosynthetic pathway and an accumulation of its precursor, the polyunsaturated α-linolenic acid (C18:3), were observed in the leaves of the tolerant genotype, Regent. This work was aimed at a better comprehension of the desaturation processes occurring after inoculation. We characterised, for the first time in Vitis vinifera, the gene family of the FA desaturases and evaluated their involvement in Regent response to Plasmopara viticola. Upon pathogen challenge, an up-regulation of the expression of plastidial FA desaturases genes was observed, resulting in a higher content of polyunsaturated fatty acids (PUFAs) of chloroplast lipids. This study highlights FA desaturases as key players in membrane remodelling and signalling in grapevine defence towards biotrophic pathogens.


Subject(s)
Disease Resistance/genetics , Fatty Acid Desaturases/genetics , Plant Diseases/genetics , Plant Diseases/microbiology , Vitis/genetics , Vitis/microbiology , Biosynthetic Pathways/genetics , Chloroplasts/genetics , Cyclopentanes/metabolism , Gene Expression Regulation, Plant/genetics , Genotype , Lipids/genetics , Oomycetes/pathogenicity , Oxylipins/metabolism , Peronospora/pathogenicity , Plant Leaves/genetics , Plant Leaves/microbiology
12.
Int J Mol Sci ; 22(7)2021 Mar 29.
Article in English | MEDLINE | ID: mdl-33805371

ABSTRACT

As an evolutionarily conserved pathway, mitogen-activated protein kinase (MAPK) cascades function as the key signal transducers that convey information by protein phosphorylation. Here we identified PlMAPK2 as one of 14 predicted MAPKs encoding genes in the plant pathogenic oomycete Peronophythora litchii. PlMAPK2 is conserved in P.litchii and Phytophthora species. We found that PlMAPK2 was up-regulated in sporangium, zoospore, cyst, cyst germination and early stage of infection. We generated PlMAPK2 knockout mutants using the CRISPR/Cas9 method. Compared with wild-type strain, the PlMAPK2 mutants showed no significant difference in vegetative growth, oospore production and sensitivity to various abiotic stresses. However, the sporangium release was severely impaired. We further found that the cleavage of the cytoplasm into uninucleate zoospores was disrupted in the PlMAPK2 mutants, and this developmental phenotype was accompanied by reduction in the transcription levels of PlMAD1 and PlMYB1 genes. Meanwhile, the PlMAPK2 mutants exhibited lower laccase activity and reduced virulence to lychee leaves. Overall, this study identified a MAPK that is critical for zoosporogenesis by regulating the sporangial cleavage and pathogenicity of P.litchii, likely by regulating laccase activity.


Subject(s)
Litchi/metabolism , Mitogen-Activated Protein Kinases/metabolism , Oomycetes/pathogenicity , Plant Diseases , Litchi/microbiology , Plant Leaves/metabolism , Plant Leaves/microbiology , Plant Proteins/metabolism , Virulence
13.
Plant Dis ; 105(10): 2781-2784, 2021 Oct.
Article in English | MEDLINE | ID: mdl-33876650

ABSTRACT

Kiwifruit vine decline syndrome (KVDS) is a serious soil-borne disease that degrades the fine roots of both Actinidia chinensis var. deliciosa and var. chinensis. The disease seems to be the result of an interaction between several soil-borne pathogens, mostly oomycetes, and waterlogging. This work investigates the pathogenicity of the oomycete Phytopythium chamaehyphon recently isolated from roots of diseased plants. Pathogenicity was tested in 6-month-old and 1-year-old plants that, after inoculation, were flooded up to three times to induce symptom appearance. Leaf wilting and root rot typical of KVDS was observed in all the plants inoculated with P. chamaehyphon strain KD-15 (PCHA) and in all the positive controls potted in a mix of peat and soils collected in KVDS-affected orchards, while negative controls remained symptomless. Disease development on 6-month-old plants was characterized by unusual degradation of the not-lignified collar, occurring even in absence of flooding. Conversely, on 1-year-old plants, symptoms faithfully reproduced KVDS dynamics observed in orchard. This work confirmed the pathogenicity of P. chamaehyphon and raised new questions about the actual role of waterlogging in KVDS etiology.


Subject(s)
Actinidia/microbiology , Oomycetes , Plant Diseases/microbiology , Fruit , Italy , Oomycetes/pathogenicity , Plant Leaves , Virulence
14.
Curr Biol ; 31(10): 2155-2166.e4, 2021 05 24.
Article in English | MEDLINE | ID: mdl-33770491

ABSTRACT

Europe is the historical cradle of viticulture, but grapevines (Vitis vinifera) have been increasingly threatened by pathogens of American origin. The invasive oomycete Plasmopara viticola causes downy mildew, one of the most devastating grapevine diseases worldwide. Despite major economic consequences, its invasion history remains poorly understood. We analyzed a comprehensive dataset of ∼2,000 samples, collected from the most important wine-producing countries, using nuclear and mitochondrial gene sequences and microsatellite markers. Population genetic analyses revealed very low genetic diversity in invasive downy mildew populations worldwide and little evidence of admixture. All the invasive populations originated from only one of the five native North American lineages, the one parasitizing wild summer grape (V. aestivalis). An approximate Bayesian computation-random forest approach allowed inferring the worldwide invasion scenario of P. viticola. After an initial introduction into Europe, invasive European populations served as a secondary source of introduction into vineyards worldwide, including China, South Africa, and twice independently, Australia. Only the invasion of Argentina probably represents a tertiary introduction, from Australia. Our findings provide a striking example of a global pathogen invasion resulting from secondary dispersal of a successful invasive population. Our study will also help designing quarantine regulations and efficient breeding for resistance against grapevine downy mildew.


Subject(s)
Oomycetes , Plant Diseases/microbiology , Vitis , Bayes Theorem , Disease Resistance , Europe , Genetics, Population , Microsatellite Repeats , Oomycetes/genetics , Oomycetes/pathogenicity , Vitis/microbiology
15.
Plant Physiol Biochem ; 160: 294-305, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33540332

ABSTRACT

The discovery of new mechanisms of resistance and natural bioactive molecules could be two of the possible ways to reduce fungicide use in vineyard and assure an acceptable and sustainable protection against Plasmopara viticola, the grapevine downy mildew agent. Emission of volatile organic compounds (VOCs), such as terpenes, norisoprenoids, alcohols and aldehydes, is frequently induced in plants in response to attack by pathogens, such as P. viticola, that is known to cause a VOCs increment in cultivars harboring American resistance traits. In this study, the role of leaf VOCs in the resistance mechanism of two resistant cultivars (Mgaloblishvili, a pure Vitis vinifera cultivar, and Bianca, an interspecific hybrid) and the direct antimicrobial activity of four selected VOCs have been investigated. The leaf VOCs profiles, analyzed through solid-phase microextraction gas chromatography-mass spectrometry analysis, as well as the expression of six terpene synthases (TPSs), were determined upon pathogen inoculation. In both cultivars, the expression pattern of six TPSs increased soon after pathogen inoculation and an increment of nine VOCs has been detected. While in Mgaloblishvili VOCs were synthesized early after P. viticola inoculation, they constituted a late response to pathogen in Bianca. All the four terpenes (farnesene, nerolidol, ocimene and valencene), chosen according to the VOC profiles and gene expression analysis, caused a significant reduction (53-100%) in P. viticola sporulation. These results support the role of VOCs into defense mechanisms of both cultivars and suggest their potential role as a natural and eco-friendly solution to protect grapevine from P. viticola.


Subject(s)
Disease Resistance , Oomycetes/pathogenicity , Plant Diseases/microbiology , Vitis/chemistry , Volatile Organic Compounds/chemistry , Fungicides, Industrial/chemistry , Gene Expression Regulation, Plant , Vitis/microbiology
16.
Int J Mol Sci ; 22(2)2021 Jan 19.
Article in English | MEDLINE | ID: mdl-33477914

ABSTRACT

Downy mildew, caused by Plasmopara viticola, is one of the most severe diseases of grapevine (Vitis vinifera L.). Genetic resistance is an effective and sustainable control strategy, but major resistance genes (encoding receptors for specific pathogen effectors) introgressed from wild Vitis species, although effective, may be non-durable because the pathogen can evolve to avoid specific recognition. Previous transcriptomic studies in the resistant species Vitis riparia highlighted the activation of signal transduction components during infection. The transfer of such components to V. vinifera might confer less specific and therefore more durable resistance. Here, we describe the generation of transgenic V. vinifera lines constitutively expressing the V. riparia E3 ubiquitin ligase gene VriATL156. Phenotypic and molecular analysis revealed that the transgenic plants were less susceptible to P. viticola than vector-only controls, confirming the role of this E3 ubiquitin ligase in the innate immune response. Two independent transgenic lines were selected for detailed analysis of the resistance phenotype by RNA-Seq and microscopy, revealing the profound reprogramming of transcription to achieve resistance that operates from the earliest stages of pathogen infection. The introduction of VriATL156 into elite grapevine cultivars could therefore provide an effective and sustainable control measure against downy mildew.


Subject(s)
Disease Resistance/genetics , Plant Diseases/genetics , Ubiquitin-Protein Ligases/genetics , Vitis/genetics , Gene Expression Regulation, Plant/genetics , Host-Pathogen Interactions/genetics , Oomycetes/pathogenicity , Plant Diseases/microbiology , Plant Proteins/genetics , Transcriptome/genetics
17.
J Exp Bot ; 72(8): 3219-3234, 2021 04 02.
Article in English | MEDLINE | ID: mdl-33475728

ABSTRACT

Successful plant defence against microbial pathogens is based on early recognition and fast activation of inducible responses. Key mechanisms include detection of microbe-associated molecular patterns by membrane-localized pattern recognition receptors that induce a basal resistance response. A well-described model of such responses to pathogens involves the interactions between Solanaceae plants and proteinaceous elicitors secreted by oomycetes, called elicitins. It has been hypothesized that the formation of oligomeric structures by elicitins could be involved in their recognition and activation of defensive transduction cascades. In this study, we tested this hypothesis using several approaches, and we observed differences in tobacco plant responses induced by the elicitin ß-cryptogein (ß-CRY) and its homodimer, ß-CRYDIM. We also found that the C-terminal domain of elicitins of other ELI (true-elicitin) clades plays a significant role in stabilization of their oligomeric structure and restraint in the cell wall. In addition, covalently cross-linking ß-CRYDIM impaired the formation of signalling complexes, thereby reducing its capacity to elicit the hypersensitive response and resistance in the host plant, with no significant changes in pathogenesis-related protein expression. By revealing the details of the effects of ß-CRY dimerization on recognition and defence responses in tobacco, our results shed light on the poorly understood role of elicitins' oligomeric structures in the interactions between oomycetes and plants.


Subject(s)
Nicotiana , Oomycetes/pathogenicity , Plant Diseases , Amino Acid Sequence , Nicotiana/metabolism
18.
Methods Mol Biol ; 2232: 209-218, 2021.
Article in English | MEDLINE | ID: mdl-33161550

ABSTRACT

The rhizosphere microbiome of plants is essential for plant growth and health. Recent studies have shown that upon infection of leaves with a foliar pathogen, the composition of the root microbiome is altered and enriched with bacteria that in turn can systemically protect the plant against the foliar pathogen. This protective effect is extended to successive populations of plants that are grown on soil that was first conditioned by pathogen-infected plants, a phenomenon that was coined "the soil-borne legacy." Here we provide a detailed protocol for soil-borne legacy experiments with the model plant Arabidopsis thaliana after infection with the obligate biotrophic pathogen Hyaloperonospora arabidopsidis. This protocol can easily be extended to infection with other pathogens or even infestation with herbivorous insects and can function as a blueprint for soil-borne legacy experiments with crop species.


Subject(s)
Arabidopsis/microbiology , Disease Resistance/genetics , Microbiota/genetics , Plant Diseases/microbiology , Arabidopsis/genetics , Host-Pathogen Interactions/genetics , Oomycetes/pathogenicity , Plant Diseases/genetics , Soil Microbiology
19.
Mol Plant Pathol ; 22(2): 231-242, 2021 02.
Article in English | MEDLINE | ID: mdl-33253483

ABSTRACT

Plasmopara viticola, the causal organism of grapevine downy mildew, secretes a vast array of effectors to manipulate host immunity. Previously, several cell death-inducing PvRXLR effectors have been identified, but their functions and host targets are poorly understood. Here, we investigated the role of PvRXLR111, a cell death-inducing RXLR effector, in manipulating plant immunity. When coexpressed with other PvRXLR effectors, PvRXLR111-induced cell death was prevented. Transient expression of PvRXLR111 in Nicotiana benthamiana suppressed bacterial flagellin peptide flg22-elicited immune responses and enhanced Phytophthora capsici infection. PvRXLR111 induction in Arabidopsis increased susceptibility to Hyaloperonospora arabidopsidis. PvRXLR111 expression in Pseudomonas syringae promoted bacterial colonization. By immunoprecipitation-mass spectrometry analysis, yeast two-hybrid, pull-down, and bimolecular fluorescence complementation assays, it was shown that PvRXLR111 interacted with Vitis vinifera putative WRKY transcription factor 40 (VvWRKY40), which increased VvWRKY40 stability. Transient expression of VvWRKY40 in N. benthamiana inhibited flg22-induced reactive oxygen species burst and enhanced P. capsici infection and silencing NbWRKY40 attenuated P. capsici colonization. These results suggest VvWRKY40 functions as a negative regulator in plant immunity and that PvRXLR111 suppresses host immunity by stabilizing VvWRKY40.


Subject(s)
Fungal Proteins/physiology , Oomycetes/pathogenicity , Plant Diseases/microbiology , Plant Proteins/physiology , Transcription Factors/physiology , Vitis/immunology , Arabidopsis/microbiology , Plant Diseases/immunology , Protein Stability , Nicotiana/microbiology , Virulence , Vitis/microbiology
20.
Plant Signal Behav ; 16(2): 1846927, 2021 02 01.
Article in English | MEDLINE | ID: mdl-33210976

ABSTRACT

Plasmopara viticola, the casual oomycete of grapevine downy mildew, could cause yield loss and compromise berry quantity. Previously, we have identified several PvRXLR effectors that could suppress plant immunity to promote infection and disease development. In this study, the role of effector, PvRXLR53, in plant-microbe interaction was investigated. PvRXLR53 has several orthologs in other oomycetes and contains a functional signal peptide. Expression level of PvRXLR53 was already detected upon inoculation, further induced in the early stage after P. viticola inoculation and decreased to low level in the late infection stage in grapevine (Vitis vinifera 'Cabernet Sauvignon'). PvRXLR53 is localized in both nucleus and cytoplasm. When transiently expressed in Nicotiana benthamiana, PvRXLR53 suppressed oomycete elicitor INF1-triggered programmed cell death and defense gene expression, and Phytophthora capsici-induced reactive oxygen species production (ROS) and eventually resistance to P. capsici. In summary, these findings suggest that P. viticola secretes PvRXLR53 to suppress host immunity from the very early stage of infection.


Subject(s)
Nicotiana/metabolism , Vitis/metabolism , Disease Resistance , Gene Expression Regulation, Plant/physiology , Oomycetes/pathogenicity , Plant Diseases/microbiology , Plant Immunity/physiology , Plant Proteins/genetics , Plant Proteins/metabolism , Reactive Oxygen Species/metabolism , Nicotiana/microbiology , Vitis/microbiology
SELECTION OF CITATIONS
SEARCH DETAIL