Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 2.418
1.
Yakugaku Zasshi ; 144(6): 659-674, 2024.
Article Ja | MEDLINE | ID: mdl-38825475

Serum urate levels are determined by the balance between uric acid production and uric acid excretion capacity from the kidneys and intestinal tract. Dysuricemia, including hyperuricemia and hypouricemia, develops when the balance shifts towards an increase or a decrease in the uric acid pool. Hyperuricemia is mostly a multifactorial genetic disorder involving several disease susceptibility genes and environmental factors. Hypouricemia, on the other hand, is caused by genetic abnormalities. The main genes involved in dysuricemia are xanthine oxidoreductase, an enzyme that produces uric acid, and the urate transporters urate transporter 1/solute carrier family 22 member 12 (URAT1/SLC22A12), glucose transporter 9/solute carrier family 2 member 9 (GLUT9/SLC2A9) and ATP binding cassette subfamily G member 2 (ABCG2). Deficiency of xanthine oxidoreductase results in xanthinuria, a rare disease with marked hypouricemia. Xanthinuria can be due to a single deficiency of xanthine oxidoreductase or in combination with aldehyde oxidase deficiency as well. The latter is caused by a deficiency in molybdenum cofactor sulfurase, which is responsible for adding sulphur atoms to the molybdenum cofactor required for xanthine oxidoreductase and aldehyde oxidase to exert their action. URAT1/SLC22A12 and GLUT9/SLC2A9 are involved in urate reabsorption and their deficiency leads to renal hypouricemia, a condition that is common in Japanese due to URAT1/SLC22A12 deficiency. On the other hand, ABCG2 is involved in the secretion of urate, and many Japanese have single nucleotide polymorphisms that result in its reduced function, leading to hyperuricemia. In particular, severe dysfunction of ABCG2 leads to hyperuricemia with reduced extrarenal excretion.


ATP Binding Cassette Transporter, Subfamily G, Member 2 , Glucose Transport Proteins, Facilitative , Hyperuricemia , Neoplasm Proteins , Organic Anion Transporters , Uric Acid , Xanthine Dehydrogenase , Humans , Hyperuricemia/etiology , Hyperuricemia/metabolism , Hyperuricemia/genetics , Uric Acid/metabolism , ATP Binding Cassette Transporter, Subfamily G, Member 2/genetics , ATP Binding Cassette Transporter, Subfamily G, Member 2/metabolism , Organic Anion Transporters/metabolism , Organic Anion Transporters/genetics , Glucose Transport Proteins, Facilitative/metabolism , Glucose Transport Proteins, Facilitative/genetics , Neoplasm Proteins/genetics , Neoplasm Proteins/metabolism , Xanthine Dehydrogenase/metabolism , Xanthine Dehydrogenase/genetics , Xanthine Dehydrogenase/deficiency , Animals , Organic Cation Transport Proteins/genetics , Organic Cation Transport Proteins/metabolism , Renal Tubular Transport, Inborn Errors/genetics , Renal Tubular Transport, Inborn Errors/etiology , Renal Tubular Transport, Inborn Errors/metabolism , Urinary Calculi/etiology , Urinary Calculi/metabolism , Urinary Calculi/genetics , Metabolism, Inborn Errors
2.
PLoS One ; 19(6): e0304512, 2024.
Article En | MEDLINE | ID: mdl-38829838

The Organic Cation Transporter Novel 1 (OCTN1), also known as SLC22A4, is widely expressed in various human tissues, and involved in numerous physiological and pathological processes remains. It facilitates the transport of organic cations, zwitterions, with selectivity for positively charged solutes. Ergothioneine, an antioxidant compound, and acetylcholine (Ach) are among its substrates. Given the lack of experimentally solved structures of this protein, this study aimed at generating a reliable 3D model of OCTN1 to shed light on its substrate-binding preferences and the role of sodium in substrate recognition and transport. A chimeric model was built by grafting the large extracellular loop 1 (EL1) from an AlphaFold-generated model onto a homology model. Molecular dynamics simulations revealed domain-specific mobility, with EL1 exhibiting the highest impact on overall stability. Molecular docking simulations identified cytarabine and verapamil as highest affinity ligands, consistent with their known inhibitory effects on OCTN1. Furthermore, MM/GBSA analysis allowed the categorization of substrates into weak, good, and strong binders, with molecular weight strongly correlating with binding affinity to the recognition site. Key recognition residues, including Tyr211, Glu381, and Arg469, were identified through interaction analysis. Ach demonstrated a low interaction energy, supporting the hypothesis of its one-directional transport towards to outside of the membrane. Regarding the role of sodium, our model suggested the involvement of Glu381 in sodium binding. Molecular dynamics simulations of systems at increasing levels of Na+ concentrations revealed increased sodium occupancy around Glu381, supporting experimental data associating Na+ concentration to molecule transport. In conclusion, this study provides valuable insights into the 3D structure of OCTN1, its substrate-binding preferences, and the role of sodium in the recognition. These findings contribute to the understanding of OCTN1 involvement in various physiological and pathological processes and may have implications for drug development and disease management.


Molecular Docking Simulation , Molecular Dynamics Simulation , Organic Cation Transport Proteins , Humans , Organic Cation Transport Proteins/chemistry , Organic Cation Transport Proteins/metabolism , Organic Cation Transport Proteins/genetics , Symporters/chemistry , Symporters/metabolism , Binding Sites , Protein Binding , Ergothioneine/chemistry , Ergothioneine/metabolism , Sodium/metabolism , Sodium/chemistry , Computer Simulation , Acetylcholine/metabolism , Acetylcholine/chemistry , Ligands
3.
Stroke ; 55(6): 1650-1659, 2024 Jun.
Article En | MEDLINE | ID: mdl-38738428

BACKGROUND: Beyond neuronal injury, cell death pathways may also contribute to vascular injury after stroke. We examined protein networks linked to major cell death pathways and identified SLC22A17 (solute carrier family 22 member 17) as a novel mediator that regulates endothelial tight junctions after ischemia and inflammatory stress. METHODS: Protein-protein interactions and brain enrichment analyses were performed using STRING, Cytoscape, and a human tissue-specific expression RNA-seq database. In vivo experiments were performed using mouse models of transient focal cerebral ischemia. Human stroke brain tissues were used to detect SLC22A17 by immunostaining. In vitro experiments were performed using human brain endothelial cultures subjected to inflammatory stress. Immunostaining and Western blot were used to assess responses in SLC22A17 and endothelial tight junctional proteins. Water content, dextran permeability, and electrical resistance assays were used to assess edema and blood-brain barrier (BBB) integrity. Gain and loss-of-function studies were performed using lentiviral overexpression of SLC22A17 or short interfering RNA against SLC22A17, respectively. RESULTS: Protein-protein interaction analysis showed that core proteins from apoptosis, necroptosis, ferroptosis, and autophagy cell death pathways were closely linked. Among the 20 proteins identified in the network, the iron-handling solute carrier SLC22A17 emerged as the mediator enriched in the brain. After cerebral ischemia in vivo, endothelial expression of SLC22A17 increases in both human and mouse brains along with BBB leakage. In human brain endothelial cultures, short interfering RNA against SLC22A17 prevents TNF-α (tumor necrosis factor alpha)-induced ferroptosis and downregulation in tight junction proteins and disruption in transcellular permeability. Notably, SLC22A17 could repress the transcription of tight junctional genes. Finally, short interfering RNA against SLC22A17 ameliorates BBB leakage in a mouse model of focal cerebral ischemia. CONCLUSIONS: Using a combination of cell culture, human stroke samples, and mouse models, our data suggest that SLC22A17 may play a role in the control of BBB function after cerebral ischemia. These findings may offer a novel mechanism and target for ameliorating BBB injury and edema after stroke.


Blood-Brain Barrier , Brain Ischemia , Tight Junctions , Animals , Mice , Humans , Tight Junctions/metabolism , Brain Ischemia/metabolism , Brain Ischemia/pathology , Brain Ischemia/genetics , Blood-Brain Barrier/metabolism , Blood-Brain Barrier/pathology , Cell Death , Male , Organic Cation Transport Proteins/metabolism , Organic Cation Transport Proteins/genetics , Mice, Inbred C57BL , Endothelial Cells/metabolism
4.
Nat Commun ; 15(1): 4380, 2024 May 23.
Article En | MEDLINE | ID: mdl-38782905

SLC22A10 is an orphan transporter with unknown substrates and function. The goal of this study is to elucidate its substrate specificity and functional characteristics. In contrast to orthologs from great apes, human SLC22A10, tagged with green fluorescent protein, is not expressed on the plasma membrane. Cells expressing great ape SLC22A10 orthologs exhibit significant accumulation of estradiol-17ß-glucuronide, unlike those expressing human SLC22A10. Sequence alignments reveal a proline at position 220 in humans, which is a leucine in great apes. Replacing proline with leucine in SLC22A10-P220L restores plasma membrane localization and uptake function. Neanderthal and Denisovan genomes show proline at position 220, akin to modern humans, indicating functional loss during hominin evolution. Human SLC22A10 is a unitary pseudogene due to a fixed missense mutation, P220, while in great apes, its orthologs transport sex steroid conjugates. Characterizing SLC22A10 across species sheds light on its biological role, influencing organism development and steroid homeostasis.


Primates , Animals , Humans , Amino Acid Sequence , Estradiol/metabolism , HEK293 Cells , Hominidae/genetics , Hominidae/metabolism , Mutation, Missense , Organic Cation Transport Proteins/metabolism , Organic Cation Transport Proteins/genetics , Primates/genetics , Pseudogenes , Substrate Specificity
5.
Biochem Pharmacol ; 223: 116188, 2024 May.
Article En | MEDLINE | ID: mdl-38580166

Recently published cryo-EM structures of human organic cation transporters of the SLC22 family revealed seven, sequentially arranged glutamic and aspartic acid residues, which may be relevant for interactions with positively charged substrates. We analyzed the functional consequences of removing those negative charges by creating D155N, E232Q, D382N, E390Q, E451Q, E459Q, and D478N mutants of OCT3. E232Q, E459Q, and D478N resulted in a lack of localization in the outer cell membrane and no relevant uptake activity. However, D155N and E451Q showed a substrate-specific loss of transport activity, whereas E390Q had no remaining activity despite correct membrane localization. In contrast, D382N showed almost wild-type-like uptake. D155 is located at the entrance to the substrate binding pocket and could, therefore be involved in guiding cationic substrates towards the inside of the binding pocket. For E390, we confirm its critical function for transporter function as it was recently shown for the corresponding position in OCT1. Interestingly, E451 seems to be located at the bottom of the binding pocket in the outward-open confirmation of the transporter. Substrate-specific loss of transport activity of the E451Q variant suggests an essential role in the transport cycle of specific substances as part of an opportunistic binding site. In general, our study highlights the impact of the cryo-EM structures in guiding mutagenesis studies to understand the molecular level of transporter-ligand interactions, and it also confirms the importance of testing multiple substrates in mutagenesis studies of polyspecific OCTs.


Amino Acids , Organic Cation Transport Proteins , Humans , Cations/metabolism , Mutagenesis , Organic Cation Transport Proteins/genetics , Organic Cation Transport Proteins/metabolism , Organic Cation Transporter 1/metabolism , Organic Cation Transporter 2
6.
Biomolecules ; 14(4)2024 Mar 25.
Article En | MEDLINE | ID: mdl-38672410

Inflammation is a physiological condition characterized by a complex interplay between different cells handled by metabolites and specific inflammatory-related molecules. In some pathological situations, inflammation persists underlying and worsening the pathological state. Over the years, two membrane transporters namely OCTN1 (SLC22A4) and OCTN2 (SLC22A5) have been shown to play specific roles in inflammation. These transporters form the OCTN subfamily within the larger SLC22 family. The link between these proteins and inflammation has been proposed based on their link to some chronic inflammatory diseases such as asthma, Crohn's disease (CD), and rheumatoid arthritis (RA). Moreover, the two transporters show the ability to mediate the transport of several compounds including carnitine, carnitine derivatives, acetylcholine, ergothioneine, and gut microbiota by-products, which have been specifically associated with inflammation for their anti- or proinflammatory action. Therefore, the absorption and distribution of these molecules rely on the presence of OCTN1 and OCTN2, whose expression is modulated by inflammatory cytokines and transcription factors typically activated by inflammation. In the present review, we wish to provide a state of the art on OCTN1 and OCTN2 transport function and regulation in relationships with inflammation and inflammatory diseases focusing on the metabolic signature collected in different body districts and gene polymorphisms related to inflammatory diseases.


Inflammation , Organic Cation Transport Proteins , Solute Carrier Family 22 Member 5 , Symporters , Humans , Inflammation/metabolism , Solute Carrier Family 22 Member 5/metabolism , Solute Carrier Family 22 Member 5/genetics , Animals , Organic Cation Transport Proteins/metabolism , Organic Cation Transport Proteins/genetics , Ergothioneine/metabolism , Crohn Disease/metabolism , Crohn Disease/genetics , Crohn Disease/pathology , Arthritis, Rheumatoid/metabolism , Arthritis, Rheumatoid/genetics , Gastrointestinal Microbiome , Carnitine/metabolism , Asthma/metabolism , Asthma/genetics , Acetylcholine/metabolism
7.
Eur J Med Chem ; 271: 116407, 2024 May 05.
Article En | MEDLINE | ID: mdl-38663283

Xanthine oxidoreductase (XOR) and uric acid transporter 1 (URAT1) are two most widely studied targets involved in production and reabsorption of uric acid, respectively. Marketed drugs almost target XOR or URAT1, but sometimes, single agents might not achieve aim of lowering uric acid to ideal value in clinic. Thus, therapeutic strategies of combining XOR inhibitors with uricosuric drugs were proposed and implemented. Based on our initial work of virtual screening, A and B were potential hits for dual-targeted inhibitors on XOR/URAT1. By docking A/B with XOR/URAT1 respectively, compounds I1-7 were designed to get different degree of inhibition effect on XOR and URAT1, and I7 showed the best inhibitory effect on XOR (IC50 = 0.037 ± 0.001 µM) and URAT1 (IC50 = 546.70 ± 32.60 µM). Further docking research on I7 with XOR/URAT1 led to the design of compounds II with the significantly improved inhibitory activity on XOR and URAT1, such as II11 and II15. Especially, for II15, the IC50 of XOR is 0.006 ± 0.000 µM, superior to that of febuxostat (IC50 = 0.008 ± 0.000 µM), IC50 of URAT1 is 12.90 ± 2.30 µM, superior to that of benzbromarone (IC50 = 27.04 ± 2.55 µM). In acute hyperuricemia mouse model, II15 showed significant uric acid lowering effect. The results suggest that II15 had good inhibitory effect on XOR/URAT1, with the possibility for further investigation in in-vivo models of hyperuricemia.


Drug Design , Enzyme Inhibitors , Organic Anion Transporters , Organic Cation Transport Proteins , Pyridines , Animals , Pyridines/pharmacology , Pyridines/chemistry , Pyridines/chemical synthesis , Mice , Humans , Structure-Activity Relationship , Organic Anion Transporters/antagonists & inhibitors , Organic Anion Transporters/metabolism , Organic Cation Transport Proteins/antagonists & inhibitors , Organic Cation Transport Proteins/metabolism , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/chemistry , Molecular Structure , Molecular Docking Simulation , Xanthine Dehydrogenase/antagonists & inhibitors , Xanthine Dehydrogenase/metabolism , Dose-Response Relationship, Drug , Hyperuricemia/drug therapy , Hyperuricemia/metabolism , Male , Uric Acid/metabolism
8.
Biochem Biophys Res Commun ; 712-713: 149922, 2024 Jun 18.
Article En | MEDLINE | ID: mdl-38626531

We previously reported that solute carrier family 22 member 18 (Slc22a18) regulates lipid accumulation in 3T3-L1 adipocytes. Here, we provide additional evidence derived from experiments with adenoviral vector expression and genetic manipulation of mice. In primary cultured rat hepatocytes, adenoviral overexpression of mouse Slc22a18 increased triglyceride accumulation and triglyceride synthetic activity, which was decreased in an adenoviral knockdown experiment. Adenoviral overexpression of mouse Slc22a18 in vivo caused massive fatty liver in mice, even under normal dietary conditions. Conversely, adenoviral knockdown of mouse Slc22a18 reduced hepatic lipid accumulation induced by a high-glucose and high-sucrose diet. We created Slc22a18 knockout mice, which grew normally and showed no obvious spontaneous phenotypes. However, compared with control littermates, the knockout mice exhibited decreased hepatic triglyceride content under refeeding conditions, significantly reduced epididymal fat mass, and tended to have lower liver weight in conjunction with leptin deficiency. Finally, we created transgenic mice overexpressing rat Slc22a18 in an adipose-specific manner, which had increased body weight and epididymal fat mass primarily because of increased adipocyte cell volume. In these transgenic mice, a positive correlation was observed between adiposity and the expression levels of the rat Slc22a18 transgene. Taken together, these results indicate that Slc22a18 has positive effects on lipid accumulation in vivo.


Organic Cation Transport Proteins , Animals , Mice , Rats , Male , Organic Cation Transport Proteins/metabolism , Organic Cation Transport Proteins/genetics , Mice, Knockout , Hepatocytes/metabolism , Triglycerides/metabolism , Mice, Transgenic , Lipid Metabolism/genetics , Fatty Liver/metabolism , Fatty Liver/genetics , Fatty Liver/pathology , Mice, Inbred C57BL , Liver/metabolism , Adiposity/genetics , Adipocytes/metabolism , Adipose Tissue/metabolism , Cells, Cultured , Rats, Sprague-Dawley
9.
Bioorg Chem ; 147: 107381, 2024 Jun.
Article En | MEDLINE | ID: mdl-38669781

The development of XOD/URAT1 dual target inhibitors has emerged as a promising therapeutic strategy for the management of hyperuricemia. Here, through virtual screening, we have identified digallic acid as a novel dual target inhibitor of XOD/URAT1 and subsequently evaluated its pharmacological properties, pharmacokinetics, and toxicities. Digallic acid inhibited URAT1 with an IC50 of 5.34 ± 0.65 µM, which is less potent than benzbromarone (2.01 ± 0.36 µM) but more potent than lesinurad (10.36 ± 1.23 µM). Docking and mutation analysis indicated that residues S35, F241 and R477 of URAT1 confer a high affinity for digallic acid. Digallic acid inhibited XOD with an IC50 of 1.04 ± 0.23 µM. Its metabolic product, gallic acid, inhibited XOD with an IC50 of 0.91 ± 0.14 µM. Enzyme kinetic studies indicated that both digallic acid and gallic acid act as mixed-type XOD inhibitors. It shares the same binding mode as digallic acid, and residues E802, R880, F914, T1010, N768 and F1009 contribute to their high affinity. The anion group (carboxyl) of digallic acid contribute significantly to its inhibition activity on both XOD and URAT1 as indicated by docking analysis. Remarkably, at a dosage of 10 mg/kg in vivo, digallic acid exhibited a stronger urate-lowering and uricosuric effect compared to the positive drug benzbromarone and lesinurad. Pharmacokinetic study indicated that digallic acid can be hydrolyzed into gallic acid in vivo and has a t1/2 of 0.77 ± 0.10 h. Further toxicity evaluation indicated that digallic acid exhibited no obvious renal toxicity, as reflected by CCK-8, biochemical analysis (CR and BUN) and HE examination. The findings of our study can provide valuable insights for the development of XOD/URAT1 dual target inhibitors, and digallic acid deserves further investigation as a potential anti-hyperuricemic drug.


Dose-Response Relationship, Drug , Enzyme Inhibitors , Hyperuricemia , Organic Anion Transporters , Organic Cation Transport Proteins , Hyperuricemia/drug therapy , Humans , Animals , Organic Anion Transporters/antagonists & inhibitors , Organic Anion Transporters/metabolism , Structure-Activity Relationship , Molecular Structure , Organic Cation Transport Proteins/antagonists & inhibitors , Organic Cation Transport Proteins/metabolism , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/pharmacokinetics , Urate Oxidase/chemistry , Drug Discovery , Molecular Docking Simulation , Mice , Male , Gallic Acid/chemistry , Gallic Acid/pharmacology , Gallic Acid/analogs & derivatives , Rats, Sprague-Dawley
10.
J Med Chem ; 67(6): 5032-5052, 2024 Mar 28.
Article En | MEDLINE | ID: mdl-38482820

Gout and hyperuricemia are metabolic diseases characterized with high serum uric acid (SUA) levels that significantly impact human health. Lesinurad, a uricosuric agent, is limited to concurrent use with xanthine oxidase inhibitors (XOIs) in clinical practice due to its restricted efficacy and potential nephrotoxicity. Herein, extensive structural modifications of lesinurad were conducted through scaffold hopping and substituent modification strategies, affording 54 novel derivatives containing pyrimidine-fused cyclic structures. Notably, the thienopyrimidine compound 29 demonstrated a remarkable 2-fold increase in SUA-lowering in vivo activity compared to lesinurad, while exhibiting potent inhibitory activity against the urate transporter 1 (URAT1, IC50 = 2.01 µM) and glucose transporter 9 (GLUT9, IC50 = 18.21 µM). Furthermore, it possessed a lower effective dosage of 0.5 mg/kg, favorable safety profile without any apparent acute toxicity at doses of 1000 mg/kg, and improved pharmacokinetic properties. Overall, we have discovered an efficacious URAT1/GLUT9 dual inhibitor for inhibiting urate reabsorption with favorable pharmacokinetic profiles.


Gout , Hyperuricemia , Organic Anion Transporters , Thioglycolates , Triazoles , Humans , Uric Acid/therapeutic use , Gout/drug therapy , Hyperuricemia/drug therapy , Uricosuric Agents/therapeutic use , Pyrimidines/toxicity , Pyrimidines/therapeutic use , Glucose Transport Proteins, Facilitative , Organic Cation Transport Proteins
11.
Int J Mol Sci ; 25(5)2024 Mar 02.
Article En | MEDLINE | ID: mdl-38474165

Cisplatin (CDDP) stands out as an effective chemotherapeutic agent; however, its application is linked to the development of significant adverse effects, notably nephro- and ototoxicity. The human organic cation transporter 2 (hOCT2), found in abundance in the basolateral membrane domain of renal proximal tubules and the Corti organ, plays a crucial role in the initiation of nephro- and ototoxicity associated with CDDP by facilitating its uptake in kidney and ear cells. Given its limited presence in cancer cells, hOCT2 emerges as a potential druggable target for mitigating unwanted toxicities associated with CDDP. Potential strategies for mitigating CDDP toxicities include competing with the uptake of CDDP by hOCT2 or inhibiting hOCT2 activity through rapid regulation mediated by specific signaling pathways. This study investigated the interaction between the already approved cationic drugs disopyramide, imipramine, and orphenadrine with hOCT2 that is stably expressed in human embryonic kidney cells. Regarding disopyramide, its influence on CDDP cellular transport by hOCT2 was further characterized through inductively coupled plasma isotope dilution mass spectrometry. Additionally, its potential protective effects against cellular toxicity induced by CDDP were assessed using a cytotoxicity test. Given that hOCT2 is typically expressed in the basolateral membrane of polarized cells, with specific regulatory mechanisms, this work studied the regulation of hOCT2 that is stably expressed in Madin-Darby Canine Kidney (MDCK) cells. These cells were cultured in a matrix to induce the formation of cysts, exposing hOCT2 in the basolateral plasma membrane domain, which was freely accessible to experimental solutions. The study specifically tested the regulation of ASP+ uptake by hOCT2 in MDCK cysts through the inhibition of casein kinase II (CKII), calmodulin, or p56lck tyrosine kinase. Furthermore, the impact of this manipulation on the cellular toxicity induced by CDDP was examined using a cytotoxicity test. All three drugs-disopyramide, imipramine, and orphenadrine-demonstrated inhibition of ASP+ uptake, with IC50 values in the micromolar (µM) range. Notably, disopyramide produced a significant reduction in the CDDP cellular toxicity and platinum cellular accumulation when co-incubated with CDDP. The activity of hOCT2 in MDCK cysts experienced a significant down-regulation under inhibition of CKII, calmodulin, or p56lck tyrosine kinase. Interestingly, only the inhibition of p56lck tyrosine kinase demonstrated the capability to protect the cells against CDDP toxicity. In conclusion, certain interventions targeting hOCT2 have demonstrated the ability to reduce CDDP cytotoxicity, at least in vitro. Further investigations in in vivo systems are warranted to ascertain their potential applicability as co-treatments for mitigating undesired toxicities associated with CDDP in patients.


Cysts , Ototoxicity , Humans , Animals , Dogs , Organic Cation Transporter 2 , Organic Cation Transport Proteins/metabolism , Cisplatin/metabolism , Disopyramide , Calmodulin/metabolism , Imipramine , Orphenadrine , Madin Darby Canine Kidney Cells , Protein-Tyrosine Kinases/metabolism
12.
Toxicology ; 503: 153757, 2024 Mar.
Article En | MEDLINE | ID: mdl-38364893

Doxorubicin (DOX) is a widely used antitumor agent; however, its clinical application is limited by dose-related organ damage. Because organic cation/carnitine transporters (OCTN1 and OCTN2), which are critical for DOX uptake, are highly expressed in hepatocytes, we aimed to elucidate the role of these transporters in hepatic DOX uptake. The results indicated that inhibitors and RNA interference both significantly reduced DOX accumulation in HepG2 and HepaRG cells, suggesting that OCTN1/2 contribute substantially to DOX uptake by hepatocytes. To determine whether metformin (MET, an inhibitor of OCTN1 and OCTN2) ameliorates DOX-induced hepatotoxicity, we conducted in vitro and in vivo studies. MET (1-100 µM) inhibited DOX (500 nM) accumulation and cytotoxicity in vitro in a concentration-dependent manner. Furthermore, intravenous MET administration at 250 or 500 mg/kg or by gavage at 50, 100, or 200 mg/kg reduced DOX (8 mg/kg) accumulation in a dose-dependent manner in the mouse liver and attenuated the release of alanine aminotransferase, aspartate aminotransferase, and carboxylesterase 1. Additionally, MET reduced the distribution of DOX in the heart, liver, and kidney and enhanced the urinary elimination of DOX; however, it did not increase the nephric toxicity of DOX. In conclusion, our study demonstrated that MET alleviates DOX hepatotoxicity by inhibiting OCTN1- and OCTN2-mediated DOX uptake in vitro (mouse hepatocytes and HepaRG or HepG2 cells) and in mice.


Chemical and Drug Induced Liver Injury , Metformin , Symporters , Mice , Animals , Organic Cation Transport Proteins/genetics , Solute Carrier Family 22 Member 5 , Metformin/pharmacology , Doxorubicin/toxicity , Chemical and Drug Induced Liver Injury/etiology , Chemical and Drug Induced Liver Injury/prevention & control
13.
Drug Metab Dispos ; 52(4): 312-321, 2024 Mar 13.
Article En | MEDLINE | ID: mdl-38307853

Humans are chronically exposed to benzalkonium chlorides (BACs) from environmental sources. The U.S. Food and Drug Administration (FDA) has recently called for additional BAC safety data, as these compounds are cytotoxic and have great potential for biochemical interactions. Biodistribution studies revealed that BACs extensively distribute to many tissues and accumulate at high levels, especially in the kidneys, but the underlying mechanisms are unclear. In this study, we characterized the interactions of BACs of varying alkyl chain length (C8 to C14) with the human organic cation transporters (hOCT1-3) and multidrug and toxin extrusion proteins (hMATE1/2K) with the goal to identify transporters that could be involved in BAC disposition. Using transporter-expressing cell lines, we showed that all BACs are inhibitors of hOCT1-3 and hMATE1/2K (IC50 ranging 0.83-25.8 µM). Further, the short-chain BACs (C8 and C10) were identified as substrates of these transporters. Interestingly, although BAC C8 displayed typical Michaelis-Menten kinetics, C10 demonstrated a more complex substrate-inhibition profile. Transwell studies with transfected Madin-Darby canine kidney cells revealed that intracellular accumulation of basally applied BAC C8 and C10 was substantially higher (8.2- and 3.7-fold, respectively) in hOCT2/hMATE1 double-transfected cells in comparison with vector-transfected cells, supporting a role of these transporters in mediating renal accumulation of these compounds in vivo. Together, our results suggest that BACs interact with hOCT1-3 and hMATE1/2K as both inhibitors and substrates and that these transporters may play important roles in tissue-specific accumulation and potential toxicity of short-chain BACs. Our findings have important implications for understanding human exposure and susceptibility to BACs due to environmental exposure. SIGNIFICANCE STATEMENT: Humans are systemically exposed to benzalkonium chlorides (BACs). These compounds broadly distribute through tissues, and their safety has been questioned by the FDA. Our results demonstrate that hOCT2 and hMATE1 contribute to the renal accumulation of BAC C8 and C10 and that hOCT1 and hOCT3 may be involved in the tissue distribution of these compounds. These findings can improve our understanding of BAC disposition and toxicology in humans, as their accumulation could lead to biochemical interactions and deleterious effects.


Benzalkonium Compounds , Organic Cation Transport Proteins , Animals , Dogs , Humans , Organic Cation Transport Proteins/metabolism , Tissue Distribution , Cell Line , Madin Darby Canine Kidney Cells , Organic Cation Transporter 2/metabolism
14.
Biopharm Drug Dispos ; 45(1): 43-57, 2024 Feb.
Article En | MEDLINE | ID: mdl-38305087

The renal tubular organic cation transporter 2 (OCT2) and multidrug and toxin extrusion protein 1 (MATE1) mediate the vectorial elimination of many drugs and toxins from the kidney, and endogenous biomarkers for vectorial transport (OCT2-MATE1) would allow more accurate drug dosing and help to characterize drug-drug interactions and toxicity. Human serum uptake in OCT2-overexpressing cells and metabolomics analysis were carried out. Potential biomarkers were verified in vitro and in vivo. The specificity of biomarkers was validated in renal transporter overexpressing cells and the sensitivity was investigated by Km . The results showed that the uptake of thiamine, histamine, and 5-hydroxytryptamine was significantly increased in OCT2-overexpressing cells. In vitro assays confirmed that thiamine, histamine, and 5-hydroxytryptamine were substrates of both OCT2 and MATE1. In vivo measurements indicated that the serum thiamine level was increased significantly in the presence of the rOCT2 inhibitor cimetidine, and the level in renal tissue was increased significantly by the rMATE1 inhibitor pyrimethamine. There were no significant changes in the uptake or efflux of thiamine in cell lines overexpressed OAT1, OAT2, OAT3, MRP4, organic anion transporting polypeptide 4C1, P-gp, peptide transporter 2, urate transporter 1, and OAT4. The Km for thiamine with OCT2 and MATE1 were 71.2 and 10.8 µM, respectively. In addition, the cumulative excretion of thiamine at 2 and 4 h was strongly correlated with metformin excretion (R2  > 0.6). Thus, thiamine is preferentially secreted by the OCT2 and MATE1 in renal tubules and can provide a reference value for evaluating the function of the renal tubular OCT2-MATE1.


Organic Cation Transport Proteins , Organic Cation Transporter 1 , Humans , Organic Cation Transporter 1/metabolism , Organic Cation Transport Proteins/genetics , Organic Cation Transport Proteins/metabolism , Histamine/metabolism , Serotonin/metabolism , Kidney/metabolism , Thiamine/metabolism , HEK293 Cells
15.
Ann Biol Clin (Paris) ; 81(6): 602-609, 2024 02 24.
Article En | MEDLINE | ID: mdl-38391165

This study aims to evaluate the mRNA levels of solute carrier family 22, member 17 (SLC22A17) and its potential clinical value as a diagnostic and prognostic biomarker in non-small cell lung cancer. This prospective study measured SLC22A17 mRNA levels in lung cancer and paracancer tissues using quantitative reverse transcription-polymerase chain reaction (PCR). The levels of SLC22A17 mRNA in plasma samples from healthy control subjects and patients with lung cancer were also measured. The association between SLC22A17 mRNA levels in plasma and clinicopathological characteristics was determined. Receiver operating characteristic (ROC) curve analysis was performed to determine the diagnostic value of SLC22A17 in plasma. Survival curve analysis was performed using the Kaplan-Meier method. SLC22A17 mRNA levels were significantly higher in lung cancer samples than in the paired paracancerous tissues. Plasma SLC22A17 mRNA levels were also significantly higher in patients with lung cancer than in healthy controls. The COX analysis indicated that there was a significant correlation between elevated plasma SLC22A17 mRNA levels and lymph node metastasis, distant metastasis, and TNM stage. Furthermore, the ROC curve analysis demonstrated that plasma SLC22A17 had high diagnostic value. High plasma SLC22A17 mRNA levels are associated with a significantly shorter survival time. SLC22A17 is upregulated in lung cancer and may serve as a novel diagnostic and prognostic biomarker.


Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Humans , Carcinoma, Non-Small-Cell Lung/diagnosis , Carcinoma, Non-Small-Cell Lung/genetics , Lung Neoplasms/diagnosis , Lung Neoplasms/genetics , Prognosis , RNA, Messenger/genetics , Prospective Studies , ROC Curve , Biomarkers , Biomarkers, Tumor/genetics , Organic Cation Transport Proteins
16.
Sci Rep ; 14(1): 3925, 2024 02 16.
Article En | MEDLINE | ID: mdl-38366023

Solute carrier family (SLC) transporters are expressed in the digestive system and play important roles in maintaining physiological functions in the body. In addition, SLC transporters act as oncoproteins or tumor-suppressor proteins during the development, progression, and metastasis of various digestive system cancers. SLC22A18, a member of the SLC22 gene family, is an orphan transporter with an unknown endogenous substrate. Previous study revealed that SLC22A18 is downregulated in colorectal cancer tissues and that it acts as a suppressor in colorectal cancer, although the effects of SLC22A18 variants on colon cancer cell proliferation, migration, and invasion are unknown. Therefore, in this study, we identified SLC22A18 variants found in multiple populations by searching public databases and determined the in vitro effects of these missense variations on transporter expression and cancer progression. Our results indicated that three missense SLC22A18 variants-p.Ala6Thr, p.Arg12Gln, and p.Arg86His-had significantly lower cell expression than the wild type, possibly owing to intracellular degradation. Furthermore, these three variants caused significantly higher proliferation, migration, and invasion of colon cancer cells than the wild type. Our findings suggest that missense variants of SLC22A18 can potentially serve as biomarkers or prognostic tools that enable clinicians to predict colorectal cancer progression.


Colonic Neoplasms , Organic Cation Transport Proteins , Humans , Cell Line, Tumor , Cell Movement/genetics , Cell Proliferation/genetics , Colonic Neoplasms/genetics , Gene Expression Regulation, Neoplastic , Prognosis , Tumor Suppressor Proteins/genetics , Organic Cation Transport Proteins/genetics
17.
Drug Metab Dispos ; 52(4): 296-304, 2024 Mar 13.
Article En | MEDLINE | ID: mdl-38326034

Accurate predictions of renal drug-drug interactions (DDIs) mediated by the human organic cation transporter 2 (hOCT2) and multidrug and toxin extrusion proteins (hMATEs) remain challenging. Current DDI evaluation using plasma maximal unbound inhibitor concentrations (Imax,u) and IC50 values determined in single transporter-transfected cells frequently leads to false or overprediction especially for hMATE1. Emerging evidence suggests intracellular unbound inhibitor concentration may be more relevant for hMATE1 inhibition in vivo. However, determination of intrarenal inhibitor concentrations is impractical. Here, we explored the use of hOCT2/hMATE1 double-transfected Madin-Darby canine kidney (MDCK) cells as a new in vitro tool for DDI risk assessment. Our results showed that potent in vitro hMATE1 inhibitors (hydroxychloroquine, brigatinib, and famotidine) failed to inhibit metformin B-to-A flux in the double-transfected system. On the other side, the classic hOCT2/hMATE1 inhibitors, pyrimethamine and cimetidine, dose-dependently inhibited metformin apparent B-to-A permeability (Papp). The different behaviors of these hMATE1 inhibitors in the double-transfected system can be explained by their different ability to gain intracellular access either via passive diffusion or transporter-mediated uptake. A new parameter (IC50,flux) was proposed reflecting the inhibitor's potency on overall hOCT2/hMATE1-mediated tubular secretion. The IC50,flux values significantly differ from the IC50 values determined in single transporter-transfected cells. Importantly, the IC50,flux accurately predicted in vivo DDIs (within 2-fold) when used in a static model. Our data demonstrated that the IC50,flux approach circumvents the need to measure intracellular inhibitor concentrations and more accurately predicted hOCT2/hMATE1-mediated renal DDIs. This system represents a new approach that could be used for improved DDI assessment during drug development. SIGNIFICANCE STATEMENT: This study demonstrated that flux studies in double-transfected MDCK cells and the IC50,flux represents a better approach to assess in vivo DDI potential for the renal organic cation secretion system. This study highlights the importance of inhibitor intracellular accessibility for accurate prediction of hMATE1-mediated renal DDIs. This approach has the potential to identify in vitro hMATE1 inhibitors that are unlikely to result in in vivo DDIs, thus reducing the burden of unnecessary and costly clinical DDI investigations.


Metformin , Organic Cation Transport Proteins , Animals , Dogs , Humans , Organic Cation Transporter 2/genetics , Organic Cation Transporter 2/metabolism , Organic Cation Transport Proteins/genetics , Organic Cation Transport Proteins/metabolism , Metformin/metabolism , Drug Interactions , Kidney/metabolism
18.
Clin Pharmacol Drug Dev ; 13(5): 465-473, 2024 May.
Article En | MEDLINE | ID: mdl-38174905

Rimegepant is a calcitonin gene-related peptide receptor antagonist approved for migraine treatment. This phase 1, open-label, single-center, fixed-sequence study evaluated the effect of rimegepant on the pharmacokinetics (PK) of metformin. Twenty-eight healthy participants received metformin 500 mg twice daily from Days 1 to 4 and Days 7 to 10, and once daily on Days 5 and 11. Rimegepant, 75 mg tablet, was administered once daily from Days 9 to 12. At pre-specified time points, plasma metformin concentration, serum glucose levels, and safety and tolerability were evaluated. A 16% increase in the area under the plasma metformin concentration-time curve (AUC) for 1 dosing interval (AUC0-τ,ss), a statistically insignificant increase in maximum and minimum steady-state metformin concentration (Cmax,ss and Cmin,ss), and a decrease in metformin renal clearance were observed on Day 11 following metformin-rimegepant coadministration compared with metformin alone; however, the changes were not clinically relevant. Additionally, coadministration of rimegepant with metformin did not induce clinically meaningful change in the maximum observed glucose concentration (Gmax) or AUCgluc compared with metformin alone. Overall, rimegepant and metformin coadministration did not result in clinically relevant changes in metformin PK, renal clearance, or the antihyperglycemic effects of metformin. Rimegepant is considered safe for use with metformin.


Area Under Curve , Drug Interactions , Healthy Volunteers , Hypoglycemic Agents , Metformin , Organic Cation Transport Proteins , Organic Cation Transporter 2 , Piperidines , Pyridines , Humans , Metformin/pharmacokinetics , Metformin/administration & dosage , Metformin/pharmacology , Male , Adult , Female , Organic Cation Transport Proteins/metabolism , Young Adult , Pyridines/pharmacokinetics , Pyridines/administration & dosage , Pyridines/pharmacology , Pyridines/adverse effects , Piperidines/pharmacokinetics , Piperidines/administration & dosage , Piperidines/pharmacology , Piperidines/adverse effects , Hypoglycemic Agents/pharmacokinetics , Hypoglycemic Agents/administration & dosage , Hypoglycemic Agents/pharmacology , Organic Cation Transporter 2/metabolism , Middle Aged , Blood Glucose/drug effects , Blood Glucose/metabolism , Calcitonin Gene-Related Peptide Receptor Antagonists/administration & dosage , Calcitonin Gene-Related Peptide Receptor Antagonists/pharmacokinetics , Calcitonin Gene-Related Peptide Receptor Antagonists/pharmacology , Calcitonin Gene-Related Peptide Receptor Antagonists/adverse effects , Biological Transport
19.
Chem Biol Interact ; 390: 110886, 2024 Feb 25.
Article En | MEDLINE | ID: mdl-38280639

Niclosamide is an anthelmintic drug with a long history of use and is generally safe and well tolerated in humans. As the conventional dose of niclosamide results in a low but certain level in systemic circulation, drug interactions with concomitant drugs should be considered. We aimed to investigate the interaction between niclosamide and drug transporters, as such information is currently limited. Niclosamide inhibited the transport activity of OATP1B1, OATP1B3, OAT1, OAT3, and OCT2 in vitro. Among them, the inhibitory effects on OAT1, OAT3, and OCT2 were strong, with IC50 values of less than 1 µM. When 3 mg/kg of niclosamide was co-administered to rats, systemic exposure to furosemide (a substrate of OAT1/3) and metformin (a substrate of OCT2) increased, and the renal clearance (CLr) of the drugs significantly decreased. These results suggest that niclosamide inhibits renal transporters, OAT1/3 and OCT2, not only in vitro but also in vivo, resulting in increased systemic exposure to the substrates of the transporters by strongly blocking the urinary elimination pathway in rats. The findings of this study will support a meticulous understanding of the transporter-mediated drug interactions of niclosamide and consequently aid in effective and safe use of niclosamide.


Organic Anion Transporters, Sodium-Independent , Organic Anion Transporters , Humans , Rats , Animals , Organic Cation Transporter 2 , Organic Cation Transport Proteins , Niclosamide/pharmacology , Drug Interactions , Organic Anion Transporters/metabolism , HEK293 Cells
20.
Biochem Pharmacol ; 220: 116017, 2024 Feb.
Article En | MEDLINE | ID: mdl-38176620

The organic cation transporter 2 (OCT2) is pivotal in the renal elimination of several positively charged molecules. OCT2 mode of transport is profoundly influenced by the level of membrane cholesterol. The aim of this study was to investigate the effect of oxidized cholesterol on OCT2 transport activity in human embryonic kidney 293 cells stably transfected with OCT2 (OCT2-HEK293) and in primary renal proximal tubular epithelial cells (RPTEC). Cholesterol was exchanged with 7-ketocholesterol, the main product of cholesterol auto-oxidation, by exposing cells to sterol-saturated methyl-ß-cyclodextrin (mßcd). After a 30 min-exposure, approximately 50% of the endogenous cholesterol was replaced by 7-ketocholesterol without significant changes in total sterol level. In the presence of 7-ketocholesterol, [3H]1-methyl-4-phenylpyridinium (MPP+) uptake was significantly reduced in both cell lines. 7-ketocholesterol incorporation did not affect lipid raft integrity, nor OCT2 surface expression and spatial organization. The inhibitory effect of 7-ketocholesterol on MPP+ uptake was abolished by the presence of MPP+ in the trans-compartment. In the presence of 7-ketocholesterol, both Kt and Vmax of MPP+ influx decreased. Molecular docking using OCT2 structure in outward occluded conformation showed overlapping poses and similar binding energies between cholesterol and 7-ketocholesterol. The thermal stability of OCT2 was not changed when cholesterol was replaced with 7-ketocholesterol. We conclude that 7-ketocholesterol confers a higher rigidity to the carrier by reducing its conformational entropy, arguably as a result of changes in plasma membrane physical properties, thereby facilitating the achievement of a higher affinity state at the expense of the mobility and overall cycling rate of the transporter.


Ketocholesterols , Organic Cation Transport Proteins , Humans , Organic Cation Transporter 2/metabolism , Molecular Docking Simulation , HEK293 Cells , Ketocholesterols/pharmacology , Organic Cation Transporter 1
...