Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 250
Filter
1.
Plant Cell ; 36(6): 2359-2374, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38445764

ABSTRACT

Plants have an astonishing ability to regenerate new organs after wounding. Here, we report that the wound-inducible transcription factor ENHANCER OF SHOOT REGENERATION1 (ESR1) has a dual mode of action in activating ANTHRANILATE SYNTHASE ALPHA SUBUNIT1 (ASA1) expression to ensure auxin-dependent de novo root organogenesis locally at wound sites of Arabidopsis (Arabidopsis thaliana) leaf explants. In the first mode, ESR1 interacts with HISTONE DEACETYLASE6 (HDA6), and the ESR1-HDA6 complex directly binds to the JASMONATE-ZIM DOMAIN5 (JAZ5) locus, inhibiting JAZ5 expression through histone H3 deacetylation. As JAZ5 interferes with the action of ETHYLENE RESPONSE FACTOR109 (ERF109), the transcriptional repression of JAZ5 at the wound site allows ERF109 to activate ASA1 expression. In the second mode, the ESR1 transcriptional activator directly binds to the ASA1 promoter to enhance its expression. Overall, our findings indicate that the dual biochemical function of ESR1, which specifically occurs near wound sites of leaf explants, maximizes local auxin biosynthesis and de novo root organogenesis in Arabidopsis.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Gene Expression Regulation, Plant , Organogenesis, Plant , Plant Roots , Transcription Factors , Arabidopsis/genetics , Arabidopsis/growth & development , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Histone Deacetylases/metabolism , Histone Deacetylases/genetics , Indoleacetic Acids/metabolism , Organogenesis, Plant/genetics , Plant Leaves/genetics , Plant Leaves/metabolism , Plant Leaves/growth & development , Plant Roots/growth & development , Plant Roots/genetics , Plants, Genetically Modified , Promoter Regions, Genetic/genetics , Transcription Factors/metabolism , Transcription Factors/genetics
3.
Methods Mol Biol ; 2698: 75-85, 2023.
Article in English | MEDLINE | ID: mdl-37682470

ABSTRACT

Our understanding of major developmental transitions in plants and animals has been transformed by the emergence of omics technologies. The majority of leaf growth research has been conducted at the transcriptional level. Although historically understudied, alterations at the protein and metabolite levels have begun to gain traction in recent years. Here, we present a protocol for metabolite and protein extraction followed by untargeted metabolomics and proteomics analysis of the growing leaves.


Subject(s)
Organogenesis, Plant , Proteomics , Animals , Metabolomics , Plant Leaves , Technology
4.
J Exp Bot ; 74(20): 6269-6284, 2023 10 31.
Article in English | MEDLINE | ID: mdl-37343125

ABSTRACT

Endoreduplication is the major source of somatic endopolyploidy in higher plants, and leads to variation in cell ploidy levels due to iterative rounds of DNA synthesis in the absence of mitosis. Despite its ubiquitous occurrence in many plant organs, tissues, and cells, the physiological meaning of endoreduplication is not fully understood, although several roles during plant development have been proposed, mostly related to cell growth, differentiation, and specialization via transcriptional and metabolic reprogramming. Here, we review recent advances in our knowledge of the molecular mechanisms and cellular characteristics of endoreduplicated cells, and provide an overview of the multi-scale effects of endoreduplication on supporting growth in plant development. In addition, the effects of endoreduplication in fruit development are discussed, since it is highly prominent during fruit organogenesis where it acts as a morphogenetic factor supporting rapid fruit growth, as illustrated by case of the model fleshy fruit, tomato (Solanum lycopersicum).


Subject(s)
Endoreduplication , Fruit , Organogenesis, Plant/genetics , Cell Cycle , Mitosis
6.
Proc Natl Acad Sci U S A ; 119(50): e2215569119, 2022 12 13.
Article in English | MEDLINE | ID: mdl-36469773

ABSTRACT

The flattened leaf form is an important adaptation for efficient photosynthesis, and the developmental process of flattened leaves has been intensively studied. Classic microsurgery studies in potato and tomato suggest that the shoot apical meristem (SAM) communicates with the leaf primordia to promote leaf blade formation. More recently, it was found that polar auxin transport (PAT) could mediate this communication. However, it is unclear how the expression of leaf patterning genes is tailored by PAT routes originating from SAM. By combining experimental observations and computer model simulations, we show that microsurgical incisions and local inhibition of PAT in tomato interfere with auxin transport toward the leaf margins, reducing auxin response levels and altering the leaf blade shape. Importantly, oval auxin responses result in the bipolar expression of SlLAM1 that determines leaf blade formation. Furthermore, wounding caused by incisions promotes degradation of SlREV, a known regulator of leaf polarity. Additionally, computer simulations suggest that local auxin biosynthesis in early leaf primordia could remove necessity for external auxin supply originating from SAM, potentially explaining differences between species. Together, our findings establish how PAT near emerging leaf primordia determines spatial auxin patterning and refines SlLAM1 expression in the leaf margins to guide leaf flattening.


Subject(s)
Indoleacetic Acids , Solanum lycopersicum , Indoleacetic Acids/metabolism , Meristem/metabolism , Plant Leaves/metabolism , Biological Transport/genetics , Organogenesis, Plant , Solanum lycopersicum/genetics , Solanum lycopersicum/metabolism , Gene Expression Regulation, Plant
7.
Sci Rep ; 12(1): 18436, 2022 11 01.
Article in English | MEDLINE | ID: mdl-36319819

ABSTRACT

Dioscorea nipponica Makino is an optimal candidate to develop the diosgenin industry in North China. Due to its increasing demand in the medicine industry, it is urgent to apply new biotechnological tools to foster breeds with desirable traits and enhanced secondary metabolite production. The production of useful metabolites by the in vitro cultured rhizomes can be explored successfully for utilization by various food and drug industries. In this study, we reported callus formation and plantlet regeneration of the medicinal plant D. nipponica. Explants of leaves, stem segments and rhizomes of aseptic seedlings were cultured on Murashige and Skoog (MS) medium containing various combinations of auxin and cytokinin to find the optimal PGRs of each type of explant for callus induction and shoot regeneration of D. nipponica. The paraffin section technique was also used to observe of the morphogenesis of callus and adventitious bud. Explants of seeds and rhizomes formed calli at high frequency in all lines we examined. However, the explant of leaves rarely formed callus. Three kinds of callus were detected during the induction phase. Here, we describe three types of callus (Callus I-III) with different structure characteristics. Greenish in color and a nodule-like protrusion surface (Callus type III) were arranged more closely of cells with less interstitial substance, cell differentiation ability stronger than other callus types. The optimum combination was the maximum shoot differentiation frequency of 90% in callus derived from seeds cultured on MS medium with 2.0 mg L-16-BA + 0.2 mg L-1NAA. The shoot differentiation frequency (88.57%) of rhizome-induced callus was obtained by the combination of MS medium supplemented with 3.0 mg L-16-BA + 2.0 mg L-1NAA. 1/2 MS medium plus 0.5 mg L-1NAA resulted in a higher root regeneration frequency of 86.70%. In vitro propagated plantlets with healthy roots were domesticated and transplanted into small plastic pots containing sterile soil rite under greenhouse conditions with 80% survivability. Bud differentiation is mostly of exogenous origin, mostly occurring on the near callus surface. Therefore, it may be surmised that in vitro morphogenesis of D. nipponica is mainly caused by indirect organogenesis (adventitious bud).


Subject(s)
Dioscorea , Plant Breeding , Organogenesis, Plant , Cytokinins , Regeneration , Plant Shoots
8.
Nat Plants ; 8(11): 1222-1232, 2022 11.
Article in English | MEDLINE | ID: mdl-36303011

ABSTRACT

Root hairs are highly elongated tubular extensions of root epidermal cells with a plethora of physiological functions, particularly in establishing the root-rhizosphere interface. Anisotropic expansion of root hairs is generally thought to be exclusively mediated by tip growth-a highly controlled apically localized secretion of cell wall material-enriched vesicles that drives the extension of the apical dome. Here we show that tip growth is not the only mode of root hair elongation. We identified events of substantial shank-localized cell wall expansion along the polar growth axis of Arabidopsis root hairs using morphometric analysis with quantum dots. These regions expanded after in vivo immunolocalization using cell wall-directed antibodies and appeared as distinct bands that were devoid of cell wall labelling. Application of a novel click chemistry-enabled galactose analogue for pulse chase and real-time imaging allowed us to label xyloglucan, a major root hair glycan, and demonstrate its de novo deposition and enzymatic remodelling in these shank regions. Our data reveal a previously unknown aspect of root hair growth in which both tip- and shank-localized dynamic cell wall deposition and remodelling contribute to root hair elongation.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Arabidopsis/physiology , Plant Roots , Organogenesis, Plant , Cell Wall
9.
Plant Physiol ; 190(3): 1699-1714, 2022 10 27.
Article in English | MEDLINE | ID: mdl-35929094

ABSTRACT

The transcription factor NODULE INCEPTION (NIN) has been studied extensively for its multiple roles in root nodule symbiosis within plants of the nitrogen-fixing clade (NFC) that associate with soil bacteria, such as rhizobia and Frankia. However, NIN homologs are present in plants outside the NFC, suggesting a role in other developmental processes. Here, we show that the biofuel crop Populus sp., which is not part of the NFC, contains eight copies of NIN with diversified protein sequence and expression patterns. Lipo-chitooligosaccharides (LCOs) are produced by rhizobia and a wide range of fungi, including mycorrhizal ones, and act as symbiotic signals that promote lateral root formation. RNAseq analysis of Populus sp. treated with purified LCO showed induction of the PtNIN2 subfamily. Moreover, the expression of PtNIN2b correlated with the formation of lateral roots and was suppressed by cytokinin treatment. Constitutive expression of PtNIN2b overcame the inhibition of lateral root development by cytokinin under high nitrate conditions. Lateral root induction in response to LCOs likely represents an ancestral function of NIN retained and repurposed in nodulating plants, as we demonstrate that the role of NIN in LCO-induced root branching is conserved in both Populus sp. and legumes. We further established a visual marker of LCO perception in Populus sp. roots, the putative sulfotransferase PtSS1 that can be used to study symbiotic interactions with the bacterial and fungal symbionts of Populus sp.


Subject(s)
Populus , Rhizobium , Populus/genetics , Populus/metabolism , Gene Expression Regulation, Plant , Plant Proteins/genetics , Plant Proteins/metabolism , Organogenesis, Plant , Symbiosis , Chitin/metabolism , Cytokinins , Plant Roots/metabolism
10.
Plant Cell ; 34(11): 4554-4568, 2022 10 27.
Article in English | MEDLINE | ID: mdl-35972347

ABSTRACT

Wounded plant cells can form callus to seal the wound site. Alternatively, wounding can cause adventitious organogenesis or somatic embryogenesis. These distinct developmental pathways require specific cell fate decisions. Here, we identify GhTCE1, a basic helix-loop-helix family transcription factor, and its interacting partners as a central regulatory module of early cell fate transition during in vitro dedifferentiation of cotton (Gossypium hirsutum). RNAi- or CRISPR/Cas9-mediated loss of GhTCE1 function resulted in excessive accumulation of reactive oxygen species (ROS), arrested callus cell elongation, and increased adventitious organogenesis. In contrast, GhTCE1-overexpressing tissues underwent callus cell growth, but organogenesis was repressed. Transcriptome analysis revealed that several pathways depend on proper regulation of GhTCE1 expression, including lipid transfer pathway components, ROS homeostasis, and cell expansion. GhTCE1 bound to the promoters of the target genes GhLTP2 and GhLTP3, activating their expression synergistically, and the heterodimer TCE1-TCEE1 enhances this activity. GhLTP2- and GhLTP3-deficient tissues accumulated ROS and had arrested callus cell elongation, which was restored by ROS scavengers. These results reveal a unique regulatory network involving ROS and lipid transfer proteins, which act as potential ROS scavengers. This network acts as a switch between unorganized callus growth and organized development during in vitro dedifferentiation of cotton cells.


Subject(s)
Basic Helix-Loop-Helix Transcription Factors , Cellular Reprogramming , Gene Expression Regulation, Plant , Gossypium , Organogenesis, Plant , Plant Proteins , Gene Expression Profiling , Gene Expression Regulation, Plant/genetics , Gossypium/genetics , Gossypium/growth & development , Plant Proteins/genetics , Plant Proteins/metabolism , Reactive Oxygen Species/metabolism , Lipid Metabolism/genetics , Basic Helix-Loop-Helix Transcription Factors/genetics , Basic Helix-Loop-Helix Transcription Factors/metabolism , Enhancer Elements, Genetic , Protein Multimerization , Cellular Reprogramming/genetics , Organogenesis, Plant/genetics
11.
Mol Plant ; 15(7): 1098-1119, 2022 07 04.
Article in English | MEDLINE | ID: mdl-35662674

ABSTRACT

Plants produce a rich diversity of biological forms, and the diversity of leaves is especially notable. Mechanisms of leaf morphogenesis have been studied in the past two decades, with a growing focus on the interactive roles of mechanics in recent years. Growth of plant organs involves feedback by mechanical stress: growth induces stress, and stress affects growth and morphogenesis. Although much attention has been given to potential stress-sensing mechanisms and cellular responses, the mechanical principles guiding morphogenesis have not been well understood. Here we synthesize the overarching roles of mechanics and mechanical stress in multilevel and multiple stages of leaf morphogenesis, encompassing leaf primordium initiation, phyllotaxis and venation patterning, and the establishment of complex mature leaf shapes. Moreover, the roles of mechanics at multiscale levels, from subcellular cytoskeletal molecules to single cells to tissues at the organ scale, are articulated. By highlighting the role of mechanical buckling in the formation of three-dimensional leaf shapes, this review integrates the perspectives of mechanics and biology to provide broader insights into the mechanobiology of leaf morphogenesis.


Subject(s)
Organogenesis, Plant , Plants , Morphogenesis , Plant Leaves , Stress, Mechanical
12.
Proc Natl Acad Sci U S A ; 119(27): e2202669119, 2022 07 05.
Article in English | MEDLINE | ID: mdl-35763576

ABSTRACT

Induction of a pluripotent cell mass, called callus, from detached organs is an initial step in in vitro plant regeneration, during which phytohormone auxin-induced ectopic activation of a root developmental program has been shown to be required for subsequent de novo regeneration of shoots and roots. However, whether other signals are involved in governing callus formation, and thus plant regeneration capability, remains largely unclear. Here, we report that the Arabidopsis calcium (Ca2+) signaling module CALMODULIN IQ-MOTIF CONTAINING PROTEIN (CaM-IQM) interacts with auxin signaling to regulate callus and lateral root formation. We show that disruption of IQMs or CaMs retards auxin-induced callus and lateral root formation by dampening auxin responsiveness, and that CaM-IQM complexes physically interact with the auxin signaling repressors INDOLE-3-ACETIC ACID INDUCIBLE (IAA) proteins in a Ca2+-dependent manner. We further provide evidence that the physical interaction of CaM6 with IAA19 destabilizes the repressive interaction of IAA19 with AUXIN RESPONSE FACTOR 7 (ARF7), and thus regulates auxin-induced callus formation. These findings not only define a critical role of CaM-IQM-mediated Ca2+ signaling in callus and lateral root formation, but also provide insight into the interplay of Ca2+ signaling and auxin actions during plant regeneration and development.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Calcium Signaling , Organogenesis, Plant , Plant Roots , Arabidopsis/growth & development , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Calmodulin/metabolism , Indoleacetic Acids/metabolism , Plant Roots/growth & development , Plant Roots/metabolism , Transcription Factors/metabolism
13.
Plant Physiol ; 190(1): 500-515, 2022 08 29.
Article in English | MEDLINE | ID: mdl-35758633

ABSTRACT

Leaf angle is an important agronomic trait determining maize (Zea mays) planting density and light penetration into the canopy and contributes to the yield gain in modern maize hybrids. However, little is known about the molecular mechanisms underlying leaf angle beyond the ZmLG1 (liguleless1) and ZmLG2 (Liguleless2) genes. In this study, we found that the transcription factor (TF) ZmBEH1 (BZR1/BES1 homolog gene 1) is targeted by ZmLG2 and regulates leaf angle formation by influencing sclerenchyma cell layers on the adaxial side. ZmBEH1 interacted with the TF ZmBZR1 (Brassinazole Resistant 1), whose gene expression was also directly activated by ZmLG2. Both ZmBEH1 and ZmBZR1 are bound to the promoter of ZmSCL28 (SCARECROW-LIKE 28), a third TF that influences leaf angle. Our study demonstrates regulatory modules controlling leaf angle and provides gene editing targets for creating optimal maize architecture suitable for dense planting.


Subject(s)
Quantitative Trait Loci , Zea mays , Organogenesis, Plant , Plant Leaves/genetics , Transcription Factors/genetics , Zea mays/genetics
14.
Int J Mol Sci ; 23(10)2022 May 17.
Article in English | MEDLINE | ID: mdl-35628391

ABSTRACT

Leaf morphogenesis requires precise regulation of gene expression to achieve organ separation and flat-leaf form. The poplar KNOTTED-like homeobox gene PagKNAT2/6b could change plant architecture, especially leaf shape, in response to drought stress. However, its regulatory mechanism in leaf development remains unclear. In this work, gene expression analyses of PagKNAT2/6b suggested that PagKNAT2/6b was highly expressed during leaf development. Moreover, the leaf shape changes along the adaxial-abaxial, medial-lateral, and proximal-distal axes caused by the mis-expression of PagKNAT2/6b demonstrated that its overexpression (PagKNAT2/6b OE) and SRDX dominant repression (PagKNAT2/6b SRDX) poplars had an impact on the leaf axial development. The crinkle leaf of PagKNAT2/6b OE was consistent with the differential expression gene PagBOP1/2a (BLADE-ON-PETIOLE), which was the critical gene for regulating leaf development. Further study showed that PagBOP1/2a was directly activated by PagKNAT2/6b through a novel cis-acting element "CTCTT". Together, the PagKNAT2/6b-PagBOP1/2a module regulates poplar leaf morphology by affecting axial development, which provides insights aimed at leaf shape modification for further improving the drought tolerance of woody plants.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Populus , Arabidopsis/genetics , Arabidopsis Proteins/genetics , Gene Expression Regulation, Plant , Organogenesis, Plant , Plant Leaves/metabolism , Populus/genetics , Populus/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism
15.
Int J Mol Sci ; 23(9)2022 Apr 29.
Article in English | MEDLINE | ID: mdl-35563355

ABSTRACT

Root and tuber crops are of great importance. They not only contribute to feeding the population but also provide raw material for medicine and small-scale industries. The yield of the root and tuber crops is subject to the development of stem/root tubers, which involves the initiation, expansion, and maturation of storage organs. The formation of the storage organ is a highly intricate process, regulated by multiple phytohormones. Gibberellins (GAs) and abscisic acid (ABA), as antagonists, are essential regulators during stem/root tuber development. This review summarizes the current knowledge of the roles of GA and ABA during stem/root tuber development in various tuber crops.


Subject(s)
Abscisic Acid , Gibberellins , Crops, Agricultural , Gene Expression Regulation, Plant , Organogenesis, Plant , Plant Growth Regulators , Plant Tubers
16.
BMC Plant Biol ; 22(1): 97, 2022 Mar 04.
Article in English | MEDLINE | ID: mdl-35246031

ABSTRACT

BACKGROUND: Bougainvillea is a popular ornamental plant with brilliant color and long flowering periods. It is widely distributed in the tropics and subtropics. The primary ornamental part of the plant is its colorful and unusual bracts, rich in the stable pigment betalain. The developmental mechanism of the bracts is not clear, and the pathway of betalain biosynthesis is well characterized in Bougainvillea. RESULTS: At the whole-genome level, we found 23,469 protein-coding genes by assembling the RNA-Seq and Iso-Seq data of floral and leaf tissues. Genome evolution analysis revealed that Bougainvillea is related to spinach; the two diverged approximately 52.7 million years ago (MYA). Transcriptome analysis of floral organs revealed that flower development of Bougainvillea was regulated by the ABCE flower development genes; A-class, B-class, and E-class genes exhibited high expression levels in bracts. Eight key genes of the betalain biosynthetic pathway were identified by homologous alignment, all of which were upregulated concurrently with bract development and betalain accumulation during the bract initiation stage of development. We found 47 genes specifically expressed in stamens, including seven highly expressed genes belonging to the pentose and glucuronate interconversion pathways. BgSEP2b, BgSWEET11, and BgRD22 are hub genes and interacted with many transcription factors and genes in the carpel co-expression network. CONCLUSIONS: We assembled protein-coding genes of Bougainvilea, identified the floral development genes, and constructed the gene co-expression network of petal, stamens, and carpel. Our results provide fundamental information about the mechanism of flower development and pigment accumulation in Bougainvillea, and will facilitate breeding of cultivars with high ornamental value.


Subject(s)
Betalains/biosynthesis , Flowers/growth & development , Flowers/genetics , Nyctaginaceae/growth & development , Nyctaginaceae/genetics , Organogenesis, Plant/genetics , Pigmentation/genetics , Gene Expression Profiling , Metabolic Networks and Pathways
17.
BMC Plant Biol ; 22(1): 133, 2022 Mar 22.
Article in English | MEDLINE | ID: mdl-35317749

ABSTRACT

BACKGROUND: Reactive oxygen species (ROS) and calcium ions (Ca2+) are representative signals of plant wound responses. Wounding triggers cell fate transition in detached plant tissues and induces de novo root organogenesis. While the hormonal regulation of root organogenesis has been widely studied, the role of early wound signals including ROS and Ca2+ remains largely unknown. RESULTS: We identified that ROS and Ca2+ are required for de novo root organogenesis, but have different functions in Arabidopsis explants. The inhibition of the ROS and Ca2+ signals delayed root development in detached leaves. Examination of the auxin signaling pathways indicated that ROS and Ca2+ did not affect auxin biosynthesis and transport in explants. Additionally, the expression of key genes related to auxin signals during root organogenesis was not significantly affected by the inhibition of ROS and Ca2+ signals. The addition of auxin partially restored the suppression of root development by the ROS inhibitor; however, auxin supplementation did not affect root organogenesis in Ca2+-depleted explants. CONCLUSIONS: Our results indicate that, while both ROS and Ca2+ are key molecules, at least in part of the auxin signals acts downstream of ROS signaling, and Ca2+ acts downstream of auxin during de novo root organogenesis in leaf explants.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Arabidopsis/metabolism , Arabidopsis Proteins/metabolism , Indoleacetic Acids/metabolism , Organogenesis, Plant/genetics , Plant Roots/metabolism
18.
Int J Mol Sci ; 23(4)2022 Feb 21.
Article in English | MEDLINE | ID: mdl-35216479

ABSTRACT

Plant growth and development are closely related to phosphate (Pi) and auxin. However, data regarding auxin response factors (ARFs) and their response to phosphate in maize are limited. Here, we isolated ZmARF4 in maize and dissected its biological function response to Pi stress. Overexpression of ZmARF4 in Arabidopsis confers tolerance of Pi deficiency with better root morphology than wild-type. Overexpressed ZmARF4 can partially restore the absence of lateral roots in mutant arf7 arf19. The ZmARF4 overexpression promoted Pi remobilization and up-regulated AtRNS1, under Pi limitation while it down-regulated the expression of the anthocyanin biosynthesis genes AtDFR and AtANS. A continuous detection revealed higher activity of promoter in the Pi-tolerant maize P178 line than in the sensitive 9782 line under low-Pi conditions. Meanwhile, GUS activity was specifically detected in new leaves and the stele of roots in transgenic offspring. ZmARF4 was localized to the nucleus and cytoplasm of the mesophyll protoplast and interacted with ZmILL4 and ZmChc5, which mediate lateral root initiation and defense response, respectively. ZmARF4 overexpression also conferred salinity and osmotic stress tolerance in Arabidopsis. Overall, our findings suggest that ZmARF4, a pleiotropic gene, modulates multiple stress signaling pathways, and thus, could be a candidate gene for engineering plants with multiple stress adaptation.


Subject(s)
Phosphates/metabolism , Plant Roots/metabolism , Stress, Physiological , Transcription Factors/metabolism , Zea mays/metabolism , Anthocyanins/metabolism , Arabidopsis/genetics , Organogenesis, Plant , Plant Proteins/metabolism , Plant Roots/growth & development , Plant Roots/physiology , Plants, Genetically Modified , Signal Transduction , Zea mays/physiology
20.
Plant Cell Physiol ; 63(4): 535-549, 2022 Apr 19.
Article in English | MEDLINE | ID: mdl-35137197

ABSTRACT

Leaf morphogenetic activity determines its shape diversity. However, our knowledge of the regulatory mechanism in maintaining leaf morphogenetic capacity is still limited. In tomato, gibberellin (GA) negatively regulates leaf complexity by shortening the morphogenetic window. We here report a tomato BRI1-EMS-suppressor 1 transcription factor, SlBES1.8, that promoted the simplification of leaf pattern in a similar manner as GA functions. OE-SlBES1.8 plants exhibited reduced sensibility to exogenous GA3 treatment whereas showed increased sensibility to the application of GA biosynthesis inhibitor, paclobutrazol. In line with the phenotypic observation, the endogenous bioactive GA contents were increased in OE-SlBES1.8 lines, which certainly promoted the degradation of the GA signaling negative regulator, SlDELLA. Moreover, transcriptomic analysis uncovered a set of overlapping genomic targets of SlBES1.8 and GA, and most of them were regulated in the same way. Expression studies showed the repression of SlBES1.8 to the transcriptions of two GA-deactivated genes, SlGA2ox2 and SlGA2ox6, and one GA receptor, SlGID1b-1. Further experiments confirmed the direct regulation of SlBES1.8 to their promoters. On the other hand, SlDELLA physically interacted with SlBES1.8 and further inhibited its transcriptional regulation activity by abolishing SlBES1.8-DNA binding. Conclusively, by mediating GA deactivation and signaling, SlBES1.8 greatly influenced tomato leaf morphogenesis.


Subject(s)
Solanum lycopersicum , Gene Expression Regulation, Plant , Gibberellins/metabolism , Gibberellins/pharmacology , Solanum lycopersicum/genetics , Solanum lycopersicum/metabolism , Organogenesis, Plant , Plant Leaves/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...