Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.707
Filter
1.
Nat Commun ; 15(1): 6802, 2024 Aug 09.
Article in English | MEDLINE | ID: mdl-39122688

ABSTRACT

Influenza virus infection remains a major global health problem and requires a universal vaccine with broad protection against different subtypes as well as a rapid-response vaccine to provide immediate protection in the event of an epidemic outbreak. Here, we show that intranasal administration of probiotic Escherichia coli Nissle 1917 activates innate immunity in the respiratory tract and provides immediate protection against influenza virus infection within 1 day. Based on this vehicle, a recombinant strain is engineered to express and secret five tandem repeats of the extracellular domain of matrix protein 2 from different influenza virus subtypes. Intranasal vaccination with this strain induces durable humoral and mucosal responses in the respiratory tract, and provides broad protection against the lethal challenge of divergent influenza viruses in female BALB/c mice. Our findings highlight a promising delivery platform for developing mucosal vaccines that provide immediate and sustained protection against respiratory pathogens.


Subject(s)
Administration, Intranasal , Escherichia coli , Influenza Vaccines , Mice, Inbred BALB C , Orthomyxoviridae Infections , Probiotics , Animals , Escherichia coli/genetics , Probiotics/administration & dosage , Female , Orthomyxoviridae Infections/prevention & control , Orthomyxoviridae Infections/immunology , Mice , Influenza Vaccines/immunology , Influenza Vaccines/administration & dosage , Influenza Vaccines/genetics , Influenza A virus/immunology , Influenza A virus/genetics , Viral Matrix Proteins/genetics , Viral Matrix Proteins/immunology , Immunity, Innate , Immunity, Mucosal , Humans , Antibodies, Viral/immunology , Viroporin Proteins
3.
PLoS Pathog ; 20(8): e1012393, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39116029

ABSTRACT

Live-attenuated influenza vaccines (LAIV) offer advantages over the commonly used inactivated split influenza vaccines. However, finding the optimal balance between sufficient attenuation and immunogenicity has remained a challenge. We recently developed an alternative LAIV based on the 2009 pandemic H1N1 virus with a truncated NS1 protein and lacking PA-X protein expression (NS1(1-126)-ΔPAX). This virus showed a blunted replication and elicited a strong innate immune response. In the present study, we evaluated the efficacy of this vaccine candidate in the porcine animal model as a pertinent in vivo system. Immunization of pigs via the nasal route with the novel NS1(1-126)-ΔPAX LAIV did not cause disease and elicited a strong mucosal immune response that completely blocked replication of the homologous challenge virus in the respiratory tract. However, we observed prolonged shedding of our vaccine candidate from the upper respiratory tract. To improve LAIV safety, we developed a novel prime/boost vaccination strategy combining primary intramuscular immunization with a haemagglutinin-encoding propagation-defective vesicular stomatitis virus (VSV) replicon, followed by a secondary immunization with the NS1(1-126)-ΔPAX LAIV via the nasal route. This two-step immunization procedure significantly reduced LAIV shedding, increased the production of specific serum IgG, neutralizing antibodies, and Th1 memory cells, and resulted in sterilizing immunity against homologous virus challenge. In conclusion, our novel intramuscular prime/intranasal boost regimen interferes with virus shedding and transmission, a feature that will help combat influenza epidemics and pandemics.


Subject(s)
Administration, Intranasal , Influenza Vaccines , Orthomyxoviridae Infections , Animals , Swine , Influenza Vaccines/immunology , Influenza Vaccines/administration & dosage , Orthomyxoviridae Infections/prevention & control , Orthomyxoviridae Infections/immunology , Injections, Intramuscular , Vaccines, Attenuated/immunology , Vaccines, Attenuated/administration & dosage , Influenza A Virus, H1N1 Subtype/immunology , Disease Models, Animal , Antibodies, Viral/immunology , Immunization, Secondary/methods , Vaccination/methods , Influenza, Human/prevention & control , Influenza, Human/immunology
4.
Emerg Microbes Infect ; 13(1): 2389095, 2024 Dec.
Article in English | MEDLINE | ID: mdl-39101691

ABSTRACT

Influenza virus infection poses a continual menace to public health. Here, we developed soluble trimeric HA ectodomain vaccines by establishing interprotomer disulfide bonds in the stem region, which effectively preserve the native antigenicity of stem epitopes. The stable trimeric H1 ectodomain proteins exhibited higher thermal stabilities in comparison with unmodified HAs and showed strong binding activities towards a panel of anti-stem cross-reactive antibodies that recognize either interprotomer or intraprotomer epitopes. Negative stain transmission electron microscopy (TEM) analysis revealed the stable trimer architecture of the interprotomer disulfide-stapled WA11#5, NC99#2, and FLD#1 proteins as well as the irregular aggregation of unmodified HA molecules. Immunizations of mice with those trimeric HA ectodomain vaccines formulated with incomplete Freund's adjuvant elicited significantly more potent cross-neutralizing antibody responses and offered broader immuno-protection against lethal infections with heterologous influenza strains compared to unmodified HA proteins. Additionally, the findings of our study indicate that elevated levels of HA stem-specific antibody responses correlate with strengthened cross-protections. Our design strategy has proven effective in trimerizing HA ectodomains derived from both influenza A and B viruses, thereby providing a valuable reference for designing future influenza HA immunogens.


Subject(s)
Antibodies, Neutralizing , Antibodies, Viral , Disulfides , Hemagglutinin Glycoproteins, Influenza Virus , Influenza Vaccines , Mice, Inbred BALB C , Orthomyxoviridae Infections , Animals , Influenza Vaccines/immunology , Influenza Vaccines/genetics , Hemagglutinin Glycoproteins, Influenza Virus/immunology , Hemagglutinin Glycoproteins, Influenza Virus/genetics , Hemagglutinin Glycoproteins, Influenza Virus/chemistry , Antibodies, Viral/immunology , Mice , Disulfides/chemistry , Orthomyxoviridae Infections/prevention & control , Orthomyxoviridae Infections/immunology , Orthomyxoviridae Infections/virology , Antibodies, Neutralizing/immunology , Female , Cross Protection/immunology , Cross Reactions , Humans , Influenza, Human/prevention & control , Influenza, Human/immunology , Influenza, Human/virology , Epitopes/immunology , Epitopes/genetics , Epitopes/chemistry , Protein Multimerization , Influenza B virus/immunology , Influenza B virus/genetics , Influenza B virus/chemistry
5.
EBioMedicine ; 106: 105269, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39111250

ABSTRACT

BACKGROUND: Influenza viruses pose a persistent threat to global public health, necessitating the development of innovative and broadly effective vaccines. METHODS: This study focuses on a multiepitope vaccine (MEV) designed to provide broad-spectrum protection against different influenza viruses. The MEV, containing 19 B-cell linear epitopes, 7 CD4+ T cells, and 11 CD8+ T cells epitopes identified through enzyme-linked immunospot assay (ELISPOT) in influenza viruses infected mice, was administered through a regimen of two doses of DNA vaccine followed by one dose of a protein vaccine in C57BL/6 female mice. FINDINGS: Upon lethal challenge with both seasonal circulating strains (H1N1, H3N2, BV, and BY) and historical strains (H1N1-PR8 and H3N2-X31), MEV demonstrated substantial protection against different influenza seasonal strains, with partial efficacy against historical strains. Notably, the increased germinal centre B cells and antibody-secreting cells, along with robust T cell immune responses, highlighted the comprehensive immune defence elicited by MEV. Elevated hemagglutinin inhibition antibody was also observed against seasonal circulating and historical strains. Additionally, mice vaccinated with MEV exhibited significantly lower counts of inflammatory cells in the lungs compared to negative control groups. INTERPRETATION: Our results demonstrated the efficacy of a broad-spectrum MEV against influenza viruses in mice. Conducting long-term studies to evaluate the durability of MEV-induced immune responses and explore its potential application in diverse populations will offer valuable insights for the continued advancement of this promising vaccine. FUNDING: Funding bodies are described in the Acknowledgments section.


Subject(s)
Epitopes, B-Lymphocyte , Influenza B virus , Influenza Vaccines , Orthomyxoviridae Infections , Animals , Influenza Vaccines/immunology , Influenza Vaccines/administration & dosage , Mice , Influenza B virus/immunology , Orthomyxoviridae Infections/prevention & control , Orthomyxoviridae Infections/immunology , Female , Epitopes, B-Lymphocyte/immunology , Influenza A virus/immunology , Antibodies, Viral/immunology , Epitopes, T-Lymphocyte/immunology , Disease Models, Animal , Mice, Inbred C57BL , Vaccines, DNA/immunology , Vaccines, DNA/administration & dosage , Seasons , Influenza A Virus, H3N2 Subtype/immunology , Humans
6.
Front Immunol ; 15: 1376395, 2024.
Article in English | MEDLINE | ID: mdl-38975350

ABSTRACT

Influenza A Virus (IAV) and Respiratory Syncytial Virus (RSV) are both responsible for millions of severe respiratory tract infections every year worldwide. Effective vaccines able to prevent transmission and severe disease, are important measures to reduce the burden for the global health system. Despite the strong systemic immune responses induced upon current parental immunizations, this vaccination strategy fails to promote a robust mucosal immune response. Here, we investigated the immunogenicity and efficacy of a mucosal adenoviral vector vaccine to tackle both pathogens simultaneously at their entry site. For this purpose, BALB/c mice were immunized intranasally with adenoviral vectors (Ad) encoding the influenza-derived proteins, hemagglutinin (HA) and nucleoprotein (NP), in combination with an Ad encoding for the RSV fusion (F) protein. The mucosal combinatory vaccine induced neutralizing antibodies as well as local IgA responses against both viruses. Moreover, the vaccine elicited pulmonary CD8+ and CD4+ tissue resident memory T cells (TRM) against the immunodominant epitopes of RSV-F and IAV-NP. Furthermore, the addition of Ad-TGFß or Ad-CCL17 as mucosal adjuvant enhanced the formation of functional CD8+ TRM responses against the conserved IAV-NP. Consequently, the combinatory vaccine not only provided protection against subsequent infections with RSV, but also against heterosubtypic challenges with pH1N1 or H3N2 strains. In conclusion, we present here a potent combinatory vaccine for mucosal applications, which provides protection against two of the most relevant respiratory viruses.


Subject(s)
Antibodies, Viral , Immunity, Mucosal , Influenza A virus , Influenza Vaccines , Mice, Inbred BALB C , Respiratory Syncytial Virus Infections , Respiratory Syncytial Virus Vaccines , Animals , Mice , Respiratory Syncytial Virus Infections/prevention & control , Respiratory Syncytial Virus Infections/immunology , Influenza Vaccines/immunology , Influenza Vaccines/administration & dosage , Respiratory Syncytial Virus Vaccines/immunology , Respiratory Syncytial Virus Vaccines/administration & dosage , Antibodies, Viral/immunology , Influenza A virus/immunology , Female , Orthomyxoviridae Infections/immunology , Orthomyxoviridae Infections/prevention & control , Respiratory Syncytial Viruses/immunology , Antibodies, Neutralizing/immunology , Antibodies, Neutralizing/blood , Vaccines, Combined/immunology , Vaccines, Combined/administration & dosage , Humans , Adenoviridae/immunology , Adenoviridae/genetics , Genetic Vectors
7.
Science ; 385(6705): 123, 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-38991057

ABSTRACT

The relentless march of a highly pathogenic avian influenza virus (HPAIV) strain, known as H5N1, to become an unprecedented panzootic continues unchecked. The leap of H5N1 clade 2.3.4.4b from Eurasia and Africa to North America in 2021 and its further spread to South America and the Antarctic have exposed new avian and mammalian populations to the virus and led to outbreaks on an unrivaled scale. The virus has infected wild birds across vast geographic regions and caused wildlife deaths in some of the world's most biodiverse ecosystems. Hundreds of millions of poultry have died or been culled, affecting global food security in some of the world's poorest regions. Numerous mammalian species, including sea lions and fur animals, have been infected. Outbreaks in dairy cows in the United States have been occurring for months, seemingly unchecked in most affected states. Why is there not a greater sense of urgency to control these infections?


Subject(s)
Cattle Diseases , Disease Outbreaks , Influenza A Virus, H5N1 Subtype , Influenza in Birds , Orthomyxoviridae Infections , Animals , Cattle , Humans , Birds/virology , Cattle Diseases/epidemiology , Cattle Diseases/prevention & control , Cattle Diseases/virology , Disease Outbreaks/prevention & control , Disease Outbreaks/veterinary , Influenza A Virus, H5N1 Subtype/pathogenicity , Influenza in Birds/epidemiology , Influenza in Birds/transmission , Influenza in Birds/virology , Orthomyxoviridae Infections/epidemiology , Orthomyxoviridae Infections/prevention & control , Orthomyxoviridae Infections/veterinary , Orthomyxoviridae Infections/virology , Poultry/virology , United States/epidemiology
8.
Nat Commun ; 15(1): 6007, 2024 Jul 19.
Article in English | MEDLINE | ID: mdl-39030218

ABSTRACT

An influenza vaccine approach that overcomes the problem of viral sequence diversity and provides long-lived heterosubtypic protection is urgently needed to protect against pandemic influenza viruses. Here, to determine if lung-resident effector memory T cells induced by cytomegalovirus (CMV)-vectored vaccines expressing conserved internal influenza antigens could protect against lethal influenza challenge, we immunize Mauritian cynomolgus macaques (MCM) with cynomolgus CMV (CyCMV) vaccines expressing H1N1 1918 influenza M1, NP, and PB1 antigens (CyCMV/Flu), and challenge with heterologous, aerosolized avian H5N1 influenza. All six unvaccinated MCM died by seven days post infection with acute respiratory distress, while 54.5% (6/11) CyCMV/Flu-vaccinated MCM survived. Survival correlates with the magnitude of lung-resident influenza-specific CD4 + T cells prior to challenge. These data demonstrate that CD4 + T cells targeting conserved internal influenza proteins can protect against highly pathogenic heterologous influenza challenge and support further exploration of effector memory T cell-based vaccines for universal influenza vaccine development.


Subject(s)
CD4-Positive T-Lymphocytes , Cytomegalovirus , Influenza A Virus, H1N1 Subtype , Influenza Vaccines , Macaca fascicularis , Animals , Influenza Vaccines/immunology , Influenza Vaccines/administration & dosage , CD4-Positive T-Lymphocytes/immunology , Influenza A Virus, H1N1 Subtype/immunology , Cytomegalovirus/immunology , Orthomyxoviridae Infections/immunology , Orthomyxoviridae Infections/prevention & control , Influenza A Virus, H5N1 Subtype/immunology , Lung/immunology , Lung/virology , Lung/pathology , Genetic Vectors/genetics , Genetic Vectors/immunology , Male , Female , Memory T Cells/immunology , Immunologic Memory/immunology , Vaccination
9.
Virology ; 597: 110162, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38955082

ABSTRACT

There is an urgent need for influenza vaccines that offer broad cross-protection. The highly conserved ectodomain of the influenza matrix protein 2 (M2e) is a promising candidate; however, its low immunogenicity can be addressed. In this study, we developed influenza vaccines using the Lumazine synthase (LS) platform. The primary objective of this study was to determine the protective potential of M2e proteins expressed on Lumazine synthase (LS) nanoparticles. M2e-LS proteins, produced through the E. coli system, spontaneously assemble into nanoparticles. The study investigated the efficacy of the M2e-LS nanoparticle vaccine in mice. Mice immunized with M2e-LS nanoparticles exhibited significantly higher levels of intracellular cytokines than those receiving soluble M2e proteins. The M2e-LS protein exhibited robust immunogenicity and provided 100% protection against cross-clade influenza.


Subject(s)
Influenza A Virus, H1N1 Subtype , Influenza Vaccines , Multienzyme Complexes , Nanoparticles , Orthomyxoviridae Infections , Viral Matrix Proteins , Animals , Influenza Vaccines/immunology , Influenza Vaccines/administration & dosage , Influenza A Virus, H1N1 Subtype/immunology , Nanoparticles/chemistry , Viral Matrix Proteins/immunology , Viral Matrix Proteins/genetics , Viral Matrix Proteins/metabolism , Mice , Orthomyxoviridae Infections/prevention & control , Orthomyxoviridae Infections/immunology , Orthomyxoviridae Infections/virology , Multienzyme Complexes/immunology , Multienzyme Complexes/metabolism , Female , Mice, Inbred BALB C , Antibodies, Viral/immunology , Cytokines/metabolism , Cross Protection/immunology , Influenza, Human/prevention & control , Influenza, Human/immunology , Influenza, Human/virology , Escherichia coli/genetics , Escherichia coli/metabolism , Viroporin Proteins
10.
Nat Commun ; 15(1): 5800, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38987276

ABSTRACT

Enhancing influenza vaccine cross-protection is imperative to alleviate the significant public health burden of influenza. Heterologous sequential immunization may synergize diverse vaccine formulations and routes to improve vaccine potency and breadth. Here we investigate the effects of immunization strategies on the generation of cross-protective immune responses in female Balb/c mice, utilizing mRNA lipid nanoparticle (LNP) and protein-based PHC nanoparticle vaccines targeting influenza hemagglutinin. Our findings emphasize the crucial role of priming vaccination in shaping Th bias and immunodominance hierarchies. mRNA LNP prime favors Th1-leaning responses, while PHC prime elicits Th2-skewing responses. We demonstrate that cellular and mucosal immune responses are pivotal correlates of cross-protection against influenza. Notably, intranasal PHC immunization outperforms its intramuscular counterpart in inducing mucosal immunity and conferring cross-protection. Sequential mRNA LNP prime and intranasal PHC boost demonstrate optimal cross-protection against antigenically drifted and shifted influenza strains. Our study offers valuable insights into tailoring immunization strategies to optimize influenza vaccine effectiveness.


Subject(s)
Administration, Intranasal , Cross Protection , Influenza Vaccines , Mice, Inbred BALB C , Nanoparticles , Orthomyxoviridae Infections , Animals , Female , Humans , Mice , Antibodies, Viral/immunology , Cross Protection/immunology , Hemagglutinin Glycoproteins, Influenza Virus/immunology , Hemagglutinin Glycoproteins, Influenza Virus/genetics , Immunity, Mucosal/immunology , Immunization/methods , Influenza Vaccines/immunology , Influenza Vaccines/administration & dosage , Lipids/chemistry , Liposomes , Nanoparticles/chemistry , Nanovaccines/administration & dosage , Nanovaccines/immunology , Orthomyxoviridae Infections/prevention & control , Orthomyxoviridae Infections/immunology , RNA, Messenger/genetics , RNA, Messenger/immunology , Vaccination/methods
11.
Arch Virol ; 169(8): 163, 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38990396

ABSTRACT

Antigenically divergent H7N9 viruses pose a potential threat to public health, with the poor immunogenicity of candidate H7N9 vaccines demonstrated in clinical trials underscoring the urgent need for more-effective H7N9 vaccines. In the present study, mice were immunized with various doses of a suspended-MDCK-cell-derived inactivated H7N9 vaccine, which was based on a low-pathogenic H7N9 virus, to assess cross-reactive immunity and cross-protection against antigenically divergent H7N9 viruses. We found that the CRX-527 adjuvant, a synthetic TLR4 agonist, significantly enhanced the humoral immune responses of the suspended-MDCK-cell-derived H7N9 vaccine, with significant antigen-sparing and immune-enhancing effects, including robust virus-specific IgG, hemagglutination-inhibiting (HI), neuraminidase-inhibiting (NI), and virus-neutralizing (VN) antibody responses, which are crucial for protection against influenza virus infection. Moreover, the CRX-527-adjuvanted H7N9 vaccine also elicited cross-protective immunity and cross-protection against a highly pathogenic H7N9 virus with a single vaccination. Notably, NI and VN antibodies might play an important role in cross-protection against lethal influenza virus infections. This study showed that a synthetic TLR4 agonist adjuvant has a potent immunopotentiating effect, which might be considered worth further development as a means of increasing vaccine effectiveness.


Subject(s)
Antibodies, Viral , Immunity, Humoral , Influenza A Virus, H7N9 Subtype , Influenza Vaccines , Mice, Inbred BALB C , Orthomyxoviridae Infections , Toll-Like Receptor 4 , Vaccines, Inactivated , Animals , Influenza A Virus, H7N9 Subtype/immunology , Toll-Like Receptor 4/agonists , Toll-Like Receptor 4/immunology , Influenza Vaccines/immunology , Influenza Vaccines/administration & dosage , Mice , Antibodies, Viral/immunology , Dogs , Madin Darby Canine Kidney Cells , Vaccines, Inactivated/immunology , Orthomyxoviridae Infections/prevention & control , Orthomyxoviridae Infections/immunology , Female , Antibodies, Neutralizing/immunology , Cross Protection/immunology , Adjuvants, Immunologic/administration & dosage , Adjuvants, Immunologic/pharmacology , Adjuvants, Vaccine , Immunoglobulin G/immunology , Immunoglobulin G/blood
12.
Nat Commun ; 15(1): 6053, 2024 Jul 18.
Article in English | MEDLINE | ID: mdl-39025863

ABSTRACT

Respiratory viral infections cause morbidity and mortality worldwide. Despite the success of vaccines, vaccination efficacy is weakened by the rapid emergence of viral variants with immunoevasive properties. The development of an off-the-shelf, effective, and safe therapy against respiratory viral infections is thus desirable. Here, we develop NanoSTING, a nanoparticle formulation of the endogenous STING agonist, 2'-3' cGAMP, to function as an immune activator and demonstrate its safety in mice and rats. A single intranasal dose of NanoSTING protects against pathogenic strains of SARS-CoV-2 (alpha and delta VOC) in hamsters. In transmission experiments, NanoSTING reduces the transmission of SARS-CoV-2 Omicron VOC to naïve hamsters. NanoSTING also protects against oseltamivir-sensitive and oseltamivir-resistant strains of influenza in mice. Mechanistically, NanoSTING upregulates locoregional interferon-dependent and interferon-independent pathways in mice, hamsters, as well as non-human primates. Our results thus implicate NanoSTING as a broad-spectrum immune activator for controlling respiratory virus infection.


Subject(s)
Administration, Intranasal , Nanoparticles , SARS-CoV-2 , Animals , Nanoparticles/chemistry , Nanoparticles/administration & dosage , Mice , Cricetinae , SARS-CoV-2/drug effects , SARS-CoV-2/immunology , Disease Models, Animal , Humans , Membrane Proteins/agonists , Membrane Proteins/metabolism , Female , Nucleotides, Cyclic/pharmacology , Rats , COVID-19/prevention & control , COVID-19/immunology , COVID-19/virology , Orthomyxoviridae Infections/prevention & control , Orthomyxoviridae Infections/virology , Orthomyxoviridae Infections/immunology , Orthomyxoviridae Infections/drug therapy , Male , Antiviral Agents/pharmacology , Antiviral Agents/administration & dosage , Mice, Inbred C57BL
13.
Vaccine ; 42(21): 126149, 2024 Aug 30.
Article in English | MEDLINE | ID: mdl-39079813

ABSTRACT

Influenza seasons occur annually, building immune history for individuals, but the influence of this history on subsequent influenza vaccine protection remains unclear. We extracted data from an animal trial to study its potential impact. The trial involved 80 ferrets, each receiving either one type of infection or a placebo before vaccination. We quantified the vaccine protection by evaluating hemagglutination inhibition (HAI) antibody titer responses. We tested whether hosts with different infection histories exhibited similar level of responses when receiving the same vaccine for all homologous and heterologous outcomes. We observed that different pre-existing immunities were generally beneficial to vaccine induced responses, but varied in magnitude. Without pre-immunity, post-vaccination HAI titers after the 1st dose of the vaccine were less likely to be above 1:40, and a booster shot was needed. Our study suggests that pre-existing immunity may strengthen and extend the homologous and heterologous vaccine responses.


Subject(s)
Antibodies, Viral , Ferrets , Hemagglutination Inhibition Tests , Influenza Vaccines , Orthomyxoviridae Infections , Animals , Ferrets/immunology , Influenza Vaccines/immunology , Influenza Vaccines/administration & dosage , Antibodies, Viral/blood , Antibodies, Viral/immunology , Orthomyxoviridae Infections/immunology , Orthomyxoviridae Infections/prevention & control , Antibody Formation/immunology , Vaccination , Male , Female
14.
J Virol ; 98(8): e0078124, 2024 Aug 20.
Article in English | MEDLINE | ID: mdl-39078191

ABSTRACT

Influenza remains a worldwide public health threat. Although seasonal influenza vaccines are currently the best means of preventing severe disease, the standard-of-care vaccines require frequent updating due to antigenic drift and can have low efficacy, particularly in vulnerable populations. Here, we demonstrate that a single administration of a recombinant adenovirus-associated virus (rAAV) vector expressing a computationally optimized broadly reactive antigen (COBRA)-derived influenza H1 hemagglutinin (HA) induces strongly neutralizing and broadly protective antibodies in naïve mice and ferrets with pre-existing influenza immunity. Following a lethal viral challenge, the rAAV-COBRA vaccine allowed for significantly reduced viral loads in the upper and lower respiratory tracts and complete protection from morbidity and mortality that lasted for at least 5 months post-vaccination. We observed no signs of antibody waning during this study. CpG motif enrichment of the antigen can act as an internal adjuvant to further enhance the immune responses to allow for lower vaccine dosages with the induction of unique interferon-producing CD4+ and CD8+ T cells specific to HA head and stem peptide sequences. Our studies highlight the utility of rAAV as an effective platform to improve seasonal influenza vaccines. IMPORTANCE: Developing an improved seasonal influenza vaccine remains an ambitious goal of researchers and clinicians alike. With influenza routinely causing severe epidemics with the potential to rise to pandemic levels, it is critical to create an effective, broadly protective, and durable vaccine to improve public health worldwide. As a potential solution, we created a rAAV viral vector expressing a COBRA-optimized influenza hemagglutinin antigen with modestly enriched CpG motifs to evoke a robust and long-lasting immune response after a single intramuscular dose without needing boosts or adjuvants. Importantly, the rAAV vaccine boosted antibody breadth to future strains in ferrets with pre-existing influenza immunity. Together, our data support further investigation into the utility of viral vectors as a potential avenue to improve our seasonal influenza vaccines.


Subject(s)
Adaptive Immunity , Antibodies, Viral , Dependovirus , Ferrets , Hemagglutinin Glycoproteins, Influenza Virus , Influenza Vaccines , Orthomyxoviridae Infections , Animals , Hemagglutinin Glycoproteins, Influenza Virus/immunology , Hemagglutinin Glycoproteins, Influenza Virus/genetics , Influenza Vaccines/immunology , Influenza Vaccines/administration & dosage , Mice , Antibodies, Viral/immunology , Antibodies, Viral/blood , Orthomyxoviridae Infections/prevention & control , Orthomyxoviridae Infections/immunology , Dependovirus/genetics , Dependovirus/immunology , Antibodies, Neutralizing/immunology , Humans , Female , Genetic Vectors , Mice, Inbred BALB C , Vaccination , Influenza, Human/prevention & control , Influenza, Human/immunology , CD8-Positive T-Lymphocytes/immunology
15.
Antiviral Res ; 229: 105960, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38986872

ABSTRACT

Respiratory syncytial virus is the major cause of respiratory viral infections, particularly in infants, immunocompromised populations, and the elderly (over 65 years old), the prevention of RSV infection has become a priority. In this study, we generated a chimeric influenza virus, termed LAIV/RSV/HA-3F, using reverse genetics technology which contained three repeats of the RSV fusion protein neutralizing epitope site II to the N terminal in the background of the hemagglutinin (HA) gene of cold adapted influenza vaccine A/California/7/2009 ca. LAIV/RSV/HA-3F exhibited cold-adapted (ca) and attenuated (att) phenotype. BALB/c mice immunized intranasally with LAIV/RSV/HA-3F showed robust immunogenicity, inducing viral-specific antibody responses against both influenza and RSV, eliciting RSV-specific humoral, cellular and mucosal immune responses. LAIV/RSV/HA-3F also conferred protection as indicated by reduced viral titers and improved lung histopathological alterations against live RSV virus challenge. Mechanismly, single-cell RNA sequencing (scRNA-seq) and single-cell T cell antigen receptor (TCR) sequencing were employed to characterize the immune responses triggered by chimeric RSV vaccine, displaying that LAIV/RSV/HA-3F provided protection mainly via interferon-γ (IFN-γ). Moreover, we found that LAIV/RSV/HA-3F significantly inhibited viral replication in the challenged lung and protected against subsequent RSV challenge in cotton rats without causing lung disease. Taken together, our findings demonstrated that LAIV/RSV/HA-3F has potential as a promising bivalent vaccine with dual purpose candidate for the prevention of influenza and RSV, and preclinical and clinical studies warrant further investigations.


Subject(s)
Antibodies, Viral , Epitopes , Influenza Vaccines , Mice, Inbred BALB C , Respiratory Syncytial Virus Infections , Sigmodontinae , Viral Fusion Proteins , Animals , Respiratory Syncytial Virus Infections/prevention & control , Respiratory Syncytial Virus Infections/immunology , Influenza Vaccines/immunology , Influenza Vaccines/administration & dosage , Influenza Vaccines/genetics , Mice , Viral Fusion Proteins/immunology , Viral Fusion Proteins/genetics , Epitopes/immunology , Epitopes/genetics , Antibodies, Viral/immunology , Antibodies, Viral/blood , Female , Respiratory Syncytial Viruses/immunology , Respiratory Syncytial Viruses/genetics , Respiratory Syncytial Virus Vaccines/immunology , Respiratory Syncytial Virus Vaccines/administration & dosage , Lung/virology , Lung/immunology , Lung/pathology , Humans , Cold Temperature , Antibodies, Neutralizing/immunology , Antibodies, Neutralizing/blood , Respiratory Syncytial Virus, Human/immunology , Respiratory Syncytial Virus, Human/genetics , Orthomyxoviridae Infections/prevention & control , Orthomyxoviridae Infections/immunology
16.
PLoS One ; 19(7): e0301664, 2024.
Article in English | MEDLINE | ID: mdl-38985719

ABSTRACT

Influenza viruses constitute a major threat to human health globally. The viral surface glycoprotein hemagglutinin (HA) is the immunodominant antigen, contains the site for binding to the cellular receptor (RBS), and it is the major target of neutralizing antibody responses post-infection. We developed llama-derived single chain antibody fragments (VHHs) specific for type A influenza virus. Four VHHs were identified and further characterized. VHH D81 bound residues in the proximity of the C-terminal region of HA1 of H1 and H5 subtypes, and showed weak neutralizing activity, whereas VHH B33 bound residues in the proximity of the N-terminal region of the HA's stem domain (HA2) of H1, H5, and H9 subtypes, and showed no neutralizing activity. Of most relevance, VHHs E13 and G41 recognized highly conserved conformational epitopes on the H1 HA's globular domain (HA1) and showed high virus neutralizing activity (ranging between 0.94 to 0.01µM), when tested against several human H1N1 isolates. Additionally, E13 displayed abrogated virus replication of a panel of H1N1 strains spanning over 80 years of antigenic drift and isolated from human, avian, and swine origin. Interestingly, E13 conferred protection in vivo at a dose as low as 0.05 mg/kg. Mice treated with E13 intranasally resulted in undetectable virus challenge loads in the lungs at day 4 post-challenge. The transfer of sterilizing pan-H1 immunity, by a dose in the range of micrograms given intranasally, is of major significance for a monomeric VHH and supports the further development of E13 as an immunotherapeutic agent for the mitigation of influenza infections.


Subject(s)
Antibodies, Neutralizing , Camelids, New World , Hemagglutinin Glycoproteins, Influenza Virus , Influenza A Virus, H1N1 Subtype , Orthomyxoviridae Infections , Single-Domain Antibodies , Animals , Hemagglutinin Glycoproteins, Influenza Virus/immunology , Humans , Influenza A Virus, H1N1 Subtype/immunology , Single-Domain Antibodies/immunology , Antibodies, Neutralizing/immunology , Mice , Orthomyxoviridae Infections/immunology , Orthomyxoviridae Infections/prevention & control , Orthomyxoviridae Infections/virology , Camelids, New World/immunology , Antibodies, Viral/immunology , Female , Influenza, Human/immunology , Influenza, Human/prevention & control , Influenza, Human/virology , Epitopes/immunology , Dogs , Mice, Inbred BALB C
17.
mSphere ; 9(7): e0016024, 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-38920382

ABSTRACT

In humans, seasonal influenza viruses cause epidemics. Avian influenza viruses are of particular concern because they can infect multiple species and lead to unpredictable and severe disease. Therefore, there is an urgent need for a universal influenza vaccine that provides protection against all influenza strains. The cyclic GMP-AMP (cGAMP) is a promising adjuvant for subunit vaccines, which promotes type I interferons' production through the stimulator of interferon genes (STING) pathway. The encapsulation of cGAMP in acetalated dextran (Ace-DEX) microparticles (MPs) enhances its intracellular delivery. In this study, the Computationally Optimized Broadly Reactive Antigen (COBRA) methodology was used to generate H1, H3, and H5 vaccine candidates. Monovalent and multivalent COBRA HA vaccines formulated with cGAMP Ace-DEX MPs were evaluated in mice for protective antibody responses. cGAMP MPs adjuvanted COBRA HA vaccines elicited robust antigen-specific antibodies following vaccination. Compared with COBRA HA vaccine groups with no adjuvant or blank MPs, the cGAMP MPs enhanced HAI activity elicited by COBRA HA vaccines. The HAI activity was not significantly different between cGAMP MPs adjuvanted monovalent or multivalent COBRA HA vaccines. The cGAMP MPs adjuvanted COBRA vaccine groups had higher antigen-specific IgG2a-binding titers than the COBRA vaccine groups with no adjuvant or blank MPs. The COBRA vaccines formulated with cGAMP MPs mitigated diseases caused by influenza viral challenge and decreased pulmonary viral titers in mice. Therefore, the formulation of COBRA vaccines plus cGAMP MPs is a promising universal influenza vaccine that elicits protective immune responses against human seasonal and pre-pandemic strains. IMPORTANCE: Influenza viruses cause severe respiratory disease, particularly in the very young and the elderly. Next-generation influenza vaccines are needed to protect against new influenza variants. This report used a promising adjuvant, cyclic GMP-AMP (cGAMP), to enhance the elicited antibodies by an improved influenza hemagglutinin candidate and protect against influenza virus infection. Overall, adding adjuvants to influenza vaccines is an effective method to improve vaccines.


Subject(s)
Adjuvants, Immunologic , Antibodies, Viral , Hemagglutinin Glycoproteins, Influenza Virus , Influenza Vaccines , Nucleotides, Cyclic , Orthomyxoviridae Infections , Animals , Female , Humans , Mice , Adjuvants, Immunologic/administration & dosage , Antibodies, Viral/blood , Antibodies, Viral/immunology , Hemagglutinin Glycoproteins, Influenza Virus/immunology , Influenza Vaccines/immunology , Influenza Vaccines/administration & dosage , Mice, Inbred BALB C , Nucleotides, Cyclic/immunology , Nucleotides, Cyclic/administration & dosage , Orthomyxoviridae Infections/prevention & control , Orthomyxoviridae Infections/immunology
18.
Eur J Pharm Biopharm ; 201: 114365, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38876362

ABSTRACT

Vaccines against influenza and many other infectious diseases require multiple boosters in addition to the primary dose to improve efficacy, but this approach is not ideal for compliance. The multiple doses could potentially be replaced by sustained or pulsatile release of antigens encapsulated in degradable microparticles (MPs). The efficacy of a vaccine is improved by adding an adjuvant, which can be co-delivered from the particles to enhance immunogenicity. Here, we developed degradable poly-lactic-co-glycolic acid (PLGA) (7-17 kDa) MPs capable of sustained release of ultraviolet killed influenza virus (A/PR/8/34) (kPR8) vaccine and the natural killer T (NKT) cell agonist alpha-galactosylceramide (α-GalCer) and tested their effectiveness at providing long-term protection against influenza virus infection in mice. Multiple formulations were developed for encapsulating the virus and adjuvant separately, and in combination. The MPs exhibited sustained release of both the virus and the adjuvant lasting more than a month. Co-encapsulation significantly increased the encapsulation efficiency (EE) of the vaccine but reduced the release duration. On the other hand, co-encapsulation led to a reduction in EE for the α-GalCer and a change in release profile to a higher initial burst followed by a linear release compared to a low initial burst and slower linear release. The α-GalCer also had considerably longer release duration compared to the vaccine. Mice injected with particle formulations co-encapsulating kPR8 and α-GalCer were protected from a lethal influenza virus infection 30 weeks after vaccination. This study demonstrates that PLGA MP based vaccines are promising for providing effective vaccination and possibly for replacing multiple doses with a single injection.


Subject(s)
Delayed-Action Preparations , Galactosylceramides , Influenza Vaccines , Natural Killer T-Cells , Orthomyxoviridae Infections , Polylactic Acid-Polyglycolic Acid Copolymer , Animals , Galactosylceramides/administration & dosage , Galactosylceramides/immunology , Galactosylceramides/chemistry , Polylactic Acid-Polyglycolic Acid Copolymer/chemistry , Mice , Influenza Vaccines/immunology , Influenza Vaccines/administration & dosage , Influenza Vaccines/chemistry , Natural Killer T-Cells/immunology , Natural Killer T-Cells/drug effects , Orthomyxoviridae Infections/prevention & control , Orthomyxoviridae Infections/immunology , Orthomyxoviridae Infections/virology , Female , Mice, Inbred BALB C , Adjuvants, Immunologic/administration & dosage , Adjuvants, Immunologic/pharmacology , Mice, Inbred C57BL , Vaccines, Inactivated/immunology , Vaccines, Inactivated/administration & dosage
19.
Vet Immunol Immunopathol ; 274: 110785, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38861830

ABSTRACT

The pig is emerging as a physiologically relevant biomedical large animal model. Delineating the functional roles of porcine adaptive T-lymphocyte subsets in health and disease is of critical significance, which facilitates mechanistic understanding of antigen-specific immune memory responses. We identified a novel T-helper/memory lymphocyte subset in pigs and performed phenotypic and functional characterization of these cells under steady state and following vaccination and infection with swine influenza A virus (SwIAV). A novel subset of CD3+CD4lowCD8α+CD8ß+ memory T-helper cells was identified in the blood of healthy adult pigs under homeostatic conditions. To understand the possible functional role/s of these cells, we characterized the antigen-specific T cell memory responses by multi-color flow cytometry in pigs vaccinated with a whole inactivated SwIAV vaccine, formulated with a phytoglycogen nanoparticle/STING agonist (ADU-S100) adjuvant (NanoS100-SwIAV). As a control, a commercial SwIAV vaccine was included in a heterologous challenge infection trial. The frequencies of antigen-specific IL-17A and IFNγ secreting CD3+CD4lowCD8α+CD8ß+ memory T-helper cells were significantly increased in the lung draining tracheobronchial lymph nodes (TBLN) of intradermal, intramuscular and intranasal inoculated NanoS100-SwIAV vaccine and commercial vaccine administered animals. While the frequencies of antigen-specific, IFNγ secreting CD3+CD4lowCD8α+CD8ß+ memory T-helper cells were significantly enhanced in the blood of intranasal and intramuscular vaccinates. These observations suggest that the CD3+CD4lowCD8α+CD8ß+ T-helper/memory cells in pigs may have a protective and/or regulatory role/s in immune responses against SwIAV infection. These observations highlight the heterogeneity and plasticity of porcine CD4+ T-helper/memory cells in response to respiratory viral infection in pigs. Comprehensive systems immunology studies are needed to further decipher the cellular lineages and functional role/s of this porcine T helper/memory cell subset.


Subject(s)
Influenza Vaccines , Orthomyxoviridae Infections , Swine Diseases , Animals , Swine/immunology , Influenza Vaccines/immunology , Orthomyxoviridae Infections/immunology , Orthomyxoviridae Infections/veterinary , Orthomyxoviridae Infections/prevention & control , Swine Diseases/immunology , Swine Diseases/virology , Swine Diseases/prevention & control , T-Lymphocytes, Helper-Inducer/immunology , Respiratory System/immunology , Respiratory System/virology , Lymphoid Tissue/immunology , Immunologic Memory , Memory T Cells/immunology , T-Lymphocyte Subsets/immunology , Influenza A virus/immunology , Vaccination/veterinary
20.
Biomacromolecules ; 25(7): 4281-4291, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38843459

ABSTRACT

Messenger ribonucleic acid (mRNA) vaccines, serving as a rapid and easily scalable emergency preventive measure, have played a pivotal role in preventing infectious diseases. The effectiveness of mRNA vaccines heavily relies on the delivery carrier, but the current market options are predominantly lipid nanoparticles. Their intricate preparation process and high transportation costs pose challenges for widespread use in remote areas. In this study, we harnessed FDA-approved polymer PLGA and lipid components widely employed in clinical experiments to craft a ready-to-use mRNA vaccine delivery system known as lipid-polymer hybrid nanoparticles (LPP). Following formulation optimization, the PDCD nanoparticles emerged as the most effective, showcasing exceptional mRNA delivery capabilities both in vitro and in vivo. Loading PDCD nanoparticles with mRNA encoding the H1N1 influenza virus HA antigen-fused M2e peptide enabled the successful induction of M2e-specific antibodies and T cell immune responses in immunized mice. After three rounds of vaccine immunization, the mice demonstrated weight recovery to normal levels and maintained a survival rate exceeding 80% following an encounter with the H1N1 influenza virus. The innovative mRNA delivery system that we designed demonstrates outstanding effectiveness in preventing infectious diseases, with the potential to play an even more significant role in future clinical applications.


Subject(s)
Influenza A Virus, H1N1 Subtype , Influenza Vaccines , Animals , Mice , Influenza Vaccines/immunology , Influenza Vaccines/administration & dosage , Influenza Vaccines/chemistry , Influenza A Virus, H1N1 Subtype/immunology , Influenza A Virus, H1N1 Subtype/genetics , Nanoparticles/chemistry , mRNA Vaccines , Mice, Inbred BALB C , Female , Orthomyxoviridae Infections/prevention & control , RNA, Messenger/genetics , RNA, Messenger/immunology , RNA, Messenger/administration & dosage , Humans , Influenza, Human/prevention & control , United States , Lipids/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL