Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 13.437
Filter
1.
BMC Biol ; 22(1): 149, 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38965504

ABSTRACT

BACKGROUND: Organisms frequently experience environmental stresses that occur in predictable patterns and combinations. For wild Saccharomyces cerevisiae yeast growing in natural environments, cells may experience high osmotic stress when they first enter broken fruit, followed by high ethanol levels during fermentation, and then finally high levels of oxidative stress resulting from respiration of ethanol. Yeast have adapted to these patterns by evolving sophisticated "cross protection" mechanisms, where mild 'primary' doses of one stress can enhance tolerance to severe doses of a different 'secondary' stress. For example, in many yeast strains, mild osmotic or mild ethanol stresses cross protect against severe oxidative stress, which likely reflects an anticipatory response important for high fitness in nature. RESULTS: During the course of genetic mapping studies aimed at understanding the mechanisms underlying natural variation in ethanol-induced cross protection against H2O2, we found that a key H2O2 scavenging enzyme, cytosolic catalase T (Ctt1p), was absolutely essential for cross protection in a wild oak strain. This suggested the absence of other compensatory mechanisms for acquiring H2O2 resistance in that strain background under those conditions. In this study, we found surprising heterogeneity across diverse yeast strains in whether CTT1 function was fully necessary for acquired H2O2 resistance. Some strains exhibited partial dispensability of CTT1 when ethanol and/or salt were used as mild stressors, suggesting that compensatory peroxidases may play a role in acquired stress resistance in certain genetic backgrounds. We leveraged global transcriptional responses to ethanol and salt stresses in strains with different levels of CTT1 dispensability, allowing us to identify possible regulators of these alternative peroxidases and acquired stress resistance in general. CONCLUSIONS: Ultimately, this study highlights how superficially similar traits can have different underlying molecular foundations and provides a framework for understanding the diversity and regulation of stress defense mechanisms.


Subject(s)
Hydrogen Peroxide , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/physiology , Saccharomyces cerevisiae/drug effects , Hydrogen Peroxide/pharmacology , Hydrogen Peroxide/metabolism , Ethanol/pharmacology , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , Oxidative Stress/drug effects , Stress, Physiological/genetics , Stress, Physiological/drug effects , Osmotic Pressure , Catalase/metabolism , Catalase/genetics , Genetic Variation
2.
Cell Mol Life Sci ; 81(1): 285, 2024 Jul 06.
Article in English | MEDLINE | ID: mdl-38969941

ABSTRACT

Volume regulation is essential for cell homeostasis and physiological function. Amongst the sensory molecules that have been associated with volume regulation is the transient receptor potential vanilloid 4 (TRPV4), which is a non-selective cation channel that in conjunction with aquaporins, typically controls regulatory volume decrease (RVD). Here we show that the interaction between orthologous AQP4 (Aqp4a) and TRPV4 (Trpv4) is important for regulatory volume increase (RVI) in post-activated marine fish spermatozoa under high osmotic stress. Based upon electrophysiological, volumetric, and in vivo and ex vivo functional experiments using the pharmacological and immunological inhibition of Aqp4a and Trpv4 our model suggests that upon ejaculation and exposure to the hypertonic seawater, spermatozoon shrinkage is initially mediated by water efflux through Aqp1aa in the flagellar tail. The shrinkage results in an increase in intracellular Ca2+ concentration, and the activation of sperm motility and a Na+/K+/2Cl- (NKCC1) cotransporter. The activity of NKCC1 is required for the initiation of cell swelling, which secondarily activates the Aqp4a-Trpv4 complex to facilitate the influx of water via Aqp4a-M43 and Ca2+ via Trpv4 and L-type channels for the mediation of RVI. The inhibitory experiments show that blocking of each of these events prevents either shrinkage or RVI. Our data thus reveal that post-activated marine fish spermatozoa are capable of initiating RVI under a high hypertonic stress, which is essential for the maintenance of sperm motility.


Subject(s)
Cell Size , Osmotic Pressure , Sperm Motility , Spermatozoa , TRPV Cation Channels , Animals , Male , TRPV Cation Channels/metabolism , TRPV Cation Channels/genetics , Spermatozoa/metabolism , Sperm Motility/physiology , Aquaporin 4/metabolism , Aquaporin 4/genetics , Calcium/metabolism , Fishes/metabolism , Fishes/physiology , Swimming , Solute Carrier Family 12, Member 2/metabolism , Solute Carrier Family 12, Member 2/genetics
3.
Genes (Basel) ; 15(6)2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38927717

ABSTRACT

We conducted transcriptome sequencing on salt-tolerant mutants X5 and X3, and a control (Ctr) strain of Gracilariopsis lemaneiformis after treatment with artificial seawater at varying salinities (30‱, 45‱, and 60‱) for 3 weeks. Differentially expressed genes were identified and a weighted co-expression network analysis was conducted. The blue, red, and tan modules were most closely associated with salinity, while the black, cyan, light cyan, and yellow modules showed a close correlation with strain attributes. KEGG enrichment of genes from the aforementioned modules revealed that the key enrichment pathways for salinity attributes included the proteasome and carbon fixation in photosynthesis, whereas the key pathways for strain attributes consisted of lipid metabolism, oxidative phosphorylation, soluble N-ethylmaleimide-sensitive factor-activating protein receptor (SNARE) interactions in vesicular transport, and porphyrin and chlorophyll metabolism. Gene expression for the proteasome and carbon fixation in photosynthesis was higher in all strains at 60‱. In addition, gene expression in the proteasome pathway was higher in the X5-60 than Ctr-60 and X3-60. Based on the above data and relevant literature, we speculated that mutant X5 likely copes with high salt stress by upregulating genes related to lysosome and carbon fixation in photosynthesis. The proteasome may be reset to adjust the organism's proteome composition to adapt to high-salt environments, while carbon fixation may aid in maintaining material and energy metabolism for normal life activities by enhancing carbon dioxide uptake via photosynthesis. The differences between the X5-30 and Ctr-30 expression of genes involved in the synthesis of secondary metabolites, oxidative phosphorylation, and SNARE interactions in vesicular transport suggested that the X5-30 may differ from Ctr-30 in lipid metabolism, energy metabolism, and vesicular transport. Finally, among the key pathways with good correlation with salinity and strain traits, the key genes with significant correlation with salinity and strain traits were identified by correlation analysis.


Subject(s)
Salt Tolerance , Salt Tolerance/genetics , Transcriptome , Gene Regulatory Networks , Salinity , Photosynthesis/genetics , Osmotic Pressure , Proteasome Endopeptidase Complex/metabolism , Proteasome Endopeptidase Complex/genetics , Gene Expression Profiling/methods , Lipid Metabolism/genetics
4.
Molecules ; 29(11)2024 May 26.
Article in English | MEDLINE | ID: mdl-38893389

ABSTRACT

Aspergillus cristatus is a crucial edible fungus used in tea fermentation. In the industrial fermentation process, the fungus experiences a low to high osmotic pressure environment. To explore the law of material metabolism changes during osmotic pressure changes, NaCl was used here to construct different osmotic pressure environments. Liquid chromatography-mass spectrometry (LC-MS) combined with multivariate analysis was performed to analyze the distribution and composition of A. cristatus under different salt concentrations. At the same time, the in vitro antioxidant activity was evaluated. The LC-MS metabolomics analysis revealed significant differences between three A. cristatus mycelium samples grown on media with and without NaCl concentrations of 8% and 18%. The contents of gibberellin A3, A124, and prostaglandin A2 related to mycelial growth and those of arabitol and fructose-1,6-diphosphate related to osmotic pressure regulation were significantly reduced at high NaCl concentrations. The biosynthesis of energy-related pantothenol and pantothenic acid and antagonism-related fluvastatin, aflatoxin, and alternariol significantly increased at high NaCl concentrations. Several antioxidant capacities of A. cristatus mycelia were directly related to osmotic pressure and exhibited a significant downward trend with an increase in environmental osmotic pressure. The aforementioned results indicate that A. cristatus adapts to changes in salt concentration by adjusting their metabolite synthesis. At the same time, a unique set of strategies was developed to cope with high salt stress, including growth restriction, osmotic pressure balance, oxidative stress response, antioxidant defense, and survival competition.


Subject(s)
Antioxidants , Aspergillus , Metabolomics , Salt Stress , Aspergillus/metabolism , Aspergillus/growth & development , Metabolomics/methods , Chromatography, Liquid , Antioxidants/metabolism , Metabolome , Osmotic Pressure , Mycelium/metabolism , Mycelium/growth & development , Mycelium/chemistry , Mass Spectrometry , Sodium Chloride/pharmacology , Liquid Chromatography-Mass Spectrometry , Sugar Alcohols
5.
Int J Mol Sci ; 25(11)2024 May 27.
Article in English | MEDLINE | ID: mdl-38892008

ABSTRACT

The NAC family of transcription factors includes no apical meristem (NAM), Arabidopsis thaliana transcription activator 1/2 (ATAF1/2), and cup-shaped cotyledon (CUC2) proteins, which are unique to plants, contributing significantly to their adaptation to environmental challenges. In the present study, we observed that the PvNAC52 protein is predominantly expressed in the cell membrane, cytoplasm, and nucleus. Overexpression of PvNAC52 in Arabidopsis strengthened plant resilience to salt, alkali, osmotic, and ABA stresses. PvNAC52 significantly (p < 0.05) reduced the degree of oxidative damage to cell membranes, proline content, and plant water loss by increasing the expression of MSD1, FSD1, CSD1, POD, PRX69, CAT, and P5CS2. Moreover, the expression of genes associated with abiotic stress responses, such as SOS1, P5S1, RD29A, NCED3, ABIs, LEAs, and DREBs, was enhanced by PvNAC52 overexpression. A yeast one-hybrid assay showed that PvNAC52 specifically binds to the cis-acting elements ABRE (abscisic acid-responsive elements, ACGTG) within the promoter. This further suggests that PvNAC52 is responsible for the transcriptional modulation of abiotic stress response genes by identifying the core sequence, ACGTG. These findings provide a theoretical foundation for the further analysis of the targeted cis-acting elements and genes downstream of PvNAC52 in the common bean.


Subject(s)
Abscisic Acid , Arabidopsis , Gene Expression Regulation, Plant , Osmotic Pressure , Phaseolus , Plant Proteins , Plants, Genetically Modified , Stress, Physiological , Transcription Factors , Arabidopsis/genetics , Arabidopsis/metabolism , Transcription Factors/metabolism , Transcription Factors/genetics , Abscisic Acid/metabolism , Abscisic Acid/pharmacology , Stress, Physiological/genetics , Phaseolus/genetics , Phaseolus/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Alkalies , Up-Regulation , Promoter Regions, Genetic
6.
BMC Plant Biol ; 24(1): 502, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38840053

ABSTRACT

BACKGROUND: Lentil is a significant legume that are consumed as a staple food and have a significant economic impact around the world. The purpose of the present research on lentil was to assess the hydrothermal time model's capacity to explain the dynamics of Lens culinaris L. var. Markaz-09 seed germination, as well as to ascertain the germination responses at various sub-optimal temperatures (T) and water potentials (Ψ). In order to study lentil seed germination (SG) behavior at variable water potentials (Ψs) and temperatures (Ts). A lab experiment employing the hydrothermal time model was created. Seeds were germinated at six distinct temperatures: 15 0С, 20 0С, 25 0С, 30 0С, 35 0С, and 40 0С, with five Ψs of 0, -0.3, -0.6, -0.9, and - 1.2 MPa in a PEG-6000 (Polyethylene glycol 6000) solution. RESULTS: The results indicated that the agronomic parameters like Germination index (GI), Germination energy (GE), Timson germination index (TGI), were maximum in 25 0C at (-0.9 MPa) and lowest at 40 0C in 0 MPa. On other hand, mean germination time (MGT) value was highest at 15 0C in -1.2 MPa and minimum at 40 0C in (-0.6 MPa) while Mean germination rate (MGR) was maximum at 40 0C in (0 MPa) and minimum at 15 0C in (-0.6 MPa). CONCLUSIONS: The HTT model eventually defined the germination response of Lens culinaris L. var. Markaz-09 (Lentil) for all Ts and Ψs, allowing it to be employed as a predictive tool in Lens culinaris L. var. Markaz-09 (Lentil) seed germination simulation models.


Subject(s)
Germination , Lens Plant , Seeds , Temperature , Germination/physiology , Seeds/physiology , Seeds/growth & development , Lens Plant/physiology , Lens Plant/growth & development , Water/metabolism , Models, Biological , Osmotic Pressure
7.
Int J Mol Sci ; 25(11)2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38892412

ABSTRACT

Due to their immobility and possession of underground parts, plants have evolved various mechanisms to endure and adapt to abiotic stresses such as extreme temperatures, drought, and salinity. However, the contribution of long noncoding RNAs (lncRNAs) to different abiotic stresses and distinct rice seedling parts remains largely uncharacterized beyond the protein-coding gene (PCG) layer. Using transcriptomics and bioinformatics methods, we systematically identified lncRNAs and characterized their expression patterns in the roots and shoots of wild type (WT) and ososca1.1 (reduced hyperosmolality-induced [Ca2+]i increase in rice) seedlings under hyperosmolarity and salt stresses. Here, 2937 candidate lncRNAs were identified in rice seedlings, with intergenic lncRNAs representing the largest category. Although the detectable sequence conservation of lncRNAs was low, we observed that lncRNAs had more orthologs within the Oryza. By comparing WT and ososca1.1, the transcription level of OsOSCA1.1-related lncRNAs in roots was greatly enhanced in the face of hyperosmolality stress. Regarding regulation mode, the co-expression network revealed connections between trans-regulated lncRNAs and their target PCGs related to OsOSCA1.1 and its mediation of hyperosmolality stress sensing. Interestingly, compared to PCGs, the expression of lncRNAs in roots was more sensitive to hyperosmolarity stress than to salt stress. Furthermore, OsOSCA1.1-related hyperosmolarity stress-responsive lncRNAs were enriched in roots, and their potential cis-regulated genes were associated with transcriptional regulation and signaling transduction. Not to be ignored, we identified a motif-conserved and hyperosmolarity stress-activated lncRNA gene (OSlncRNA), speculating on its origin and evolutionary history in Oryza. In summary, we provide a global perspective and a lncRNA resource to understand hyperosmolality stress sensing in rice roots, which helps to decode the complex molecular networks involved in plant sensing and adaptation to stressful environments.


Subject(s)
Gene Expression Regulation, Plant , Oryza , Plant Roots , RNA, Long Noncoding , Salt Stress , Oryza/genetics , Oryza/metabolism , RNA, Long Noncoding/genetics , Plant Roots/genetics , Plant Roots/metabolism , Salt Stress/genetics , Osmotic Pressure , Stress, Physiological/genetics , Gene Expression Profiling , RNA, Plant/genetics , Seedlings/genetics , Transcriptome
8.
Eur J Pharmacol ; 977: 176718, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38849040

ABSTRACT

Nimodipine is used to prevent delayed ischemic deficit in patients with aneurysmal subarachnoid hemorrhage (aSAH). Spreading depolarization (SD) is recognized as a factor in the pathomechanism of aSAH and other acute brain injuries. Although nimodipine is primarily known as a cerebral vasodilator, it may have a more complex mechanism of action due to the expression of its target, the L-type voltage-gated calcium channels (LVGCCs) in various cells in neural tissue. This study was designed to investigate the direct effect of nimodipine on SD, ischemic tissue injury, and neuroinflammation. SD in control or nimodipine-treated live mouse brain slices was induced under physiological conditions using electrical stimulation, or by subjecting the slices to hypo-osmotic stress or mild oxygen-glucose deprivation (mOGD). SD was recorded applying local field potential recording or intrinsic optical signal imaging. Histological analysis was used to estimate tissue injury, the number of reactive astrocytes, and the degree of microglia activation. Nimodipine did not prevent SD occurrence in mOGD, but it did reduce the rate of SD propagation and the cortical area affected by SD. In contrast, nimodipine blocked SD occurrence in hypo-osmotic stress, but had no effect on SD propagation. Furthermore, nimodipine prevented ischemic injury associated with SD in mOGD. Nimodipine also exhibited anti-inflammatory effects in mOGD by reducing reactive astrogliosis and microglial activation. The results demonstrate that nimodipine directly inhibits SD, independent of nimodipine's vascular effects. Therefore, the use of nimodipine may be extended to treat acute brain injuries where SD plays a central role in injury progression.


Subject(s)
Brain Ischemia , Brain , Cortical Spreading Depression , Nimodipine , Animals , Nimodipine/pharmacology , Mice , Cortical Spreading Depression/drug effects , Male , Brain/drug effects , Brain/pathology , Brain/metabolism , Brain Ischemia/drug therapy , Brain Ischemia/pathology , Mice, Inbred C57BL , Neuroinflammatory Diseases/drug therapy , Neuroinflammatory Diseases/pathology , Microglia/drug effects , Microglia/metabolism , Microglia/pathology , Calcium Channel Blockers/pharmacology , Calcium Channel Blockers/therapeutic use , Osmotic Pressure/drug effects
9.
Cell Stem Cell ; 31(5): 640-656.e8, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38701758

ABSTRACT

Post-implantation, the pluripotent epiblast in a human embryo forms a central lumen, paving the way for gastrulation. Osmotic pressure gradients are considered the drivers of lumen expansion across development, but their role in human epiblasts is unknown. Here, we study lumenogenesis in a pluripotent-stem-cell-based epiblast model using engineered hydrogels. We find that leaky junctions prevent osmotic pressure gradients in early epiblasts and, instead, forces from apical actin polymerization drive lumen expansion. Once the lumen reaches a radius of ∼12 µm, tight junctions mature, and osmotic pressure gradients develop to drive further growth. Computational modeling indicates that apical actin polymerization into a stiff network mediates initial lumen expansion and predicts a transition to pressure-driven growth in larger epiblasts to avoid buckling. Human epiblasts show transcriptional signatures consistent with these mechanisms. Thus, actin polymerization drives lumen expansion in the human epiblast and may serve as a general mechanism of early lumenogenesis.


Subject(s)
Actins , Germ Layers , Osmotic Pressure , Polymerization , Humans , Actins/metabolism , Germ Layers/metabolism , Germ Layers/cytology , Models, Biological , Tight Junctions/metabolism
10.
Colloids Surf B Biointerfaces ; 239: 113940, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38744081

ABSTRACT

AIM: The challenging properties of biofilm-associated infections and the rise of multidrug-resistant bacteria are prompting the exploration of alternative treatment options. This study investigates the efficacy of different bioactive glass (BAG) formulations - alone or combined with vancomycin - to eradicate biofilm. Further, we study the influence of BAG on pH and osmotic pressure as important factors limiting bacterial growth. METHOD: Different BAG S53P4 formulations were used for this study, including (a) powder (<45 µm), (b) granules (500-800 µm), (c) a cone-shaped scaffold and (d) two putty formulations containing granules with no powder (putty A) or with additional powder (putty B) bound together by a synthetic binder. Inert glass beads (1.0-1.3 mm) were included as control. All formulations were tested in a concentration of 1750 mg/ml in Müller-Hinton-Broth against methicillin-resistant Staphylococcus aureus (MRSA) and methicillin-resistant Staphylococcus epidermidis (MRSE). Vancomycin was tested at the minimum-inhibitory concentration for each strain. Changes in pH and osmolality over time were assessed at 0 h, 24 h, 72 h and 168 h. RESULTS: All tested BAG formulations showed antibiofilm activity against MRSA and MRSE. Powder and putty B were the most effective formulations suppressing biofilm leading to its complete eradication after up to 168 h of co-incubation, followed by granules, scaffold and putty A. In general, MRSE appeared to be more susceptible to bioactive glass compared to MRSA. The addition of vancomycin had no substantial impact on biofilm eradication. We observed a positive correlation between a higher pH and higher antibiofilm activity. CONCLUSIONS: BAG S53P4 has demonstrated efficient biofilm antibiofilm activity against MRSA and MRSE, especially in powder-containing formulations, resulting in complete eradication of biofilm. Our data indicate neither remarkable increase nor decrease in antimicrobial efficacy with addition of vancomycin. Moreover, high pH appears to have a direct antimicrobial impact; the role of high osmolality needs further investigation.


Subject(s)
Anti-Bacterial Agents , Biofilms , Glass , Methicillin-Resistant Staphylococcus aureus , Microbial Sensitivity Tests , Osmotic Pressure , Staphylococcus epidermidis , Vancomycin , Biofilms/drug effects , Glass/chemistry , Hydrogen-Ion Concentration , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Staphylococcus epidermidis/drug effects , Staphylococcus epidermidis/physiology , Methicillin-Resistant Staphylococcus aureus/drug effects , Methicillin-Resistant Staphylococcus aureus/physiology , Vancomycin/pharmacology , Vancomycin/chemistry , Osmotic Pressure/drug effects , Drug Compounding
11.
J Pharmacol Exp Ther ; 390(1): 88-98, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38719477

ABSTRACT

Constitutive androstane receptor (CAR) and peroxisome proliferator-activated receptor α (PPARα) are members of the nuclear receptor superfamily, which regulates various physiologic and pathologic processes. Phase separation is a dynamic biophysical process in which biomacromolecules form liquid-like condensates, which have been identified as contributors to many cellular functions, such as signal transduction and transcription regulation. However, the possibility of phase separation for CAR and PPARα remains unknown. This study explored the potential phase separation of CAR and PPARα The computational analysis utilizing algorithm tools examining the intrinsically disordered regions of CAR and PPARα suggested a limited likelihood of undergoing phase separation. Experimental assays under varying conditions of hyperosmotic stress and agonist treatments confirmed the absence of phase separation for these receptors. Additionally, the optoDroplets assay, which utilizes blue light stimulation to induce condensate formation, showed that there was no condensate formation of the fusion protein of Cry2 with CAR or PPARα Furthermore, phase separation of CAR or PPARα did not occur despite reduced target expression under hyperosmotic stress. In conclusion, these findings revealed that neither the activation of CAR and PPARα nor hyperosmotic stress induces phase separation of CAR and PPARα in cells. SIGNIFICANCE STATEMENT: Constitutive androstane receptor (CAR) and peroxisome proliferator-activated receptor α (PPARα) are key regulators of various functions in the body. This study showed that CAR and PPARα do not exhibit phase separation under hyperosmotic stress or after agonist-induced activation. These findings provide new insights into the CAR and PPARα biology and physiology.


Subject(s)
Constitutive Androstane Receptor , PPAR alpha , PPAR alpha/metabolism , Humans , Receptors, Cytoplasmic and Nuclear/metabolism , Animals , Osmotic Pressure , Phase Separation
12.
J Photochem Photobiol B ; 256: 112941, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38763078

ABSTRACT

Plants have a protective mechanism called non-photochemical quenching to prevent damage caused by excessive sunlight. A critical component of this mechanism is energy-dependent quenching (qE). In Chlamydomonas reinhardtii, the protein expression called light-harvesting complex stress-related protein 3 (LHCSR3) is crucial for the qE mechanism. LHCSR3 expression is observed in various conditions that result in photooxidation, such as exposure to high light or nutrient deprivation, where the amount of captured light surpasses the maximum photosynthetic capacity. Although the role of LHCSR3 has been extensively studied under high light (HL) conditions, its function during nutrient starvation remains unclear. In this study, we demonstrate that LHCSR3 expression can occur under light intensities below saturation without triggering qE, particularly when nutrients are limited. To investigate this, we cultivated C. reinhardtii cells under osmotic stress, which replicates conditions of nutrient scarcity. Furthermore, we examined the photosynthetic membrane complexes of wild-type (WT) and npq4 mutant strains grown under osmotic stress. Our analysis revealed that LHCSR3 expression might modify the interaction between the photosystem II core and its peripheral light-harvesting complex II antennae. This alteration could potentially impede the transfer of excitation energy from the antenna to the reaction center.


Subject(s)
Chlamydomonas reinhardtii , Light-Harvesting Protein Complexes , Osmotic Pressure , Photosystem II Protein Complex , Chlamydomonas reinhardtii/metabolism , Chlamydomonas reinhardtii/genetics , Light-Harvesting Protein Complexes/metabolism , Light-Harvesting Protein Complexes/genetics , Photosystem II Protein Complex/metabolism , Photosystem II Protein Complex/genetics , Photosynthesis/radiation effects , Light , Chlorophyll/metabolism
13.
Arch Microbiol ; 206(6): 260, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38744718

ABSTRACT

Campylobacter jejuni is known to enter a viable but non-culturable (VBNC) state when exposed to environmental stresses. Microarray and quantitative real-time polymerase chain reaction (qPCR) analyses were performed to elucidate the genes related to the induction of the VBNC state. The C. jejuni NCTC11168 strain was cultured under low-temperature or high-osmotic stress conditions to induce the VBNC state. mRNA expression in the VBNC state was investigated using microarray analysis, and the gene encoding peptidoglycan-associated lipoprotein, Pal, was selected as the internal control gene using qPCR analysis and software. The three genes showing particularly large increases in mRNA expression, cj1500, cj1254, and cj1040, were involved in respiration, DNA repair, and transporters, respectively. However, formate dehydrogenase encoded by cj1500 showed decreased activity in the VBNC state. Taken together, C. jejuni actively changed its mRNA expression during induction of the VBNC state, and protein activities did not always match the mRNA expression levels.


Subject(s)
Bacterial Proteins , Campylobacter jejuni , Gene Expression Regulation, Bacterial , Campylobacter jejuni/genetics , Campylobacter jejuni/growth & development , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Microbial Viability , Osmotic Pressure , Stress, Physiological , RNA, Messenger/genetics , RNA, Messenger/metabolism , Real-Time Polymerase Chain Reaction , Gene Expression Profiling
14.
Int J Biol Macromol ; 272(Pt 2): 132358, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38750862

ABSTRACT

This study aimed to investigate the physicochemical properties of modified starch prepared through the simultaneous heat-moisture and phosphorylation treatment (HMPT) and osmotic pressure treatment (OPT) for water caltrop starch (WCS), mung bean starch (MBS), and amylose-rich corn starch (CS) for different time periods. Furthermore, variations in starch content [amylose and resistant starch (RS)], swelling powder (SP), water solubility index (WSI), crystallinity, thermal properties, gelatinization enthalpy (ΔH), and glycemic index (GI) were examined. This study demonstrates that neither HMPT nor OPT resulted in a significant increase in the resistant starch (RS) content, whereas all samples succeeded in heat-treating at 105 °C for another 10 min exhibited a significant increase in RS content compared to their native counterparts. Moreover, the gelatinization temperatures of the three starches increased (To, Tp, and Tc), whereas their gelatinization enthalpy (ΔH) and pasting viscosity decreased. In particular, the GI of all three modified starches subjected to HMPT or OPT showed a decreasing trend with modification time, with OPT exhibiting the best effect. Therefore, appropriate modification through HMPT or OPT is a viable approach to develop MBS, WCS, and CS as processed foods with low GI requirements, which exceptionally may be suitable for canned foods, noodles, and bakery products.


Subject(s)
Hot Temperature , Osmotic Pressure , Solubility , Starch , Vigna , Water , Zea mays , Zea mays/chemistry , Starch/chemistry , Water/chemistry , Vigna/chemistry , Phosphorylation , Chemical Phenomena , Amylose/chemistry , Amylose/analysis , Viscosity , Thermodynamics , Lythraceae
15.
Arch Microbiol ; 206(6): 270, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38767668

ABSTRACT

Candida tropicalis is a human pathogen and one of the most prevalent non-Candida albicans Candida (NCAC) species causing invasive infections. Azole antifungal resistance in C. tropicalis is also gradually increasing with the increasing incidence of infections. The pathogenic success of C. tropicalis depends on its effective response in the host microenvironment. To become a successful pathogen, cellular metabolism, and physiological status determine the ability of the pathogen to counter diverse stresses inside the host. However, to date, limited knowledge is available on the impact of carbon substrate metabolism on stress adaptation and azole resistance in C. tropicalis. In this study, we determined the impact of glucose, fructose, and sucrose as the sole carbon source on the fluconazole resistance and osmotic (NaCl), oxidative (H2O2) stress adaptation in C. tropicalis clinical isolates. We confirmed that the abundance of carbon substrates influences or increases drug resistance and osmotic and oxidative stress tolerance in C. tropicalis. Additionally, both azole-resistant and susceptible isolates showed similar stress adaptation phenotypes, confirming the equal efficiency of becoming successful pathogens irrespective of drug susceptibility profile. To the best of our knowledge, our study is the first on C. tropicalis to demonstrate the direct relation between carbon substrate metabolism and stress tolerance or drug resistance.


Subject(s)
Antifungal Agents , Candida tropicalis , Carbon , Drug Resistance, Fungal , Fluconazole , Microbial Sensitivity Tests , Oxidative Stress , Candida tropicalis/drug effects , Candida tropicalis/physiology , Antifungal Agents/pharmacology , Humans , Fluconazole/pharmacology , Carbon/metabolism , Candidiasis/microbiology , Osmotic Pressure , Glucose/metabolism , Sucrose/metabolism , Sucrose/pharmacology , Hydrogen Peroxide/pharmacology , Hydrogen Peroxide/metabolism , Fructose/metabolism , Fructose/pharmacology , Stress, Physiological
16.
Plant Cell Rep ; 43(6): 155, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38814469

ABSTRACT

KEY MESSAGE: Remorin proteins could be positively related to salt and osmotic stress resistance in rapeseed. Remorins (REMs) play a crucial role in adaptations to adverse environments. However, their roles in abiotic stress and phytohormone responses in oil crops are still largely unknown. In this study, we identified 47 BnaREM genes in the B.napus genome. Phylogenetic relationship and synteny analysis revealed that they were categorized into 5 distinct groups and have gone through 55 segmental duplication events under purifying selection. Gene structure and conserved domains analysis demonstrated that they were highly conserved and all BnaREMs contained a conserved Remorin_C domain, with a variable N-terminal region. Promoter sequence analysis showed that BnaREM gene promoters contained various hormones and stress-related cis-acting elements. Transcriptome data from BrassicaEDB database exhibited that all BnaREMs were ubiquitously expressed in buds, stamens, inflorescences, young leaves, mature leaves, roots, stems, seeds, silique pericarps, embryos and seed coats. The qRT-PCR analysis indicated that most of them were responsive to ABA, salt and osmotic treatments. Further mutant complementary experiments revealed that the expression of BnaREM1.3-4C-1 in the Arabidopsis rem1.3 mutant restored the retarded growth phenotype and the ability to resistance to salt and osmotic stresses. Our findings provide fundamental information on the structure and evolutionary relationship of the BnaREM family genes in rapeseed, and reveal the potential function of BnaREM1.3-4C-1 in stress and hormone response.


Subject(s)
Brassica napus , Gene Expression Regulation, Plant , Multigene Family , Phylogeny , Plant Growth Regulators , Plant Proteins , Stress, Physiological , Brassica napus/genetics , Brassica napus/physiology , Plant Proteins/genetics , Plant Proteins/metabolism , Stress, Physiological/genetics , Plant Growth Regulators/pharmacology , Plant Growth Regulators/metabolism , Arabidopsis/genetics , Arabidopsis/physiology , Promoter Regions, Genetic/genetics , Genome, Plant/genetics , Osmotic Pressure , Plants, Genetically Modified/genetics
17.
Proc Natl Acad Sci U S A ; 121(22): e2318412121, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38781205

ABSTRACT

Lysosomes are central players in cellular catabolism, signaling, and metabolic regulation. Cellular and environmental stresses that damage lysosomal membranes can compromise their function and release toxic content into the cytoplasm. Here, we examine how cells respond to osmotic stress within lysosomes. Using sensitive assays of lysosomal leakage and rupture, we examine acute effects of the osmotic disruptant glycyl-L-phenylalanine 2-naphthylamide (GPN). Our findings reveal that low concentrations of GPN rupture a small fraction of lysosomes, but surprisingly trigger Ca2+ release from nearly all. Chelating cytoplasmic Ca2+ makes lysosomes more sensitive to GPN-induced rupture, suggesting a role for Ca2+ in lysosomal membrane resilience. GPN-elicited Ca2+ release causes the Ca2+-sensor Apoptosis Linked Gene-2 (ALG-2), along with Endosomal Sorting Complex Required for Transport (ESCRT) proteins it interacts with, to redistribute onto lysosomes. Functionally, ALG-2, but not its ESCRT binding-disabled ΔGF122 splice variant, increases lysosomal resilience to osmotic stress. Importantly, elevating juxta-lysosomal Ca2+ without membrane damage by activating TRPML1 also recruits ALG-2 and ESCRTs, protecting lysosomes from subsequent osmotic rupture. These findings reveal that Ca2+, through ALG-2, helps bring ESCRTs to lysosomes to enhance their resilience and maintain organelle integrity in the face of osmotic stress.


Subject(s)
Calcium , Endosomal Sorting Complexes Required for Transport , Lysosomes , Osmotic Pressure , Lysosomes/metabolism , Humans , Calcium/metabolism , Endosomal Sorting Complexes Required for Transport/metabolism , Endosomal Sorting Complexes Required for Transport/genetics , Intracellular Membranes/metabolism , HeLa Cells , Transient Receptor Potential Channels/metabolism , Transient Receptor Potential Channels/genetics , Calcium-Binding Proteins , Apoptosis Regulatory Proteins
18.
J Immunol ; 212(12): 1877-1890, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38700398

ABSTRACT

Despite the advances in study on osmotic physiology in bony fish, the mechanism by which the immune system, especially T-cell immunity, adapts and responds to osmotic stress remains unknown. In the current study, we investigated the response of T cells to hyperosmotic stress in the bony fish Nile tilapia (Oreochromis niloticus). As a euryhaline fish, tilapia was able to adapt to a wide range of salinities; however, hypertonic stress caused inflammation and excessive T-cell activation. Furthermore, hypertonic stress increased the expression of IL-17A in T cells, upregulated the transcription factor RORα, and activated STAT3 signaling, along with IL-6- and TGF-ß1-mediated pathways, revealing an enhanced Th17 response in this early vertebrate. These hypertonic stress-induced events collectively resulted in an impaired antibacterial immune response in tilapia. Hypertonic stress elevated the intracellular ROS level, which in turn activated the p38-MK2 signaling pathway to promote IL-17A production by T cells. Both ROS elimination and the p38-MK2 axis blockade diminished the increased IL-17A production in T cells under hypertonic conditions. Moreover, the produced proinflammatory cytokines further amplified the hypertonic stress signaling via the MKK6-p38-MK2 axis-mediated positive feedback loop. To our knowledge, these findings represent the first description of the mechanism by which T-cell immunity responds to hypertonic stress in early vertebrates, thus providing a novel perspective for understanding the adaptive evolution of T cells under environmental stress.


Subject(s)
Inflammation , Osmotic Pressure , Th17 Cells , Tilapia , Animals , Th17 Cells/immunology , Inflammation/immunology , Tilapia/immunology , Signal Transduction/immunology , Lymphocyte Activation/immunology , Interleukin-17/metabolism , Interleukin-17/immunology
19.
Int J Biol Macromol ; 270(Pt 2): 132338, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38763237

ABSTRACT

Extracellular polymeric substances (EPSs) in excess sludge of wastewater treatment plants are valuable biopolymers that can act as recovery materials. However, effectively concentrating EPSs consumes a significant amount of energy. This study employed novel energy-saving pressure-free dead-end forward osmosis (DEFO) technology to concentrate various biopolymers, including EPSs and model biopolymers [sodium alginate (SA), bovine serum albumin (BSA), and a mixture of both (denoted as BSA-SA)]. The feasibility of the DEFO technology was proven and the largest concentration ratios for these biopolymers were 94.8 % for EPSs, 97.1 % for SA, 97.8 % for BSA, and 98.4 % for BSA-SA solutions. An evaluation model was proposed, incorporating the FO membrane's water permeability coefficient and the concentrated substances' osmotic resistance, to describe biopolymers' concentration properties. Irrespective of biopolymer type, the water permeability coefficient decreased with increasing osmotic pressure, remained constant with increasing feed solution (FS) concentration, increased with increasing crossing velocity in the draw side, and showed little dependence on draw salt type. In the EPS DEFO concentration process, osmotic resistance was minimally impacted by osmotic pressure, FS concentration, and crossing velocity, and monovalent metal salts were proposed as draw solutes. The interaction between reverse diffusion metal cations and EPSs affected the structure of the concentrated substances on the FO membrane, thus changing the osmotic resistance in the DEFO process. These findings offer insights into the efficient concentration of biopolymers using DEFO.


Subject(s)
Osmosis , Biopolymers/chemistry , Alginates/chemistry , Serum Albumin, Bovine/chemistry , Permeability , Osmotic Pressure , Water/chemistry , Cattle , Membranes, Artificial , Animals , Water Purification/methods
20.
BMC Microbiol ; 24(1): 165, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38745279

ABSTRACT

Globally, drought stress poses a significant threat to crop productivity. Improving the drought tolerance of crops with microbial biostimulants is a sustainable strategy to meet a growing population's demands. This research aimed to elucidate microbial biostimulants' (Plant Growth Promoting Rhizobacteria) role in alleviating drought stress in oil-seed crops. In total, 15 bacterial isolates were selected for drought tolerance and screened for plant growth-promoting (PGP) attributes like phosphate solubilization and production of indole-3-acetic acid, siderophore, hydrogen cyanide, ammonia, and exopolysaccharide. This research describes two PGPR strains: Acinetobacter calcoaceticus AC06 and Bacillus amyloliquefaciens BA01. The present study demonstrated that these strains (AC06 and BA01) produced abundant osmolytes under osmotic stress, including proline (2.21 and 1.75 µg ml- 1), salicylic acid (18.59 and 14.21 µg ml- 1), trehalose (28.35 and 22.74 µg mg- 1 FW) and glycine betaine (11.35 and 7.74 mg g- 1) respectively. AC06 and BA01 strains were further evaluated for their multifunctional performance by inoculating in Arachis hypogaea L. (Groundnut) under mild and severe drought regimes (60 and 40% Field Capacity). Inoculation with microbial biostimulants displayed distinct osmotic-adjustment abilities of the groundnut, such as growth parameters, plant biomass, photosynthetic pigments, relative water content, proline, and soluble sugar in respective to control during drought. On the other hand, plant sensitivity indexes such as electrolyte leakage and malondialdehyde (MDA) contents were decreased as well as cooperatively conferred plant drought tolerance by induced alterations in stress indicators such as catalase (CAT), ascorbate peroxidase (APX), and superoxide dismutase (SOD). Thus, Acinetobacter sp. AC06 and Bacillus sp. BA01 can be considered as osmolyte producing microbial biostimulants to simultaneously induce osmotic tolerance and metabolic changes in groundnuts under drought stress.


Subject(s)
Arachis , Droughts , Stress, Physiological , Arachis/microbiology , Arachis/growth & development , Arachis/metabolism , Arachis/physiology , Proline/metabolism , Bacillus amyloliquefaciens/metabolism , Bacillus amyloliquefaciens/physiology , Soil Microbiology , Osmotic Pressure , Betaine/metabolism , Indoleacetic Acids/metabolism , Salicylic Acid/metabolism , Acinetobacter/metabolism , Acinetobacter/growth & development , Acinetobacter/physiology , Hydrogen Cyanide/metabolism , Trehalose/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...