Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 14.978
Filter
1.
Biotechnol J ; 19(8): e2400288, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39115337

ABSTRACT

Bone tissue engineering offers a promising alternative to stimulate the regeneration of damaged tissue, overcoming the limitations of conventional autografts and allografts. Recently, titanium alloy (Ti) implants have garnered significant attention for treating critical-sized bone defects, especially with the advancement of 3D printing technology. Although Ti alloys have impressive versatility, their lack of cellular adhesion, osteogenic and antibacterial properties are significant factors that contribute to their failure. Hence, to overcome these obstacles, this study aimed to incorporate osteoinductive and antibacterial cue-loaded hydrogels into 3D-printed Ti (3D-Ti) scaffolds. 3D-Ti scaffolds were synthesized using the direct metal laser sintering method and loaded with a gelatin (Gel) hydrogel containing strontium-doped silver nanoparticles (Sr-Ag NPs). Compared with Ag NPs, Sr-doped Ag NPs increased the expression of Runx2 mRNA, which is a key bone transcription factor. We subjected the bioactive 3D-hybrid scaffolds (3D-Ti/Gel/Sr-Ag NPs) to physicochemical and material characterization, followed by cytocompatibility and osteogenic evaluation. The microporous and macroporous topographies of the scaffolds with Sr-Ag NPs showed increased Runx2 expression and matrix mineralization, with potent antibacterial properties. Therefore, the 3D-Ti scaffolds incorporated with Sr-Ag NP-loaded Gel hydrogels favored osteoblast differentiation and antibacterial activity, indicating their potential for orthopedic applications.


Subject(s)
Anti-Bacterial Agents , Cell Differentiation , Gelatin , Hydrogels , Metal Nanoparticles , Osteoblasts , Osteogenesis , Printing, Three-Dimensional , Silver , Strontium , Tissue Engineering , Tissue Scaffolds , Titanium , Silver/chemistry , Silver/pharmacology , Gelatin/chemistry , Strontium/chemistry , Strontium/pharmacology , Titanium/chemistry , Titanium/pharmacology , Tissue Engineering/methods , Osteoblasts/drug effects , Osteoblasts/cytology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Tissue Scaffolds/chemistry , Hydrogels/chemistry , Hydrogels/pharmacology , Metal Nanoparticles/chemistry , Cell Differentiation/drug effects , Osteogenesis/drug effects , Animals , Mice , Bone and Bones/drug effects
2.
Sci Rep ; 14(1): 19055, 2024 08 17.
Article in English | MEDLINE | ID: mdl-39154029

ABSTRACT

Beta-tricalcium phosphate (ß-TCP) scaffolds manufactured through the foam replication method are widely employed in bone tissue regeneration. The mechanical strength of these scaffolds is a significant challenge, partly due to the rheological properties of the original suspension. Various strategies have been explored to enhance the mechanical properties. In this research, ß-TCP scaffolds containing varying concentrations (0.25-1.00 wt%) of multi-walled carbon nanotubes (MWCNT) were developed. The findings indicate that the addition of MWCNTs led to a concentration-dependent improvement in the viscosity of ß-TCP suspensions. All the prepared slurries exhibited viscoelastic behavior, with the storage modulus surpassing the loss modulus. The three time interval tests revealed that MWCNT-incorporated ß-TCP suspensions exhibited faster structural recovery compared to pure ß-TCP slurries. Introducing MWCNT modified compressive strength, and the optimal improvement was obtained using 0.75 wt% MWCNT. The in vitro degradation of ß-TCP was also reduced by incorporating MWCNT. While the inclusion of carbon nanotubes had a marginal negative impact on the viability and attachment of MC3T3-E1 cells, the number of viable cells remained above 70% of the control group. Additionally, the results demonstrated that the scaffold increased the expression level of osteocalcin, osteoponthin, and alkaline phosphatase genes of adiposed-derived stem cells; however, higher levels of gene expersion were obtained by using MWCNT. The suitability of MWCNT-modified ß-TCP suspensions for the foam replication method can be assessed by evaluating their rheological behavior, aiding in determining the critical additive concentration necessary for a successful coating process.


Subject(s)
Calcium Phosphates , Nanotubes, Carbon , Tissue Engineering , Tissue Scaffolds , Calcium Phosphates/chemistry , Nanotubes, Carbon/chemistry , Tissue Scaffolds/chemistry , Tissue Engineering/methods , Animals , Mice , Cell Line , Bone and Bones/metabolism , Cell Survival/drug effects , Materials Testing , Bone Regeneration/drug effects , Osteoblasts/metabolism , Osteoblasts/drug effects , Osteoblasts/cytology , Viscosity
3.
Int J Nanomedicine ; 19: 8015-8027, 2024.
Article in English | MEDLINE | ID: mdl-39130690

ABSTRACT

Purpose: This study aimed to confirm the synergy effect of these two materials by evaluating osteoblast and antibacterial activity by applying a double-layered hydroxyapatite(HA) zirconium oxide(ZrO2) coating to titanium. Methods: The specimens used in this study were divided into four groups: a control group (polished titanium; group T) and three experimental groups: Group TH (RF magnetron sputtered HA deposited titanium), Group Z (ZrO2 ALD deposited titanium), and Group ZH (RF magnetron sputtered HA and ZrO2 ALD deposited titanium). The adhesion of Streptococcus mutans (S.mutans) to the surface was assessed using a crystal violet assay. The adhesion, proliferation, and differentiation of MC3T3-E1 cells, a mouse osteoblastic cell line, were assessed through a WST-8 assay and ALP assay. Results: Group Z showed a decrease in the adhesion of S. mutans (p < 0.05) and an improvement in osteoblastic viability (p < 0.0083). Group TH and ZH showed a decrease in adhesion of S. mutans (p < 0.05) and an increase in osteoblastic cell proliferation and cell differentiation (p < 0.0083). Group ZH exhibited the highest antibacterial and osteoblastic differentiation. Conclusion: In conclusion double-layered HA and ZrO2 deposited on titanium were shown to be more effective in inhibiting the adhesion of S. mutans, which induced biofilm formation, and increasing osteoblastic differentiation involved in osseointegration by the synergistic effect of the two materials.


Subject(s)
Bacterial Adhesion , Cell Differentiation , Cell Proliferation , Coated Materials, Biocompatible , Durapatite , Osteoblasts , Streptococcus mutans , Surface Properties , Titanium , Zirconium , Zirconium/chemistry , Zirconium/pharmacology , Titanium/chemistry , Titanium/pharmacology , Streptococcus mutans/drug effects , Animals , Mice , Durapatite/chemistry , Durapatite/pharmacology , Osteoblasts/drug effects , Osteoblasts/cytology , Cell Proliferation/drug effects , Cell Differentiation/drug effects , Bacterial Adhesion/drug effects , Coated Materials, Biocompatible/chemistry , Coated Materials, Biocompatible/pharmacology , Cell Line , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Cell Adhesion/drug effects , Cell Survival/drug effects
4.
Langmuir ; 40(33): 17301-17310, 2024 Aug 20.
Article in English | MEDLINE | ID: mdl-39106975

ABSTRACT

This paper deals with the combined effects of immune response and osseointegration because of the lack of comprehensive studies on this topic. An antibacterial Ti surface was considered because of the high risk of infection for titanium bone implants. A chemically treated Ti6Al4 V alloy [Ti64(Sr-Ag)] with a microporous and Sr-Ag doped surface was compared to a polished version (Ti64) regarding protein adsorption (albumin and fibronectin) and osteoimmunomodulation. Characterization via fluorescence microscopy and zeta potential showed a continuous fibronectin layer on Ti64(Sr-Ag), even with preadsorbed albumin, while it remained filamentous on Ti64. Macrophages (differentiated from THP-1 monocytes) were cultured on both surfaces, with viability and cytokine release analyzed. Differently from Ti64, Ti64(Sr-Ag) promoted early anti-inflammatory responses and significant downregulation of VEGF. Ti64(Sr-Ag) also enhanced human bone marrow mesenchymal cell differentiation toward osteoblasts, when a macrophage-conditioned medium was used, influencing ALP production. Surface properties in relation to protein adsorption and osteoimmunomodulation were discussed.


Subject(s)
Alloys , Macrophages , Surface Properties , Titanium , Titanium/chemistry , Alloys/chemistry , Alloys/pharmacology , Adsorption , Humans , Macrophages/drug effects , Macrophages/immunology , Cell Differentiation/drug effects , Osteoblasts/drug effects , Osteoblasts/cytology
5.
J Orthop Surg Res ; 19(1): 483, 2024 Aug 17.
Article in English | MEDLINE | ID: mdl-39152465

ABSTRACT

BACKGROUND: Effective bone formation relies on osteoblast differentiation, a process subject to intricate post-translational regulation. Ubiquitin-specific proteases (USPs) repress protein degradation mediated by the ubiquitin-proteasome pathway. Several USPs have been documented to regulate osteoblast differentiation, but whether other USPs are involved in this process remains elusive. METHODS: In this study, we conducted a comparative analysis of 48 USPs in differentiated and undifferentiated hFOB1.19 osteoblasts, identifying significantly upregulated USPs. Subsequently, we generated USP knockdown hFOB1.19 cells and evaluated their osteogenic differentiation using Alizarin red staining. We also assessed cell viability, cell cycle progression, and apoptosis through MTT, 7-aminoactinomycin D staining, and Annexin V/PI staining assays, respectively. Quantitative PCR and Western blotting were employed to measure the expression levels of osteogenic differentiation markers. Additionally, we investigated the interaction between the USP and its target protein using co-immunoprecipitation (co-IP). Furthermore, we depleted the USP in hFOB1.19 cells to examine its effect on the ubiquitination and stability of the target protein using immunoprecipitation (IP) and Western blotting. Finally, we overexpressed the target protein in USP-deficient hFOB1.19 cells and evaluated its impact on their osteogenic differentiation using Alizarin red staining. RESULTS: USP36 is the most markedly upregulated USP in differentiated hFOB1.19 osteoblasts. Knockdown of USP36 leads to reduced viability, cell cycle arrest, heightened apoptosis, and impaired osteogenic differentiation in hFOB1.19 cells. USP36 interacts with WD repeat-containing protein 5 (WDR5), and the knockdown of USP36 causes an increased level of WDR5 ubiquitination and accelerated degradation of WDR5. Excessive WDR5 improved the impaired osteogenic differentiation of USP36-deficient hFOB1.19 cells. CONCLUSIONS: These observations suggested that USP36 may function as a key regulator of osteoblast differentiation, and its regulatory mechanism may be related to the stabilization of WDR5.


Subject(s)
Cell Differentiation , Cell Proliferation , Cell Survival , Osteoblasts , Osteogenesis , Osteoblasts/metabolism , Osteoblasts/cytology , Cell Differentiation/physiology , Cell Differentiation/genetics , Humans , Cell Survival/physiology , Cell Survival/genetics , Cell Proliferation/physiology , Cell Proliferation/genetics , Osteogenesis/physiology , Osteogenesis/genetics , Ubiquitin Thiolesterase/genetics , Ubiquitin Thiolesterase/metabolism , Cell Line , Apoptosis/genetics , Apoptosis/physiology , Ubiquitination , Gene Knockdown Techniques
6.
Cell Mol Life Sci ; 81(1): 338, 2024 Aug 09.
Article in English | MEDLINE | ID: mdl-39120703

ABSTRACT

Alveolar bone loss is a main manifestation of periodontitis. Human periodontal ligament stem cells (PDLSCs) are considered as optimal seed cells for alveolar bone regeneration due to its mesenchymal stem cell like properties. Osteogenic potential is the premise for PDLSCs to repair alveolar bone loss. However, the mechanism regulating osteogenic differentiation of PDLSCs remain elusive. In this study, we identified Neuron-derived orphan receptor 1 (NOR1), was particularly expressed in PDL tissue in vivo and gradually increased during osteogenic differentiation of PDLSCs in vitro. Knockdown of NOR1 in hPDLSCs inhibited their osteogenic potential while NOR1 overexpression reversed this effect. In order to elucidate the downstream regulatory network of NOR1, RNA-sequencing was used. We found that downregulated genes were mainly enriched in TGF-ß, Hippo, Wnt signaling pathway. Further, by western blot analysis, we verified that the expression level of phosphorylated-SMAD2/3 and phosphorylated-SMAD4 were all decreased after NOR1 knockdown. Additionally, ChIP-qPCR and dual luciferase reporter assay indicated that NOR1 could bind to the promoter of TGFBR1 and regulate its activity. Moreover, overexpression of TGFBR1 in PDLSCs could rescue the damaged osteogenic potential after NOR1 knockdown. Taken together, our results demonstrated that NOR1 could activate TGF-ß/SMAD signaling pathway and positively regulates the commitment of osteoblast lineages of PDLSCs by targeting TGFBR1 directly.


Subject(s)
Cell Differentiation , Osteoblasts , Osteogenesis , Periodontal Ligament , Receptor, Transforming Growth Factor-beta Type I , Signal Transduction , Transforming Growth Factor beta , Humans , Cell Differentiation/genetics , Cells, Cultured , Osteoblasts/metabolism , Osteoblasts/cytology , Osteogenesis/genetics , Periodontal Ligament/cytology , Periodontal Ligament/metabolism , Receptor, Transforming Growth Factor-beta Type I/metabolism , Receptor, Transforming Growth Factor-beta Type I/genetics , Stem Cells/metabolism , Stem Cells/cytology , Transforming Growth Factor beta/metabolism
7.
PeerJ ; 12: e17790, 2024.
Article in English | MEDLINE | ID: mdl-39071131

ABSTRACT

Background: Understanding human stem cell differentiation into osteoblasts and osteoclasts is crucial for bone regeneration and disease modeling. Numerous morphological techniques have been employed to assess this differentiation, but a comprehensive review of their application and effectiveness is lacking. Methods: Guided by the PRISMA framework, we conducted a rigorous search through the PubMed, Web of Science and Scopus databases, analyzing 254 articles. Each article was scrutinized against pre-defined inclusion criteria, yielding a refined selection of 14 studies worthy of in-depth analysis. Results: The trends in using morphological approaches were identified for analyzing osteoblast and osteoclast differentiation. The three most used techniques for osteoblasts were Alizarin Red S (mineralization; six articles), von Kossa (mineralization; three articles) and alkaline phosphatase (ALP; two articles) followed by one article on Giemsa staining (cell morphology) and finally immunochemistry (three articles involved Vinculin, F-actin and Col1 biomarkers). For osteoclasts, tartrate-resistant acid phosphatase (TRAP staining) has the highest number of articles (six articles), followed by two articles on DAPI staining (cell morphology), and immunochemistry (two articles with VNR, Cathepsin K and TROP2. The study involved four stem cell types: peripheral blood monocyte, mesenchymal, dental pulp, and periodontal ligament. Conclusion: This review offers a valuable resource for researchers, with Alizarin Red S and TRAP staining being the most utilized morphological procedures for osteoblasts and osteoclasts, respectively. This understanding provides a foundation for future research in this rapidly changing field.


Subject(s)
Cell Differentiation , Osteoblasts , Osteoclasts , Humans , Osteoblasts/cytology , Osteoblasts/metabolism , Osteoclasts/cytology , Osteoclasts/metabolism , Staining and Labeling/methods , Stem Cells/cytology , Stem Cells/metabolism
8.
J Biomed Mater Res B Appl Biomater ; 112(8): e35450, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39082230

ABSTRACT

Dental implant surface properties such as roughness, wettability, and porosity ensure cell interaction and tissue integration. The clinical performance of dental implants depends on the crystallographic texture and protein and cell bonds to the substrates, where grain size, orientation, and inclination are parameters responsible for favoring osteoblast adhesion and limiting bacterial adhesion. The lack of consensus on the best crystallographic plan for cell adhesion prompted this systematic review, which aims to answer the following question: "What is the influence of the crystallographic plane on titanium surfaces on cell adhesion?" by evaluating the literature on the crystallographic characteristics of titanium and how these dictate topographical parameters and influence the cell adhesion of devices made from this material. It followed the Preferred Reporting Standards for Systematic Reviews and Meta-Analyses (PRISMA 2020) registered with the Open Science Framework (OSF) (osf.io/xq6kv). The search strategy was based on the PICOS method. It chose in vitro articles that analyzed crystallographic structure correlated with cell adhesion and investigated the microstructure and its effects on cell culture, different crystal orientation distributions, and the influence of crystallinity. The search strategies were applied to the different electronic databases: PubMed, Scopus, Science Direct, Embase, and Google Scholar, and the articles found were attached to the Rayyan digital platform and assessed blindly. The Joanna Bringgs Institute (JBI) tool assessed the risk of bias. A total of 248 articles were found. After removing duplicates, 192 were analyzed by title and abstract. Of these, 18 were selected for detailed reading in their entirety, 9 of which met the eligibility criteria. The included studies presented a low risk of bias. The role of the crystallographic orientation of the exposed faces in a multicrystalline material is little discussed in the scientific literature and its impact is recognized as dictating the topographical characteristics of the material that facilitate cell adhesion.


Subject(s)
Cell Adhesion , Titanium , Titanium/chemistry , Humans , Surface Properties , Dental Implants , Crystallography , Animals , Osteoblasts/metabolism , Osteoblasts/cytology
9.
ACS Appl Mater Interfaces ; 16(31): 40726-40738, 2024 Aug 07.
Article in English | MEDLINE | ID: mdl-39042094

ABSTRACT

The development of an artificial ligament with a multifunction of promoting bone formation, inhibiting bone resorption, and preventing infection to obtain ligament-bone healing for anterior cruciate ligament (ACL) reconstruction still faces enormous challenges. Herein, a novel artificial ligament based on a PI fiber woven fabric (PIF) was fabricated, which was coated with a phytic acid-gallium (PA-Ga) network via a layer-by-layer assembly method (PFPG). Compared with PIF, PFPG with PA-Ga coating significantly suppressed osteoclastic differentiation, while it boosted osteoblastic differentiation in vitro. Moreover, PFPG obviously inhibited fibrous encapsulation and bone absorption while accelerating new bone regeneration for ligament-bone healing in vivo. PFPG remarkably killed bacteria and destroyed biofilm, exhibiting excellent antibacterial properties in vitro as well as anti-infection ability in vivo, which were ascribed to the release of Ga ions from the PA-Ga coating. The cooperative effect of the surface characteristics (e.g., hydrophilicity/surface energy and protein absorption) and sustained release of Ga ions for PFPG significantly enhanced osteogenesis while inhibiting osteoclastogenesis, thereby achieving ligament-bone integration as well as resistance to infection. In summary, PFPG remarkably facilitated osteoblastic differentiation, while it suppressed osteoclastic differentiation, thereby inhibiting osteoclastogenesis for bone absorption while accelerating osteogenesis for ligament-bone healing. As a novel artificial ligament, PFPG represented an appealing option for graft selection in ACL reconstruction and displayed considerable promise for application in clinics.


Subject(s)
Osteogenesis , Phytic Acid , Animals , Phytic Acid/chemistry , Phytic Acid/pharmacology , Mice , Osteogenesis/drug effects , Ligaments/drug effects , Cell Differentiation/drug effects , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Bone Regeneration/drug effects , Wound Healing/drug effects , Osteoblasts/drug effects , Osteoblasts/cytology
10.
Sci Rep ; 14(1): 17475, 2024 07 30.
Article in English | MEDLINE | ID: mdl-39080431

ABSTRACT

Miniscrews offer controlled anchorage and thus optimize tooth movement in orthodontic treatment. Nevertheless, failures such as soft tissue problems, instability due to loosening, partial osseointegration, or even device fracture can occur. While clinical technique can play a role in some of these problems, the manufacturer's design and material choice influence how the implant interacts with the surrounding tissue. In some cases, the design and material may trigger unwanted bone and soft tissue responses. This in vitro study investigates how the implant surface affects cell adhesion and growth of human primary fibroblasts and osteoblasts on commercially available orthodontic TiAl6V4 miniscrews from three producers: tomas-pin SD N 08 (Dentaurum), OrthoEasy Pin (Forestadent), and Dual Top G2 (Promedia, Jeil Medical). Cell-implant interaction at the top, neck, and drilling part of the screws was assessed qualitatively by scanning electron microscopy. While both cell types adhered to and grew on all products, subtle differences in cell shape and spreading were detected, depending on the microstructure of the implant surface. This indicates that cell adhesion to implant surfaces can be controlled by manipulating the machining conditions.


Subject(s)
Cell Adhesion , Fibroblasts , Gingiva , Microscopy, Electron, Scanning , Orthodontic Anchorage Procedures , Osteoblasts , Humans , Fibroblasts/cytology , Osteoblasts/cytology , Gingiva/cytology , Microscopy, Electron, Scanning/methods , Orthodontic Anchorage Procedures/methods , Orthodontic Anchorage Procedures/instrumentation , Cells, Cultured , Bone Screws , Dental Implants , Surface Properties
11.
J Biomed Mater Res B Appl Biomater ; 112(8): e35457, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39032140

ABSTRACT

Calcined bone is an attractive natural material for use as a bone substitute because of its cost-effectiveness and high biocompatibility, which are comparable to that of synthetic hydroxyapatite. However, the calcination process has significantly weakened the mechanical properties. In this study, a composite of calcined bovine bone powder reinforced with silane cross-linked alginate was prepared to assess its biocompatibility, osteoconductivity, and mechanical compatibility as a bone substitute material. Culture studies with osteoblast-like cells (MC3T3-E1) showed no cytotoxicity toward the composite and exhibited general cell proliferative properties in its presence. In contrast, the composite reduced the alkaline phosphatase activity of osteoblasts but led to significant noncellular apatite deposition on the surface. In addition, quasi-static compression tests of the composite revealed mechanical properties comparable to those of human cancellous bone. The mechanical properties remained stable under wet conditions and did not deteriorate significantly even after 2 weeks of immersion in simulated body fluid at 37°C. The results show that this composite, composed of calcined bone powder and silane cross-linked alginate, is a promising bone substitute material with biocompatibility, osteoconductivity, and mechanical compatibility.


Subject(s)
Alginates , Bone Substitutes , Materials Testing , Osteoblasts , Silanes , Alginates/chemistry , Animals , Bone Substitutes/chemistry , Bone Substitutes/pharmacology , Mice , Cattle , Osteoblasts/metabolism , Osteoblasts/cytology , Silanes/chemistry , Humans , Glucuronic Acid/chemistry , Hexuronic Acids/chemistry , Powders , Cross-Linking Reagents/chemistry , Cell Line
12.
Biomed Mater ; 19(5)2024 Jul 17.
Article in English | MEDLINE | ID: mdl-39016135

ABSTRACT

The performance and long-term durability of dental implants hinge on the quality of bone integration and their resistance to bacteria. This research aims to introduce a surface modification strategy for zirconia implants utilizing femtosecond laser ablation techniques, exploring their impact on osteoblast cell behavior and bacterial performance, as well as the integral factors influencing the soft tissue quality surrounding dental implants. Ultrafast lasers were employed to craft nanoscale groove geometries on zirconia surfaces, with thorough analyses conducted using x-ray diffraction, scanning electron microscopy, atomic force microscopy, and water contact angle measurements. The study evaluated the response of human fetal osteoblastic cell lines to textured zirconia ceramics by assessing alkaline phosphatase activity, collagen I, and interleukin 1ßsecretion over a 7 day period. Additionally, the antibacterial behavior of the textured surfaces was investigated usingFusobacterium nucleatum, a common culprit in infections associated with dental implants. Ciprofloxacin (CIP), a widely used antibacterial antibiotic, was loaded onto zirconia ceramic surfaces. The results of this study unveiled a substantial reduction in bacterial adhesion on textured zirconia surfaces. The fine biocompatibility of these surfaces was confirmed through the MTT assay and observations of cell morphology. Moreover, the human fetal osteoblastic cell line exhibited extensive spreading and secreted elevated levels of collagen I and interleukin 1ßin the modified samples. Drug release evaluations demonstrated sustained CIP release through a diffusion mechanism, showcasing excellent antibacterial activity against pathogenic bacteria, includingStreptococcus mutans, Pseudomonas aeruginosa, andEscherichia coli.


Subject(s)
Anti-Bacterial Agents , Ceramics , Lasers , Osteoblasts , Surface Properties , Zirconium , Zirconium/chemistry , Osteoblasts/cytology , Osteoblasts/drug effects , Humans , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Ceramics/chemistry , Ceramics/pharmacology , Cell Line , Dental Implants/microbiology , Fusobacterium nucleatum/drug effects , Materials Testing , Ciprofloxacin/pharmacology , Ciprofloxacin/chemistry , Interleukin-1beta/metabolism , Bacterial Adhesion/drug effects , X-Ray Diffraction , Microscopy, Electron, Scanning , Alkaline Phosphatase/metabolism , Microscopy, Atomic Force , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology
13.
ACS Appl Mater Interfaces ; 16(28): 36983-37006, 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-38953207

ABSTRACT

Repairing multiphasic defects is cumbersome. This study presents new soft and hard scaffold designs aimed at facilitating the regeneration of multiphasic defects by enhancing angiogenesis and improving cell attachment. Here, the nonimmunogenic, nontoxic, and cost-effective human serum albumin (HSA) fibril (HSA-F) was used to fabricate thermostable (up to 90 °C) and hard printable polymers. Additionally, using a 10.0 mg/mL HSA-F, an innovative hydrogel was synthesized in a mixture with 2.0% chitosan-conjugated arginine, which can gel in a cell-friendly and pH physiological environment (pH 7.4). The presence of HSA-F in both hard and soft scaffolds led to an increase in significant attachment of the scaffolds to the human periodontal ligament fibroblast (PDLF), human umbilical vein endothelial cell (HUVEC), and human osteoblast. Further studies showed that migration (up to 157%), proliferation (up to 400%), and metabolism (up to 210%) of these cells have also improved in the direction of tissue repair. By examining different in vitro and ex ovo experiments, we observed that the final multiphasic scaffold can increase blood vessel density in the process of per-vascularization as well as angiogenesis. By providing a coculture environment including PDLF and HUVEC, important cross-talk between these two cells prevails in the presence of roxadustat drug, a proangiogenic in this study. In vitro and ex ovo results demonstrated significant enhancements in the angiogenic response and cell attachment, indicating the effectiveness of the proposed design. This approach holds promise for the regeneration of complex tissue defects by providing a conducive environment for vascularization and cellular integration, thus promoting tissue healing.


Subject(s)
Human Umbilical Vein Endothelial Cells , Neovascularization, Physiologic , Tissue Scaffolds , Humans , Tissue Scaffolds/chemistry , Neovascularization, Physiologic/drug effects , Serum Albumin, Human/chemistry , Glycine/chemistry , Glycine/pharmacology , Glycine/analogs & derivatives , Fibroblasts/drug effects , Fibroblasts/cytology , Fibroblasts/metabolism , Cell Proliferation/drug effects , Amyloid/chemistry , Amyloid/metabolism , Osteoblasts/drug effects , Osteoblasts/cytology , Osteoblasts/metabolism , Periodontal Ligament/cytology , Periodontal Ligament/drug effects , Tissue Engineering , Hydrogels/chemistry , Hydrogels/pharmacology , Temperature , Isoquinolines
14.
ACS Appl Mater Interfaces ; 16(28): 35964-35984, 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-38968558

ABSTRACT

Developing a neurovascular bone repair scaffold with an appropriate mechanical strength remains a challenge. Calcium phosphate (CaP) is similar to human bone, but its scaffolds are inherently brittle and inactive, which require recombination with active ions and polymers for bioactivity and suitable strength. This work discussed the synthesis of amorphous magnesium-calcium pyrophosphate (AMCP) and the subsequent development of a humidity-responsive AMCP/cassava starch (CS) scaffold. The scaffold demonstrated enhanced mechanical properties by strengthening the intermolecular hydrogen bonds and ionic bonds between AMCP and CS during the gelatinization and freeze-thawing processes. The release of active ions was rapid initially and stabilized into a long-term stable release after 3 days, which is well-matched with new bone growth. The release of pyrophosphate ions endowed the scaffold with antibacterial properties. At the cellular level, the released active ions simultaneously promoted the proliferation and mineralization of osteoblasts, the proliferation and migration of endothelial cells, and the proliferation of Schwann cells. At the animal level, the scaffold was demonstrated to promote vascular growth and peripheral nerve regeneration in a rat skull defect experiment, ultimately resulting in the significant and rapid repair of bone defects. The construction of the AMCP/CS scaffold offers practical suggestions and references for neurovascular bone repair.


Subject(s)
Bone Regeneration , Starch , Tissue Scaffolds , Animals , Bone Regeneration/drug effects , Tissue Scaffolds/chemistry , Rats , Starch/chemistry , Humidity , Humans , Cell Proliferation/drug effects , Rats, Sprague-Dawley , Diphosphates/chemistry , Diphosphates/pharmacology , Osteoblasts/drug effects , Osteoblasts/cytology , Calcium Pyrophosphate/chemistry , Calcium Pyrophosphate/pharmacology , Schwann Cells/drug effects , Schwann Cells/cytology , Calcium Phosphates/chemistry , Calcium Phosphates/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Skull/drug effects
15.
Biomed Mater ; 19(5)2024 Jul 24.
Article in English | MEDLINE | ID: mdl-38986475

ABSTRACT

Bioactive and biodegradable scaffolds that mimic the natural extracellular matrix of bone serve as temporary structures to guide new bone tissue growth. In this study, 3D-printed scaffolds composed of poly (lactic acid) (PLA)-tricalcium phosphate (TCP) (90-10 wt.%) were modified with 1%, 5%, and 10 wt.% of ZnO to enhance bone tissue regeneration. A commercial chain extender named Joncryl was incorporated alongside ZnO to ensure the printability of the composites. Filaments were manufactured using a twin-screw extruder and subsequently used to print 3D scaffolds via fused filament fabrication (FFF). The scaffolds exhibited a homogeneous distribution of ZnO and TCP particles, a reproducible structure with 300 µm pores, and mechanical properties suitable for bone tissue engineering, with an elastic modulus around 100 MPa. The addition of ZnO resulted in enhanced surface roughness on the scaffolds, particularly for ZnO microparticles, achieving values up to 241 nm. This rougher topography was responsible for enhancing protein adsorption on the scaffolds, with an increase of up to 85% compared to the PLA-TCP matrix. Biological analyses demonstrated that the presence of ZnO promotes mesenchymal stem cell (MSC) proliferation and differentiation into osteoblasts. Alkaline phosphatase (ALP) activity, an important indicator of early osteogenic differentiation, increased up to 29%. The PLA-TCP composite containing 5% ZnO microparticles exhibited an optimized degradation rate and enhanced bioactivity, indicating its promising potential for bone repair applications.


Subject(s)
Biocompatible Materials , Bone Regeneration , Calcium Phosphates , Cell Differentiation , Cell Proliferation , Mesenchymal Stem Cells , Osteoblasts , Polyesters , Printing, Three-Dimensional , Tissue Engineering , Tissue Scaffolds , Zinc Oxide , Tissue Scaffolds/chemistry , Calcium Phosphates/chemistry , Polyesters/chemistry , Bone Regeneration/drug effects , Tissue Engineering/methods , Mesenchymal Stem Cells/cytology , Zinc Oxide/chemistry , Biocompatible Materials/chemistry , Cell Differentiation/drug effects , Osteoblasts/cytology , Osteogenesis/drug effects , Materials Testing , Bone and Bones , Guided Tissue Regeneration/methods , Humans , Animals , Alkaline Phosphatase/metabolism , Elastic Modulus , Porosity , Surface Properties
16.
Cell Signal ; 121: 111300, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39004327

ABSTRACT

BACKGROUND: Craniofacial skeletal deformities can be addressed by applying tensile force to sutures to prompt sutural bone formation. The intricate process of mechanical modulation in craniofacial sutures involves complex biomechanical signal transduction. The small GTPase Ras homolog gene family member A (RhoA) functions as a key mechanotransduction protein, orchestrating the dynamic assembly of the cytoskeleton by activating the Rho-associated coiled-coil containing protein kinase (ROCK). Transcriptional coactivator with PDZ-binding motif (TAZ) serves as a crucial mediator in the regulation of genes and the orchestration of biological functions within the mechanotransduction signaling pathway. However, the role of RhoA/ROCK-TAZ in trans-sutural distraction osteogenesis has not been reported. METHODS: We utilized pre-osteoblast-specific RhoA deletion mice to establish an in vivo calvarial trans-sutural distraction model and an in vitro mechanical stretch model for pre-osteoblasts isolated from neonatal mice. Micro-CT and histological staining were utilized to detect the formation of new bone in the sagittal suture of the skull as well as the activation of RhoA, Osterix and TAZ. The activation of ROCK-limk-cofilin and the nuclear translocation of TAZ in pre-osteoblasts under mechanical tension were detected through Western blot, qRT-PCR, and immunofluorescence. RESULTS: The osteogenic differentiation of pre-osteoblasts was facilitated by mechanical tension through the activation of RhoA and Rho-associated kinase (ROCK), while ablation of RhoA impaired osteogenesis by inhibiting pre-osteoblast differentiation after suture expansion. Furthermore, inhibiting RhoA expression could block tensile-stimulated nuclear translocation of TAZ by preventing F-actin assembly through ROCK-LIM-domain kinase (LIMK)-cofilin pathway. In addition, the TAZ agonist TM-25659 could attenuate impaired osteogenesis caused by ablation of RhoA in pre-osteoblasts by increasing TAZ nuclear accumulation. CONCLUSIONS: This study demonstrates that mechanical stretching promotes the osteogenic differentiation of pre-osteoblasts in trans-sutural distraction osteogenesis, and this process is mediated by the RhoA/ROCK-TAZ signaling axis. Overall, our results may provide an insight for potential treatment strategies for craniosynostosis patients through trans-sutural distraction osteogenesis.


Subject(s)
Osteogenesis, Distraction , Osteogenesis , Skull , rho-Associated Kinases , rhoA GTP-Binding Protein , Animals , rhoA GTP-Binding Protein/metabolism , rho-Associated Kinases/metabolism , Mice , Skull/metabolism , Osteoblasts/metabolism , Osteoblasts/cytology , Cell Differentiation , Signal Transduction , Mechanotransduction, Cellular , Cranial Sutures/metabolism , Sp7 Transcription Factor/metabolism , Sp7 Transcription Factor/genetics , Transcriptional Coactivator with PDZ-Binding Motif Proteins , Adaptor Proteins, Signal Transducing
17.
Biomed Mater ; 19(5)2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38955344

ABSTRACT

Artificial bone substitutes for bone repair and reconstruction still face enormous challenges. Previous studies have shown that calcium magnesium phosphate cements (CMPCs) possess an excellent bioactive surface, but its clinical application is restricted due to short setting time. This study aimed to develop new CMPC/carboxymethyl chitosan (CMCS) comg of mixed powders of active MgO, calcined MgO and calcium dihydrogen phosphate monohydrate. With this novel strategy, it can adjust the setting time and improve the compressive strength. The results confirmed that CMPC/CMCS composite bone cements were successfully developed with a controllable setting time (18-70 min) and high compressive strength (87 MPa). In addition, the composite bone cements could gradually degrade in PBS with weight loss up to 32% at 28 d. They also promoted the proliferation of pre-osteoblasts, and induced osteogenic differentiation. The findings indicate that CMPC/CMCS composite bone cements hold great promise as a new type of bone repair material in further and in-depth studies.


Subject(s)
Biocompatible Materials , Bone Cements , Calcium Phosphates , Cell Differentiation , Cell Proliferation , Chitosan , Compressive Strength , Magnesium Compounds , Materials Testing , Osteoblasts , Osteogenesis , Chitosan/chemistry , Chitosan/analogs & derivatives , Bone Cements/chemistry , Bone Cements/pharmacology , Osteogenesis/drug effects , Calcium Phosphates/chemistry , Calcium Phosphates/pharmacology , Cell Differentiation/drug effects , Animals , Cell Proliferation/drug effects , Mice , Osteoblasts/drug effects , Osteoblasts/cytology , Magnesium Compounds/chemistry , Magnesium Compounds/pharmacology , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Bone Substitutes/chemistry , Bone Substitutes/pharmacology , Phosphates
18.
Int J Implant Dent ; 10(1): 35, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38967690

ABSTRACT

Considering the biological activity of osteoblasts is crucial when devising new approaches to enhance the osseointegration of implant surfaces, as their behavior profoundly influences clinical outcomes. An established inverse correlation exists between osteoblast proliferation and their functional differentiation, which constrains the rapid generation of a significant amount of bone. Examining the surface morphology of implants reveals that roughened titanium surfaces facilitate rapid but thin bone formation, whereas smooth, machined surfaces promote greater volumes of bone formation albeit at a slower pace. Consequently, osteoblasts differentiate faster on roughened surfaces but at the expense of proliferation speed. Moreover, the attachment and initial spreading behavior of osteoblasts are notably compromised on microrough surfaces. This review delves into our current understanding and recent advances in nanonodular texturing, meso-scale texturing, and UV photofunctionalization as potential strategies to address the "biological dilemma" of osteoblast kinetics, aiming to improve the quality and quantity of osseointegration. We discuss how these topographical and physicochemical strategies effectively mitigate and even overcome the dichotomy of osteoblast behavior and the biological challenges posed by microrough surfaces. Indeed, surfaces modified with these strategies exhibit enhanced recruitment, attachment, spread, and proliferation of osteoblasts compared to smooth surfaces, while maintaining or amplifying the inherent advantage of cell differentiation. These technology platforms suggest promising avenues for the development of future implants.


Subject(s)
Dental Implants , Osseointegration , Osteoblasts , Surface Properties , Osteoblasts/physiology , Osteoblasts/cytology , Humans , Cell Differentiation , Cell Proliferation , Titanium/chemistry , Osteogenesis/physiology
19.
Photochem Photobiol Sci ; 23(8): 1565-1571, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39060841

ABSTRACT

The present study aimed to evaluate the effect of photobiomodulation therapy (PBM) on different stages of osteogenesis in vitro. For this, osteoblastic-like cells (Saos-2 cell lineage) were irradiated in two different periods: during the Proliferation phase (PP; from the second to the fourth day) and during the Differentiation phase (DP; from the seventh to the ninth day). The energy density used in the study was 1.5 J/ cm2. The following parameters were evaluated: 1) quantification of collagen type 1 (COL 1), osteopontin (OPN), and bone morphogenetic protein 2 (BMP-2); 2) quantification of alkaline phosphatase (ALP) activity; and 3) quantification of  extracellular matrix (ECM) mineralization. Non-irradiated cultures were used as controls. The data were analyzed using the Student's t-test or one-way ANOVA, considering a significance level of 5%. The results indicated that COL 1 and BMP-2 quantification was higher in Saos-2 irradiated during the DP in relation to the control group at day 10 (p < 0.05). No differences were observed for other comparisons at this time point (p > 0.05). OPN expression was greater in PP compared with the other experimental groups at day 10 (p < 0.05). Irradiation did not affect ALP activity in Saos-2 regardless of the exposure phase and the time point evaluated (p > 0.05). At day 14, ECM mineralization was higher in Saos-2 cultures irradiated during the DP in relation to the PP (p < 0.05). In conclusion, the results suggested that the effects of PBM on osteoblastic cells may be influenced by the stage of cell differentiation.


Subject(s)
Alkaline Phosphatase , Bone Morphogenetic Protein 2 , Cell Differentiation , Cell Proliferation , Collagen Type I , Low-Level Light Therapy , Osteoblasts , Osteogenesis , Osteopontin , Osteogenesis/radiation effects , Humans , Bone Morphogenetic Protein 2/metabolism , Alkaline Phosphatase/metabolism , Osteopontin/metabolism , Cell Differentiation/radiation effects , Collagen Type I/metabolism , Osteoblasts/radiation effects , Osteoblasts/cytology , Osteoblasts/metabolism , Cell Proliferation/radiation effects , Extracellular Matrix/metabolism , Extracellular Matrix/radiation effects
20.
Biomolecules ; 14(7)2024 Jul 08.
Article in English | MEDLINE | ID: mdl-39062525

ABSTRACT

Peptide-based drug development is a promising direction due to its excellent biological activity, minimal immunogenicity, high in vivo stability, and efficient tissue penetrability. GV1001, an amphiphilic peptide, has proven effective as an anti-cancer vaccine, but its effect on osteoblast differentiation is unknown. To identify proteins interacting with GV1001, biotin-conjugated GV1001 was constructed and confirmed by mass spectrometry. Proteomic analyses were performed to determine GV1001's interaction with osteogenic proteins. GV1001 was highly associated with peptidyl-prolyl isomerase A and co-immunoprecipitation assays revealed that GV1001 bound to peptidyl-prolyl cis-trans isomerase 1 (Pin1). GV1001 significantly increased alkaline phosphatase (ALP) activity, bone nodule formation, and the expression of osteogenic gene markers. GV1001-induced osteogenic activity was enhanced by Pin1 overexpression and abolished by Pin1 knockdown. GV1001 increased the protein stability and transcriptional activity of Runx2 and Osterix. Importantly, GV1001 administration enhanced bone mass density in the OVX mouse model, as verified by µCT analysis. GV1001 demonstrated protective effects against bone loss in OVX mice by upregulating osteogenic differentiation via the Pin1-mediated protein stabilization of Runx2 and Osterix. GV1001 could be a potential candidate with anabolic effects for the prevention and treatment of osteoporosis.


Subject(s)
Cell-Penetrating Peptides , Core Binding Factor Alpha 1 Subunit , NIMA-Interacting Peptidylprolyl Isomerase , Osteogenesis , Sp7 Transcription Factor , Animals , Core Binding Factor Alpha 1 Subunit/metabolism , Core Binding Factor Alpha 1 Subunit/genetics , Osteogenesis/drug effects , NIMA-Interacting Peptidylprolyl Isomerase/metabolism , NIMA-Interacting Peptidylprolyl Isomerase/genetics , Mice , Cell-Penetrating Peptides/pharmacology , Cell-Penetrating Peptides/chemistry , Sp7 Transcription Factor/metabolism , Sp7 Transcription Factor/genetics , Humans , Female , Protein Stability/drug effects , Cell Differentiation/drug effects , Osteoblasts/drug effects , Osteoblasts/metabolism , Osteoblasts/cytology
SELECTION OF CITATIONS
SEARCH DETAIL