Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20.455
Filter
2.
Zhejiang Da Xue Xue Bao Yi Xue Ban ; 53(4): 427-433, 2024 Aug 25.
Article in English, Chinese | MEDLINE | ID: mdl-39183069

ABSTRACT

Segmental bone defects and nonunion of fractures caused by trauma, infection, tumor or systemic diseases with limited osteogenesis and prolonged bone healing cycles are challenging issues in orthopedic clinical practice. Therefore, identifying regulatory factors for bone tissue regeneration and metabolism is crucial for accelerating bone repair and reconstructing defective areas. Silence information regulator 6 (SIRT6), functioning as a deacetylase and nucleotide transferase, is extensively involved in the regulation of differentiation, apoptosis, metabolism, and inflammation in bone cells including osteoblasts and osteoclasts, and is considered to be an important factor in regulating bone metabolism. SIRT6 forms a complex with B lymphocyte-induced maturation protein 1 (Blimp1), down-regulates the expression of the nuclear factor κB (NF-κB) pathway, and promotes the expression of the ERα-FasL axis signal to inhibit osteoclast formation and maturation differentiation, thereby hindering bone resorption and increasing bone mass. In addition, SIRT6 activates the Akt-mTOR pathway to regulate the autophagy level and osteogenesis of bone marrow mesenchymal stem cells, inhibits glycolysis and reactive oxygen production in osteoblasts, promotes osteoblast differentiation through the CREB/CCN1/COX2 pathway and the bone morphogenetic protein (BMP) signaling pathway, enhances bone formation, and accelerates bone regeneration and repair of skeletal tissue. This article provides an overview of the research progress on SIRT6 in the pathophysiology of bone regeneration, revealing its potential as a novel therapeutic target for bone tissue repair to alleviate the progression of skeletal pathological diseases.


Subject(s)
Bone Regeneration , Osteogenesis , Sirtuins , Humans , Sirtuins/metabolism , Osteoblasts , Animals , Cell Differentiation , Signal Transduction , Osteoclasts , NF-kappa B/metabolism
3.
Cell Death Dis ; 15(8): 624, 2024 Aug 27.
Article in English | MEDLINE | ID: mdl-39191723

ABSTRACT

Osteoporosis (OP) is a disorder of bone remodeling caused by an imbalance between bone resorption by osteoclasts and bone formation by osteoblasts. Therefore, inhibiting excessive osteoclast activity is one of the promising strategies for treating OP. A major transient receptor potential cation channel, known as transient receptor potential ankyrin 1 (TRPA1), was found to alleviate joint pain and cartilage degeneration in osteoarthritis. However, little research has focused on TRPA1 function in OP. As a result, this study aimed to explore the TRPA1 characteristics and its potential therapeutic function during osteoclastogenesis. The TRPA1 expression gradually increased in the osteoclast differentiation process; however, its suppression with small interfering RNA and an inhibitor (HC030031) significantly controlled the osteoclast count and the expression of osteoclast characteristic genes. Its suppression also inhibited endoplasmic reticulum (ER) stress-related pancreatic ER kinase (PERK) pathways. An ER stress inhibitor (thapsigargin) reversed the down-regulated levels of ER stress and osteoclast differentiation by suppressing TRPA1. Transcriptome sequencing results demonstrated that TRPA1 negatively regulated reactive oxygen species (ROS) and significantly increased the expression of an antioxidant gene, SRXN1. The osteoclast differentiation and the levels of ER stress were enhanced with SRXN1 inhibition. Finally, TRPA1 knockdown targeting macrophages by adeno-associated virus-9 could relieve osteoclast differentiation and osteopenia in ovariectomized mice. In summary, silencing TRPA1 restrained osteoclast differentiation through ROS-mediated down-regulation of ER stress via inhibiting PERK pathways. The study also indicated that TRPA1 might become a prospective treatment target for OP.


Subject(s)
Cell Differentiation , Endoplasmic Reticulum Stress , Osteoclasts , Osteogenesis , Osteoporosis , TRPA1 Cation Channel , TRPA1 Cation Channel/metabolism , TRPA1 Cation Channel/genetics , Animals , Osteoporosis/metabolism , Osteoporosis/pathology , Osteoporosis/genetics , Mice , Osteoclasts/metabolism , Osteogenesis/drug effects , Female , Mice, Inbred C57BL , RAW 264.7 Cells , Reactive Oxygen Species/metabolism
4.
Bone Res ; 12(1): 48, 2024 Aug 27.
Article in English | MEDLINE | ID: mdl-39191742

ABSTRACT

Osteoclasts are multinucleated bone-resorbing cells, and their formation is tightly regulated to prevent excessive bone loss. However, the mechanisms by which osteoclast formation is restricted remain incompletely determined. Here, we found that sterol regulatory element binding protein 2 (SREBP2) functions as a negative regulator of osteoclast formation and inflammatory bone loss. Cholesterols and SREBP2, a key transcription factor for cholesterol biosynthesis, increased in the late phase of osteoclastogenesis. The ablation of SREBP2 in myeloid cells resulted in increased in vivo and in vitro osteoclastogenesis, leading to low bone mass. Moreover, deletion of SREBP2 accelerated inflammatory bone destruction in murine inflammatory osteolysis and arthritis models. SREBP2-mediated regulation of osteoclastogenesis is independent of its canonical function in cholesterol biosynthesis but is mediated, in part, by its downstream target, interferon regulatory factor 7 (IRF7). Taken together, our study highlights a previously undescribed role of the SREBP2-IRF7 regulatory circuit as a negative feedback loop in osteoclast differentiation and represents a novel mechanism to restrain pathological bone destruction.


Subject(s)
Cell Differentiation , Interferon Regulatory Factor-7 , Osteoclasts , Sterol Regulatory Element Binding Protein 2 , Animals , Osteoclasts/metabolism , Sterol Regulatory Element Binding Protein 2/metabolism , Sterol Regulatory Element Binding Protein 2/genetics , Mice , Interferon Regulatory Factor-7/metabolism , Interferon Regulatory Factor-7/genetics , Inflammation/metabolism , Inflammation/pathology , Mice, Inbred C57BL , Osteogenesis/physiology , Bone Resorption/metabolism , Bone Resorption/pathology , Bone Resorption/genetics , Mice, Knockout , Cholesterol/metabolism
5.
Int J Mol Sci ; 25(15)2024 Jul 26.
Article in English | MEDLINE | ID: mdl-39125746

ABSTRACT

Osteoporotic vertebral compression fractures (OVCFs) are the most prevalent fractures among patients with osteoporosis, leading to severe pain, deformities, and even death. This study explored the use of ectopic embryonic calvaria derived mesenchymal stem cells (EE-cMSCs), which are known for their superior differentiation and proliferation capabilities, as a potential treatment for bone regeneration in OVCFs. We evaluated the impact of EE-cMSCs on osteoclastogenesis in a RAW264.7 cell environment, which was induced by the receptor activator of nuclear factor kappa-beta ligand (RANKL), using cytochemical staining and quantitative real-time PCR. The osteogenic potential of EE-cMSCs was evaluated under various hydrogel conditions. An osteoporotic vertebral body bone defect model was established by inducing osteoporosis in rats through bilateral ovariectomy and creating defects in their coccygeal vertebral bodies. The effects of EE-cMSCs were examined using micro-computed tomography (µCT) and histology, including immunohistochemical analyses. In vitro, EE-cMSCs inhibited osteoclast differentiation and promoted osteogenesis in a 3D cell culture environment using fibrin hydrogel. Moreover, µCT and histological staining demonstrated increased new bone formation in the group treated with EE-cMSCs and fibrin. Immunostaining showed reduced osteoclast activity and bone resorption, alongside increased angiogenesis. Thus, EE-cMSCs can effectively promote bone regeneration and may represent a promising therapeutic approach for treating OVCFs.


Subject(s)
Cell Differentiation , Disease Models, Animal , Mesenchymal Stem Cells , Osteogenesis , Osteoporosis , Skull , Animals , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/cytology , Rats , Skull/pathology , Mice , Osteoporosis/pathology , Osteoporosis/metabolism , Osteoporosis/therapy , Female , RAW 264.7 Cells , Osteoclasts/metabolism , Bone Regeneration , Rats, Sprague-Dawley , Mesenchymal Stem Cell Transplantation/methods , Vertebral Body/metabolism , X-Ray Microtomography , Osteoporotic Fractures/therapy , Osteoporotic Fractures/metabolism , Osteoporotic Fractures/pathology
6.
Int J Mol Sci ; 25(16)2024 Aug 12.
Article in English | MEDLINE | ID: mdl-39201445
7.
Front Endocrinol (Lausanne) ; 15: 1450328, 2024.
Article in English | MEDLINE | ID: mdl-39170742

ABSTRACT

Osteoporosis, a systemic skeletal disorder marked by diminished bone mass and compromised bone microarchitecture, is becoming increasingly prevalent due to an aging population. The underlying pathophysiology of osteoporosis is attributed to an imbalance between osteoclast-mediated bone resorption and osteoblast-mediated bone formation. Osteoclasts play a crucial role in the development of osteoporosis through various molecular pathways, including the RANK/RANKL/OPG signaling axis, cytokines, and integrins. Notably, the calcium signaling pathway is pivotal in regulating osteoclast activation and function, influencing bone resorption activity. Disruption in calcium signaling can lead to increased osteoclast-mediated bone resorption, contributing to the progression of osteoporosis. Emerging research indicates that calcium-permeable channels on the cellular membrane play a critical role in bone metabolism by modulating these intracellular calcium pathways. Here, we provide an overview of current literature on the regulation of plasma membrane calcium channels in relation to bone metabolism with particular emphasis on their dysregulation during the progression of osteoporosis. Targeting these calcium channels may represent a potential therapeutic strategy for treating osteoporosis.


Subject(s)
Calcium Channels , Osteoporosis , Humans , Osteoporosis/metabolism , Calcium Channels/metabolism , Animals , Bone Resorption/metabolism , Osteoclasts/metabolism , Calcium Signaling/physiology
8.
Zhong Nan Da Xue Xue Bao Yi Xue Ban ; 49(5): 655-666, 2024 May 28.
Article in English, Chinese | MEDLINE | ID: mdl-39174879

ABSTRACT

OBJECTIVES: Progressive bone resorption and destruction is one of the most critical clinical features of middle ear cholesteatoma, potentially leading to various intracranial and extracranial complications. However, the mechanisms underlying bone destruction in middle ear cholesteatoma remain unclear. This study aims to explore the role of parathyroid hormone-related protein (PTHrP) in bone destruction associated with middle ear cholesteatoma. METHODS: A total of 25 cholesteatoma specimens and 13 normal external auditory canal skin specimens were collected from patients with acquired middle ear cholesteatoma. Immunohistochemical staining was used to detect the expressions of PTHrP, receptor activator for nuclear factor-kappa B ligand (RANKL), and osteoprotegerin (OPG) in cholesteatoma and normal tissues. Tartrate-resistant acid phosphatase (TRAP) staining was used to detect the presence of TRAP positive multi-nucleated macrophages in cholesteatoma and normal tissues. Mono-nuclear macrophage RAW264.7 cells were subjected to interventions, divided into a RANKL intervention group and a PTHrP+ RANKL co-intervention group. TRAP staining was used to detect osteoclast formation in the 2 groups. The mRNA expression levels of osteoclast-related genes, including TRAP, cathepsin K (CTSK), and nuclear factor of activated T cell cytoplasmic 1 (NFATc1), were measured using real-time polymerase chain reaction (real-time PCR) after the interventions. Bone resorption function of osteoclasts was assessed using a bone resorption pit analysis. RESULTS: Immunohistochemical staining showed significantly increased expression of PTHrP and RANKL and decreased expression of OPG in cholesteatoma tissues (all P<0.05). PTHrP expression was significantly positively correlated with RANKL, the RANKL/OPG ratio, and negatively correlated with OPG expression (r=0.385, r=0.417, r=-0.316, all P<0.05). Additionally, the expression levels of PTHrP and RANKL were significantly positively correlated with the degree of bone destruction in cholesteatoma (r=0.413, r=0.505, both P<0.05). TRAP staining revealed a large number of TRAP-positive cells, including multi-nucleated osteoclasts with three or more nuclei, in the stroma surrounding the cholesteatoma epithelium. After 5 days of RANKL or PTHrP+RANKL co-intervention, the number of osteoclasts was significantly greater in the PTHrP+RANKL co-intervention group than that in the RANKL group (P<0.05), with increased mRNA expression levels of TRAP, CTSK, and NFATc1 (all P<0.05). Scanning electron microscopy of bone resorption pits showed that the number (P<0.05) and size of bone resorption pits on bone slices were significantly greater in the PTHrP+RANKL co-intervention group compared with the RANKL group. CONCLUSIONS: PTHrP may promote the differentiation of macrophages in the surrounding stroma of cholesteatoma into osteoclasts through RANKL induction, contributing to bone destruction in middle ear cholesteatoma.


Subject(s)
Bone Resorption , Cell Differentiation , Cholesteatoma, Middle Ear , Macrophages , Osteoclasts , Osteoprotegerin , Parathyroid Hormone-Related Protein , RANK Ligand , Animals , Humans , Male , Mice , Bone Resorption/metabolism , Cholesteatoma, Middle Ear/metabolism , Cholesteatoma, Middle Ear/pathology , Macrophages/metabolism , NFATC Transcription Factors/metabolism , NFATC Transcription Factors/genetics , Osteoclasts/metabolism , Osteoprotegerin/metabolism , Parathyroid Hormone-Related Protein/metabolism , RANK Ligand/metabolism , RANK Ligand/genetics , RAW 264.7 Cells
9.
Prog Orthod ; 25(1): 29, 2024 Aug 12.
Article in English | MEDLINE | ID: mdl-39129034

ABSTRACT

BACKGROUND: Orthodontic tooth movement (OTM) is a dynamic equilibrium of bone remodeling, involving the osteogenesis of new bone and the osteoclastogenesis of old bone, which is mediated by mechanical force. Periodontal ligament stem cells (PDLCSs) in the periodontal ligament (PDL) space can transmit mechanical signals and regulate osteoclastogenesis during OTM. KAT6A is a histone acetyltransferase that plays a part in the differentiation of stem cells. However, whether KAT6A is involved in the regulation of osteoclastogenesis by PDLSCs remains unclear. RESULTS: In this study, we used the force-induced OTM model and observed that KAT6A was increased on the compression side of PDL during OTM, and also increased in PDLSCs under compression force in vitro. Repression of KAT6A by WM1119, a KAT6A inhibitor, markedly decreased the distance of OTM. Knockdown of KAT6A in PDLSCs decreased the RANKL/OPG ratio and osteoclastogenesis of THP-1. Mechanistically, KAT6A promoted osteoclastogenesis by binding and acetylating YAP, simultaneously regulating the YAP/TEAD axis and increasing the RANKL/OPG ratio in PDLSCs. TED-347, a YAP-TEAD4 interaction inhibitor, partly attenuated the elevation of the RANKL/OPG ratio induced by mechanical force. CONCLUSION: Our study showed that the PDLSCs modulated osteoclastogenesis and increased the RANKL/OPG ratio under mechanical force through the KAT6A/YAP/TEAD4 pathway. KAT6A might be a novel target to accelerate OTM.


Subject(s)
Histone Acetyltransferases , Osteogenesis , Osteoprotegerin , Periodontal Ligament , RANK Ligand , Tooth Movement Techniques , Transcription Factors , Tooth Movement Techniques/methods , RANK Ligand/metabolism , Periodontal Ligament/cytology , Periodontal Ligament/metabolism , Transcription Factors/metabolism , Osteogenesis/physiology , Humans , Histone Acetyltransferases/metabolism , Osteoprotegerin/metabolism , DNA-Binding Proteins/metabolism , Osteoclasts/metabolism , Stem Cells , Signal Transduction/physiology , Animals
10.
Int J Nanomedicine ; 19: 7983-7996, 2024.
Article in English | MEDLINE | ID: mdl-39135672

ABSTRACT

Introduction: Osteoporosis, characterized by dysregulation of osteoclastic bone resorption and osteoblastic bone formation, severely threatens human health during aging. However, there is still no good therapy for osteoporosis, so this direction requires our continuous attention, and there is an urgent need for new drugs to solve this problem. Methods: Traditional Chinese Medicine Salvia divinorum monomer pomolic acid (PA) could effectively inhibit osteoclastogenesis and ovariectomized osteoporosis. However, its poor solubility and lack of targeting severely limits its further application. A novel bone-targeting nanomedicine (PA@TLipo) has been developed to reconstruct the osteoporotic microenvironment by encapsulating pomolic acid in alendronate-functionalized liposomes. Through a series of operations such as synthesis, purification, encapsulation, and labeling, the PA@TLipo have been prepared. Moreover, the cytotoxicity, bone targeting and anti-osteoporosis effect was verified by cell and animal experiments. Results: In the aspect of targeting, the PA@TLipo can effectively aggregate on the bone tissue to reduce bone loss, and in terms of toxicity, PA@TLipo could increase the bone target ability in comparison to nontargeted liposome, thereby mitigating systemic cytotoxicity. Moreover, PA@TLipo inhibited osteoclast formation and bone resorption in vitro and reduced bone loss in ovariectomy-induced osteoporotic mice. Conclusion: In this study, a novel therapeutic agent was designed and constructed to treat osteoporosis, consisting of a liposome material as the drug pocket, PA as the anti-osteoporosis drug, and ALN as the bone-targeting molecule. And our study is the first to employ a bone-targeted delivery system to deliver PA for OVX-induced bone loss, providing an innovative solution for treating osteoporosis.


Subject(s)
Alendronate , Liposomes , Osteoporosis , Animals , Liposomes/chemistry , Alendronate/chemistry , Alendronate/pharmacology , Alendronate/administration & dosage , Osteoporosis/drug therapy , Female , Mice , Bone Density Conservation Agents/pharmacology , Bone Density Conservation Agents/chemistry , Bone Density Conservation Agents/administration & dosage , Osteoclasts/drug effects , RAW 264.7 Cells , Humans , Bone and Bones/drug effects , Bone Resorption/drug therapy , Homeostasis/drug effects , Osteogenesis/drug effects , Ovariectomy
11.
Chem Biol Interact ; 401: 111164, 2024 Sep 25.
Article in English | MEDLINE | ID: mdl-39111524

ABSTRACT

Ganoderic Acid A (GAA) has demonstrated beneficial effects in anti-inflammatory and anti-oxidative stress studies. However, it remains unknown whether GAA exerts positive impacts on bone loss induced by lipopolysaccharide (LPS). This study aims to investigate the influence of GAA on bone loss in LPS-treated rats. The study assesses changes in the viability and osteogenic potential of MC3T3-E1 cells, as well as osteoclast differentiation in RAW264.7 cells in the presence of LPS using CCK-8, ALP staining, AR staining, and Tartrate-resistant acid phosphatase (TRAP) staining. In vitro experiments indicate that LPS-induced inhibition of osteoclasts (OC) and Superoxide Dismutase 2 (SOD2) correlates with heightened levels of inflammation and oxidative stress. Furthermore, GAA has displayed the ability to alleviate oxidative stress and inflammation, enhance osteogenic differentiation, and suppress osteoclast differentiation. Animal experiment also proves that GAA notably upregulates SOD2 expression and downregulates TNF-α expression, leading to the restoration of impaired bone metabolism, improved bone strength, and increased bone mineral density. The collective experimental findings strongly suggest that GAA can enhance osteogenic activity in the presence of LPS by reducing inflammation and oxidative stress, hindering osteoclast differentiation, and mitigating bone loss in LPS-treated rat models.


Subject(s)
Cell Differentiation , Heptanoic Acids , Inflammation , Lanosterol , Lipopolysaccharides , Osteoclasts , Osteogenesis , Oxidative Stress , Rats, Sprague-Dawley , Superoxide Dismutase , Animals , Lipopolysaccharides/pharmacology , Oxidative Stress/drug effects , Male , Mice , Rats , RAW 264.7 Cells , Superoxide Dismutase/metabolism , Inflammation/metabolism , Inflammation/drug therapy , Osteoclasts/drug effects , Osteoclasts/metabolism , Cell Differentiation/drug effects , Osteogenesis/drug effects , Lanosterol/analogs & derivatives , Lanosterol/pharmacology , Lanosterol/therapeutic use , Heptanoic Acids/pharmacology , Heptanoic Acids/therapeutic use , Bone Density/drug effects , Tumor Necrosis Factor-alpha/metabolism , Bone Resorption/prevention & control , Bone Resorption/drug therapy , Bone Resorption/metabolism
12.
ACS Nano ; 18(33): 22431-22443, 2024 Aug 20.
Article in English | MEDLINE | ID: mdl-39103298

ABSTRACT

Osteoclastic inhibition using antiresorptive bisphosphonates and osteogenic promotion using antisclerostin agents represent two distinct osteoporosis treatments in clinical practice, each individual treatment suffers from unsatisfactory therapeutic efficacy due to its indirect intervention in osteoclasis and promotion of osteogenesis simultaneously. Although this issue is anticipated to be resolved by drug synergism, a tempting carrier-free dual-medication nanoassembly remains elusive. Herein, we prepare such a nanoassembly made of antiresorptive alendronate (ALN) crystal and antisclerostin polyaptamer (Apt) via a nucleic acid-driven crystallization method. This nanoparticle can protect Apt from rapid nuclease degradation, avoid the high cytotoxicity of free ALN, and effectively concentrate in the cancellous bone by virtue of the bone-binding ability of DNA and ALN. More importantly, the acid microenvironment of cancellous bone triggers the disassociation of nanoparticles for sustained drug release, from which ALN inhibits the osteoclast-mediated bone resorption while Apt promotes osteogenic differentiation. Our work represents a pioneering demonstration of nucleic acid-driven crystallization of a bisphosphonate into a tempting carrier-free dual-medication nanoassembly. This inaugural advancement augments the antiosteoporosis efficacy through direct inhibition of osteoclasis and promotion of osteogenesis simultaneously and establishes a paradigm for profound understanding of the underlying synergistic antiosteoporosis mechanism of antiresorptive and antisclerostin components. It is envisioned that this study provides a highly generalizable strategy applicable to the tailoring of a diverse array of DNA-inorganic nanocomposites for targeted regulation of intricate pathological niches.


Subject(s)
Alendronate , Crystallization , Osteoclasts , Osteogenesis , Osteoporosis , Alendronate/chemistry , Alendronate/pharmacology , Osteogenesis/drug effects , Osteoclasts/drug effects , Osteoclasts/metabolism , Osteoporosis/drug therapy , Animals , Mice , Bone Density Conservation Agents/pharmacology , Bone Density Conservation Agents/chemistry , Aptamers, Nucleotide/chemistry , Aptamers, Nucleotide/pharmacology , RAW 264.7 Cells , Humans , Drug Synergism
13.
Mol Med ; 30(1): 125, 2024 Aug 16.
Article in English | MEDLINE | ID: mdl-39152382

ABSTRACT

BACKGROUND: Epimedin A (EA) has been shown to suppress extensive osteoclastogenesis and bone resorption, but the effects of EA remain incompletely understood. The aim of our study was to investigate the effects of EA on osteoclastogenesis and bone resorption to explore the corresponding signalling pathways. METHODS: Rats were randomly assigned to the sham operation or ovariectomy group, and alendronate was used for the positive control group. The therapeutic effect of EA on osteoporosis was systematically analysed by measuring bone mineral density and bone biomechanical properties. In vitro, RAW264.7 cells were treated with receptor activator of nuclear factor kappa-B ligand (RANKL) and macrophage colony-stimulating factor (M-CSF) to induce osteoclast differentiation. Cell viability assays, tartrate-resistant acid phosphatase (TRAP) staining, and immunofluorescence were used to elucidate the effects of EA on osteoclastogenesis. In addition, the expression of bone differentiation-related proteins or genes was evaluated using Western blot analysis or quantitative polymerase chain reaction (PCR), respectively. RESULTS: After 3 months of oral EA intervention, ovariectomized rats exhibited increased bone density, relative bone volume, trabecular thickness, and trabecular number, as well as reduced trabecular separation. EA dose-dependently normalized bone density and trabecular microarchitecture in the ovariectomized rats. Additionally, EA inhibited the expression of TRAP and NFATc1 in the ovariectomized rats. Moreover, the in vitro results indicated that EA inhibits osteoclast differentiation by suppressing the TRAF6/PI3K/AKT/NF-κB pathway. Further studies revealed that the effect on osteoclast differentiation, which was originally inhibited by EA, was reversed when the TRAF6 gene was overexpressed. CONCLUSIONS: The findings indicated that EA can negatively regulate osteoclastogenesis by inhibiting the TRAF6/PI3K/AKT/NF-κB axis and that ameliorating ovariectomy-induced osteoporosis in rats with EA may be a promising potential therapeutic strategy for the treatment of osteoporosis.


Subject(s)
Cell Differentiation , NF-kappa B , Osteoclasts , Phosphatidylinositol 3-Kinases , Proto-Oncogene Proteins c-akt , Signal Transduction , TNF Receptor-Associated Factor 6 , Animals , TNF Receptor-Associated Factor 6/metabolism , TNF Receptor-Associated Factor 6/genetics , Osteoclasts/metabolism , NF-kappa B/metabolism , Signal Transduction/drug effects , Cell Differentiation/drug effects , Proto-Oncogene Proteins c-akt/metabolism , Female , Phosphatidylinositol 3-Kinases/metabolism , Rats , Mice , RAW 264.7 Cells , Flavonoids/pharmacology , Osteogenesis/drug effects , Rats, Sprague-Dawley , Osteoporosis/metabolism , Osteoporosis/etiology , Ovariectomy/adverse effects , Gene Expression Regulation/drug effects , Bone Density/drug effects
14.
Biomed Pharmacother ; 178: 117208, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39088966

ABSTRACT

Rosiglitazone (RSG), as an insulin-sensitizing drug to treat type 2 diabetes mellitus (T2DM) is reported to decrease bone quality and increase bone fracture risk. The multiple off-target effects of Resveratrol (RSV), a natural specific agonist of Sirtuin1 (Sirt1) with pro-osteoblastogenesis and anti-adipogenesis effects, on bone loss in T2DM are still under discussion. In this study, successfully ovariectomized rats were fed with high-fat diet and STZ (HFD/STZ) to induced T2DM mice. RSV alone, RSG alone or co-administration of RSV and RSG were given orally to T2DM rats for 8 weeks to determine whether RSV administration had any prevention effect on T2DM osteoporosis. Bone mesenchymal stem cells (BMSCs) and bone marrow­derived macrophages (BMMs) were cultured under high glucose condition and were induced to osteoblasts or adipocytes and osteoclasts, respectively. µCT and HE staining showed that in T2DM osteoporotic rats, RSV co-administration prevents RSG induced-bone loss. ELISA results confirmed that RSV suppressed osteoclast activity and promoted osteoblast activity in diabetic osteoporosis rats and RSG-administrated diabetic osteoporosis rats. In vitro study showed that RSV significantly reversed RSG induced inhibition on osteogenesis and promotion on adiopogenesis of BMSC under high glucose (HG). Moreover, RSV significantly reverse RSG induced osteoclast formation and mature under HG. Taken together, these findings uncover a previously unappreciated anti-osteoporosis effect of concomitant treatment with RSV in RSG-administrated diabetic rats, suggesting the clinical use of RSV as an adjuvant in the treatment of T2DM for preventing or reversing RSG administration-associated bone loss.


Subject(s)
Diabetes Mellitus, Experimental , Diabetes Mellitus, Type 2 , Osteogenesis , Osteoporosis , Rats, Sprague-Dawley , Resveratrol , Rosiglitazone , Animals , Resveratrol/pharmacology , Rosiglitazone/pharmacology , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/drug therapy , Female , Osteoporosis/drug therapy , Osteoporosis/chemically induced , Osteoporosis/pathology , Osteoporosis/prevention & control , Rats , Osteogenesis/drug effects , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/complications , Diabetes Mellitus, Experimental/chemically induced , Mesenchymal Stem Cells/drug effects , Osteoblasts/drug effects , Hypoglycemic Agents/pharmacology , Diet, High-Fat/adverse effects , Osteoclasts/drug effects , Osteoclasts/pathology , Adipocytes/drug effects
15.
Biomed Pharmacother ; 178: 117271, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39121589

ABSTRACT

Osteoblast-mediated bone formation and osteoclast-mediated bone resorption are critical processes in bone metabolism. Annexin A, a calcium-phospholipid binding protein, regulates the proliferation and differentiation of bone cells, including bone marrow mesenchymal stem cells, osteoblasts, and osteoclasts, and has gradually become a marker gene for the diagnosis of osteoporosis. As calcium channel proteins, the annexin A family members are closely associated with mechanical stress, which can target annexins A1, A5, and A6 to promote bone cell differentiation. Despite the significant clinical potential of annexin A family members in bone metabolism, few studies have reported on these mechanisms. Therefore, based on a review of relevant literature, this article elaborates on the specific functions and possible mechanisms of annexin A family members in bone metabolism to provide new ideas for their application in the prevention and treatment of bone diseases, such as osteoporosis.


Subject(s)
Bone and Bones , Humans , Animals , Bone and Bones/metabolism , Osteoporosis/metabolism , Annexins/metabolism , Annexins/genetics , Osteogenesis/physiology , Osteogenesis/genetics , Cell Differentiation , Osteoblasts/metabolism , Osteoclasts/metabolism , Bone Resorption/metabolism
16.
Bone Res ; 12(1): 49, 2024 Aug 28.
Article in English | MEDLINE | ID: mdl-39198395

ABSTRACT

Osteoclast is critical in skeletal development and fracture healing, yet the impact and underlying mechanisms of their metabolic state on these processes remain unclear. Here, by using osteoclast-specific small GTPase Rheb1-knockout mice, we reveal that mitochondrial respiration, rather than glycolysis, is essential for cathepsin K (CTSK) production in osteoclasts and is regulated by Rheb1 in a mechanistic target of rapamycin complex 1 (mTORC1)-independent manner. Mechanistically, we find that Rheb1 coordinates with mitochondrial acetyl-CoA generation to fuel CTSK, and acetyl-CoA availability in osteoclasts is the central to elevating CTSK. Importantly, our findings demonstrate that the regulation of CTSK by acetyl-CoA availability is critical and may confer a risk for abnormal endochondral ossification, which may be the main cause of poor fracture healing on alcohol consumption, targeting Rheb1 could successfully against the process. These findings uncover a pivotal role of mitochondria in osteoclasts and provide a potent therapeutic opportunity in bone disorders.


Subject(s)
Acetyl Coenzyme A , Mice, Knockout , Mitochondria , Osteoclasts , Osteogenesis , Animals , Osteoclasts/metabolism , Acetyl Coenzyme A/metabolism , Mice , Mitochondria/metabolism , Mechanistic Target of Rapamycin Complex 1/metabolism , Mechanistic Target of Rapamycin Complex 1/genetics , Ras Homolog Enriched in Brain Protein/metabolism , Ras Homolog Enriched in Brain Protein/genetics , Mice, Inbred C57BL
17.
Sci Rep ; 14(1): 19973, 2024 08 28.
Article in English | MEDLINE | ID: mdl-39198677

ABSTRACT

Osteoblasts and osteoclasts play an important role in maintaining the structural integrity of bone tissue, in which osteoclasts degrade bone structure and osteoblasts restore bone tissue. The imbalance of osteoblast and osteoclast function can lead to many bone-related diseases, such as osteoporosis and inflammatory osteolysis. The drug that can both promote bone formation and inhibit bone loss will be able to treat those diseases. In this study, it was found that LMK-235, an selective HDAC4/5 inhibitor, inhibited the differentiation and maturation of osteoclasts by regulating NF-κB and p-Smad2/3 signaling pathways via inhibition of HDAC4. At the same time, we found that LMK-235 promoted osteoblast mineralization by upregulating Runx2 expression via inhibition of HDAC4. In vivo, LMK-235 was able to alleviate lipopolysaccharide (LPS)-induced calvarial osteolysis and promote the repair of bone defects. Taken together, LMK-235 suppresses osteoclast differentiation and promotes osteoblast formation by inhibiting HDAC4. This may provide a valuable treatment for bone diseases caused by abnormal osteoclast bone resorption and osteoblast bone regeneration.


Subject(s)
Cell Differentiation , Histone Deacetylases , Osteoblasts , Osteoclasts , Osteogenesis , Animals , Histone Deacetylases/metabolism , Osteoblasts/metabolism , Osteoblasts/drug effects , Osteoclasts/metabolism , Osteoclasts/drug effects , Mice , Osteogenesis/drug effects , Cell Differentiation/drug effects , Histone Deacetylase Inhibitors/pharmacology , Lipopolysaccharides/pharmacology , Signal Transduction/drug effects , RAW 264.7 Cells , Osteolysis/metabolism , Osteolysis/pathology , NF-kappa B/metabolism , Mice, Inbred C57BL , Hydroxamic Acids , Pyrimidines
18.
Clin Oral Investig ; 28(9): 486, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-39145807

ABSTRACT

OBJECTIVES: To evaluate the effects of coenzyme Q10 (CoQ10) on alveolar bone remodeling and orthodontic tooth movement (OTM). MATERIALS AND METHODS: An orthodontic appliance was placed in 42 female Sprague‒Dawley rats were divided into two groups: the orthodontic force (OF) group (n = 21) and the OF + CoQ10 (CoQ10) treatment group (n = 21). Each group was divided into 3 subgroups, and the rats were sacrificed on days 3, 7 and 14. The rats in CoQ10 and OF groups were administered 100 mg/kg b.w./day CoQ10 (in 1 mL/b.w. soybean oil) and 1 mL b.w./day soybean oil, respectively, by orogastric gavage. The OTM was measured at the end of the experiment. The osteoclast, osteoblast and capillary numbers; vascular endothelial growth factor (VEGF), receptor activator nuclear kappa B ligand (RANKL) and osteoprotegrin (OPG) levels in tissue; and total antioxidant status (TAS) and total oxidant status (TOS) in blood were determined. RESULTS: Compared with the OF group, the CoQ10 treatment group exhibited decreased orthodontic tooth movement and osteoclast and capillary numbers. Indeed, the levels of VEGF and RANKL decreased, while the levels of OPG increased except on day 7. Additionally, the CoQ10 treatment group exhibited lower TOS and higher TAS on days 7 and 14 (p < 0.05). Histological findings showed that the morphology of osteoblasts changed in the CoQ10 group; however, there was no significant difference in the number of osteoblasts between the groups (p > 0.05). CONCLUSION: Due to its effect on oxidative stress and inflammation, CoQ10 regulates bone remodeling by inhibiting osteoclast differentiation, promoting osteoblast differentiation and reducing the amount of OTM. CLINICAL RELEVANCE: Considering that OTM may be slowed with the use of CoQ10, topics such as orthodontic treatment duration, orthodontic force activation and appointment frequency should be considered in treatment planning. It is predicted that the use of CoQ10 will support the effectiveness of treatment in clinical applications such as preventing relapse in orthodontic treatment by regulating bone modulation and anchorage methods that suppress/optimize unwanted tooth movement.


Subject(s)
Bone Remodeling , Rats, Sprague-Dawley , Tooth Movement Techniques , Ubiquinone , Ubiquinone/analogs & derivatives , Ubiquinone/pharmacology , Animals , Rats , Female , Bone Remodeling/drug effects , Vascular Endothelial Growth Factor A/metabolism , RANK Ligand/metabolism , Alveolar Process/drug effects , Osteoclasts/drug effects , Antioxidants/pharmacology
19.
Hum Exp Toxicol ; 43: 9603271241269028, 2024.
Article in English | MEDLINE | ID: mdl-39197164

ABSTRACT

BACKGROUND AND OBJECTIVE: The objective of this study was to investigate the potential of salidroside (SAL) (a major active compound in Rhodiola rosea L.) in regulating osteoclast differentiation and function by modulating the HIF-1α pathway and its downstream target genes. METHODS: The expression of HIF-1α and its downstream target genes was examined at both mRNA and protein levels in osteoclasts treated with SAL. Immunofluorescence analysis was performed to assess the nuclear translocation and transcriptional activity of HIF-1α in response to SAL. MTT, flow cytometry, qPCR, TRAP staining and bone resorption assays were used to evaluate the potential effect of salidroside on osteoclasts. RESULTS: SAL enhanced the expression of HIF-1α and its downstream target genes in osteoclasts. Immunofluorescence analysis confirmed the facilitation of HIF-1α nuclear translocation and transcriptional activity by SAL. In addition, SAL enhanced osteoclast viability, differentiation and bone resorption activity in an autocrine manner through HIF-1α/VEGF, IL-6 and ANGPTL4 pathways. CONCLUSION: SAL promotes osteoclast proliferation, differentiation and bone resorption through HIF-1α/VEGF, IL-6 and ANGPTL4 pathways.


Subject(s)
Glucosides , Hypoxia-Inducible Factor 1, alpha Subunit , Osteoclasts , Osteogenesis , Phenols , Glucosides/pharmacology , Phenols/pharmacology , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Osteoclasts/drug effects , Animals , Mice , Osteogenesis/drug effects , Cell Differentiation/drug effects , RAW 264.7 Cells , Interleukin-6/metabolism , Interleukin-6/genetics , Vascular Endothelial Growth Factor A/metabolism , Vascular Endothelial Growth Factor A/genetics , Bone Resorption , Signal Transduction/drug effects , Angiopoietin-Like Protein 4/metabolism , Angiopoietin-Like Protein 4/genetics , Cell Proliferation/drug effects , Cell Survival/drug effects
20.
Proc Natl Acad Sci U S A ; 121(36): e2400528121, 2024 Sep 03.
Article in English | MEDLINE | ID: mdl-39186644

ABSTRACT

Many chronic inflammatory diseases are attributed to disturbances in host-microbe interactions, which drive immune-mediated tissue damage. Depending on the anatomic setting, a chronic inflammatory disease can exert unique local and systemic influences, which provide an exceptional opportunity for understanding disease mechanism and testing therapeutic interventions. The oral cavity is an easily accessible environment that allows for protective interventions aiming at modulating the immune response to control disease processes driven by a breakdown of host-microbe homeostasis. Periodontal disease (PD) is a prevalent condition in which quantitative and qualitative changes of the oral microbiota (dysbiosis) trigger nonresolving chronic inflammation, progressive bone loss, and ultimately tooth loss. Here, we demonstrate the therapeutic benefit of local sustained delivery of the myeloid-recruiting chemokine (C-C motif) ligand 2 (CCL2) in murine ligature-induced PD using clinically relevant models as a preventive, interventional, or reparative therapy. Local delivery of CCL2 into the periodontium inhibited bone loss and accelerated bone gain that could be ascribed to reduced osteoclasts numbers. CCL2 treatment up-regulated M2-macrophage and downregulated proinflammatory and pro-osteoclastic markers. Furthermore, single-cell ribonucleic acid (RNA) sequencing indicated that CCL2 therapy reversed disease-associated transcriptomic profiles of murine gingival macrophages via inhibiting the triggering receptor expressed on myeloid cells-1 (TREM-1) signaling in classically activated macrophages and inducing protein kinase A (PKA) signaling in infiltrating macrophages. Finally, 16S ribosomal ribonucleic acid (rRNA) sequencing showed mitigation of microbial dysbiosis in the periodontium that correlated with a reduction in microbial load in CCL2-treated mice. This study reveals a novel protective effect of CCL2 local delivery in PD as a model for chronic inflammatory diseases caused by a disturbance in host-microbe homeostasis.


Subject(s)
Chemokine CCL2 , Homeostasis , Animals , Mice , Chemokine CCL2/metabolism , Periodontal Diseases/microbiology , Periodontal Diseases/immunology , Periodontal Diseases/therapy , Dysbiosis/immunology , Dysbiosis/microbiology , Host Microbial Interactions/immunology , Macrophages/immunology , Male , Mice, Inbred C57BL , Osteoclasts/metabolism , Periodontitis/microbiology , Periodontitis/immunology
SELECTION OF CITATIONS
SEARCH DETAIL