Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 832
Filter
1.
Phytomedicine ; 133: 155940, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39128303

ABSTRACT

BACKGROUND: Traumatic brain injury (TBI) could induce multiple forms of cell death, ferroptosis, a novel form of cell death distinct from apoptosis and autophagy, plays an important role in disease progression in TBI. Therapies targeting ferroptosis are beneficial for recovery from TBI. Paeoniflorin (Pae) is a water-soluble monoterpene glycoside and the active ingredient of Paeonia lactiflora pall. It has been shown to exert anti-inflammatory and antioxidant effects. However The effects and mechanisms of paeoniflorin on secondary injury after TBI are unknown. PURPOSE: To investigate the mechanism by which Pae regulates ferroptosis after TBI. METHODS: The TBI mouse model and cortical primary neurons were utilized to study the protective effect of paeoniflorin on the brain tissue after TBI. The neuronal cell ferroptosis model was established by treating cortical primary neurons with erastin. Liproxstatin-1(Lip-1) was used as a positive control drug. Immunofluorescence staining, Nissl staining, biochemical analyses, pharmacological analyses, and western blot were used to evaluate the effects of paeoniflorin on TBI. RESULTS: Pae significantly ameliorated neuronal damage after TBI, inhibited mitochondrial damage, increased glutathione peroxidase 4 (GPX4) activity, decreased malondialdehyde (MDA) production, restored neurological function and inhibited cerebral edema. Pae promotes the degradation of P53 in the form of proteasome, promotes its ubiquitination, and reduces the stability of P53 by inhibiting its acetylation, thus alleviating the P53-mediated inhibition of cystine/glutamate antiporter solute carrier family 7 member 11 (SLC7A11) by P53. CONCLUSION: Pae inhibits ferroptosis by promoting P53 ubiquitination out of the nucleus, inhibiting P53 acetylation, and modulating the SLC7A11-GPX4 pathway.


Subject(s)
Brain Injuries, Traumatic , Ferroptosis , Glucosides , Monoterpenes , Tumor Suppressor Protein p53 , Glucosides/pharmacology , Ferroptosis/drug effects , Brain Injuries, Traumatic/drug therapy , Brain Injuries, Traumatic/metabolism , Animals , Monoterpenes/pharmacology , Tumor Suppressor Protein p53/metabolism , Acetylation , Mice , Male , Neurons/drug effects , Disease Models, Animal , Mice, Inbred C57BL , Phospholipid Hydroperoxide Glutathione Peroxidase/metabolism , Paeonia/chemistry , Neuroprotective Agents/pharmacology
2.
J Ethnopharmacol ; 335: 118647, 2024 Dec 05.
Article in English | MEDLINE | ID: mdl-39094756

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Jiawei-Xiaoyao Pill (JWX), a classic formula in traditional Chinese medicine, is derived from Xiaoyao Pill by adding significant amounts of Gardeniae Fructus (GF) and Moutan Cortex (MC). It is frequently used for the treatment of depression. JWX has been demonstrated to uniquely elicit rapid antidepressant-like effects within the prescribed dosage range. To date, GF has been shown to have rapid antidepressant-like effects, but a much higher dose is required than its proportion in JWX. It is assumed that the synergism of GF with a minimum number of other herbs in JWX serves as a refined formula that exerts these rapid antidepressant-like effects. Identification of a refined formula is important for prioritizing the herbs and ingredients to optimize the quality control of JWX. However, such a refined formula for JWX has not been identified yet. AIM OF THE STUDY: Here we aimed to identify a refined formula derived from JWX for optimized rapid antidepressant-like effects. Since the neuroinflammation mechanism involving in depression treatment has not been previously investigated for JWX, we tested the mechanism for both JWX and the refined formula. MATERIALS AND METHODS: Individual herbs (MC; ASR, Angelica Sinensis Radix; Bupleuri Radix; Paeonia Radix Alba) that show antidepressant-like responses were mixed with GF at the proportional dosage in JWX to identify the refined formula. Rapid antidepressant-like effects were assessed by using NSF (Novelty Suppressed Feeding Test) and other behavioral tests following a single administration. The identified formula was further tested in a lipopolysaccharide (LPS)-induced depressive model, and the molecular signaling mechanisms were investigated using Western blot analysis, immunofluorescence, and pharmacological inhibition of mTOR signaling. Scopolamine (Scop) was used as a positive control for induction of rapid antidepressant effects. RESULTS: A combination of GF, MC and ASR (GMA) at their dosages proportional to JWX induced behavioral signs of rapid antidepressant-like responses in both normal and LPS-treated mice, with the antidepressant-like effects sustained for 5 d. Similar to JWX or Scop, GMA rapidly reduced the neuroinflammation signaling of Iba-1-NF-кB, enhanced neuroplasticity signaling of CaMKII-mTOR-BDNF, and attenuated the upregulated expressions of the NMDAR sub-units GluN1 and GluN2B in the hippocampus of LPS-treated mice. GMA, JWX and Scop rapidly restored the number of BDNF-positive cells reduced by LPS treatment in the CA3 region of the hippocampus. Furthermore, rapamycin, a selective inhibitor of mTOR, blunted the rapid antidepressant-like effects and hippocampal BDNF signaling upregulation by GMA. CONCLUSION: GMA may serve as a refined formula from JWX, capable of inducing rapid antidepressant-like effects. In the LPS-induced depression model, the effects of GMA were mediated via rapidly alleviating neuroinflammation and enhancing neuroplasticity.


Subject(s)
Antidepressive Agents , Depression , Drugs, Chinese Herbal , Lipopolysaccharides , Neuroinflammatory Diseases , Neuronal Plasticity , Animals , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/chemistry , Antidepressive Agents/pharmacology , Neuronal Plasticity/drug effects , Male , Depression/drug therapy , Depression/chemically induced , Mice , Neuroinflammatory Diseases/drug therapy , Signal Transduction/drug effects , Paeonia/chemistry , Mice, Inbred C57BL , Gardenia/chemistry , Disease Models, Animal , TOR Serine-Threonine Kinases/metabolism , Behavior, Animal/drug effects
3.
Phytomedicine ; 132: 155820, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39004032

ABSTRACT

OBJECTIVE: This study aimed to explore the potential mechanisms of Buyang Huanwu Decoction (BHD) in regulating the AKT/TP53 pathway and reducing inflammatory responses for the treatment of chronic cerebral ischemia (CCI) using UHPLC-QE-MS combined with network pharmacology, molecular docking techniques, and animal experiment validation. METHODS: Targets of seven herbal components in BHD, such as Astragalus membranaceus, Paeoniae Rubra Radix, and Ligusticum chuanxiong, were identified through TCMSP and HERB databases. CCI-related targets were obtained from DisGeNET and Genecards, with an intersection analysis conducted to determine shared targets between the disease and the herbal components. Functional enrichment analysis of these intersecting targets was performed. Networks of gene ontology and pathway associations with these targets were constructed and visualized. A pharmacological network involving intersecting genes and active components was delineated. A protein-protein interaction network was established for these intersecting targets and visualized using Cytoscape 3.9.1. The top five genes from the PPI network and their corresponding active components underwent molecular docking. Finally, the 2-vessel occlusion (2-VO) induced CCI rat model was treated with BHD, and the network pharmacology findings were validated using Western blot, RT-PCR, behavioral tests, laser speckle imaging, ELISA, HE staining, Nissl staining, LFB staining, and immunohistochemistry and immunofluorescence. RESULTS: After filtration and deduplication, 150 intersecting genes were obtained, with the top five active components by Degree value identified as Quercetin, Beta-Sitosterol, Oleic Acid, Kaempferol, and Succinic Acid. KEGG pathway enrichment analysis linked key target genes significantly with Lipid and atherosclerosis, AGE-RAGE signaling pathway, IL-17 signaling pathway, and TNF signaling pathway. The PPI network highlighted ALB, IL-6, AKT1, TP53, and IL-1ß as key protein targets. Molecular docking results showed the strongest binding affinity between ALB and Beta-Sitosterol. Behavioral tests using the Morris water maze indicated that both medium and high doses of BHD could enhance spatial memory in 2-VO model rats, with high-dose BHD being more effective. Laser speckle results showed that BHD at medium and high doses could facilitate CBF recovery in CCI rats, demonstrating a dose-response relationship. HE staining indicated that all doses of BHD could reduce neuronal damage in the cortex and hippocampal CA1 region to varying extents, with the highest dose being the most efficacious. Nissl staining showed that nimodipine and medium and high doses of BHD could alleviate Nissl body damage. LFB staining indicated that nimodipine and medium and high doses of BHD could reduce the pathological damage to fiber bundles and myelin sheaths in the internal capsule and corpus callosum of CCI rats. ELISA results showed that nimodipine and BHD at medium and high doses could decrease the levels of TNF-α, IL-6, IL-17, and IL-1ß in the serum of CCI rats (p < 0.05). Immunohistochemistry and immunofluorescence demonstrated that BHD could activate the AKT signaling pathway and inhibit TP53 in treating CCI. Western blot and RT-PCR results indicated that nimodipine and all doses of BHD could upregulate Akt1 expression and downregulate Alb, Tp53, Il-1ß, and Il-6 expression in the hippocampus of CCI rats to varying degrees (p < 0.05). CONCLUSION: BHD exerts therapeutic effects in the treatment of CCI by regulating targets, such as AKT1, ALB, TP53, IL-1ß, and IL-6, and reducing inflammatory responses.


Subject(s)
Brain Ischemia , Drugs, Chinese Herbal , Molecular Docking Simulation , Network Pharmacology , Protein Interaction Maps , Animals , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/chemistry , Brain Ischemia/drug therapy , Male , Rats , Sitosterols/pharmacology , Rats, Sprague-Dawley , Paeonia/chemistry , Proto-Oncogene Proteins c-akt/metabolism , Disease Models, Animal , Signal Transduction/drug effects , Astragalus propinquus/chemistry
4.
Phytomedicine ; 132: 155873, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39024673

ABSTRACT

BACKGROUND: Intestinal barrier dysfunction is a significant contributor to the recurrence and refractory of ulcerative colitis (UC). Promoting the interaction between group 3 innate lymphoid cells (ILC3s) and gut flora is a valuable strategy for mucosal repair. Paeoniae decoction (PD) is a compound commonly used in clinical treatment of UC, but its exact mechanism remains unclear. PURPOSE: We aimed to investigate the protective effect of PD on intestinal mucosal injury induced by dextran sulfate sodium (DSS) in chronic colitis, as well as to elucidate its potential mechanism. METHODS: C57BL/6 mice were induced with chronic colitis by 2 % DSS and divided into four groups: control group, model group, PD low dose (4 g/kg), and high dose (8 g/kg) group. The effectiveness of PD in treating chronic colitis mice was evaluated based on changes in body weight, colon length, colon pathological tissue scores, and the mRNA levels of inflammatory factors IL-6 and IL-1ß. The expressions of intestinal epithelial tight junction proteins (ZO-1 and Occludin), IL-22, and MUC2 were observed using immunofluorescence and RT-PCR. Additionally, the proportion of ILC3 and natural cytotoxicity receptor (NCR)+ ILC3 in the colon were detected using flow cytometry. Furthermore, UHPLC-QE-MS was utilized to identify chemical components of PD and network pharmacology was employed to predict potential pathways for PD intervention in UC. Subsequently, MNK-3 cells (ILC3 in vitro cell line) and NCM460 cells were used to verify the network pharmacology results. Finally, the effects of PD on UC gut flora have been explored using in vitro fermentation and 16S rDNA techniques. RESULTS: The results showed that PD significantly restored body weight and colon length in mice with chronic colitis, while also reducing colon inflammatory cell infiltration and the expression of IL-6 and IL-1ß. Additionally, PD notably promoted the expression of MUC2, ZO-1, Occludin, and IL-22, as well as increasing the ratio of ILC3 and NCR+ILC3. UHPLC-QE-MS analysis identified 443 components of PD, and network pharmacology suggested that PD could target the aryl hydrocarbon receptor (AHR) signaling pathway, which was confirmed by MNK-3 cells and in vitro fermentation experiments. Furthermore, MNK-3-conditioned medium (CM) increased the expression of ZO-1 and Occludin in NCM460 cells. In addition, 16S rDNA results indicated that PD promoted the abundance of Lactobacillales, thus contributing to mucosal damage repair by activating the AHR signal in ILC3s. CONCLUSION: In summary, our study demonstrates that PD repairs intestinal mucosal damage in chronic colitis by regulating the interaction of gut flora with ILC3, and the specific mechanism is related to the activation of AHR signaling pathway.


Subject(s)
Dextran Sulfate , Gastrointestinal Microbiome , Interleukin-22 , Intestinal Mucosa , Mice, Inbred C57BL , Paeonia , Animals , Gastrointestinal Microbiome/drug effects , Intestinal Mucosa/drug effects , Mice , Male , Paeonia/chemistry , Lymphocytes/drug effects , Zonula Occludens-1 Protein/metabolism , Interleukins/metabolism , Disease Models, Animal , Interleukin-1beta/metabolism , Occludin/metabolism , Interleukin-6/metabolism , Colon/drug effects , Colitis, Ulcerative/drug therapy , Colitis, Ulcerative/chemically induced , Drugs, Chinese Herbal/pharmacology , Colitis/drug therapy , Colitis/chemically induced , Mucin-2
5.
Cardiovasc Toxicol ; 24(8): 800-817, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38951468

ABSTRACT

Radix Paeoniae Rubra. (Chishao, RPR) and Cortex Moutan. (Mudanpi, CM) are a pair of traditional Chinese medicines that play an important role in the treatment of atherosclerosis (AS). The main objective of this study was to identify potential synergetic function and underlying mechanisms of RPR-CM in the treatment of AS. The main active ingredients, targets of RPR-CM and AS-related genes were obtained from public databases. A Venn diagram was utilized to screen the common targets of RPR-CM in treating AS. The protein-protein interaction network was established based on STRING database. Biological functions and pathways of potential targets were analyzed through Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analyses. Cytoscape was used to construct the drug-compound-target-signal pathway network. Molecular docking was performed to verify the binding ability of the bioactive ingredients and the target proteins. The endothelial inflammation model was constructed with human umbilical vein endothelial cells stimulated with ox-LDL, and the function of RPR-CM in treating AS was verified by CCK-8 assay, enzyme-linked immunosorbent assay, and qPCR. In this study, 12 active components and 401 potential target genes of RPR-CM were identified, among which quercetin, kaempferol and baicalein were considered to be the main active components. A total of 1903 AS-related genes were identified through public databases and four GEO datasets (GSE57691, GSE72633, GSE6088 and GSE199819). There are 113 common target genes of RPR-CM in treating AS. PPI network analysis identified 17 genes in cluster 1 as the core targets. Bioinformatics analysis showed that RPR-CM in AS treatment was associated with multiple downstream biological processes and signal pathways. PTGS2, JUN, CASP3, TNF, IL1B, IL6, FOS, STAT1 were identified as the core targets of RPR-CM, and molecular docking showed that the main bioactive components of RPR-CM had good binding ability with the core targets. RPR-CM extract significantly inhibited the levels of inflammatory factors TNF-α, IL-6, IL-1ß, MCP-1, VCAM-1 and ICAM-1 in HUVECs, and inhibited endothelial inflammation. This study revealed the active ingredients of RPR-CM, and identified the key downstream targets and signaling pathways in the treatment of AS, providing theoretical basis for the application of RPR-CM in prevention and treatment of AS.


Subject(s)
Anti-Inflammatory Agents , Atherosclerosis , Drugs, Chinese Herbal , Human Umbilical Vein Endothelial Cells , Molecular Docking Simulation , Network Pharmacology , Paeonia , Protein Interaction Maps , Signal Transduction , Humans , Human Umbilical Vein Endothelial Cells/metabolism , Human Umbilical Vein Endothelial Cells/drug effects , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/chemistry , Paeonia/chemistry , Signal Transduction/drug effects , Atherosclerosis/drug therapy , Atherosclerosis/metabolism , Atherosclerosis/genetics , Atherosclerosis/pathology , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/isolation & purification , Lipoproteins, LDL/metabolism , Gene Expression Regulation/drug effects , Databases, Genetic , Inflammation Mediators/metabolism , Cells, Cultured , Cytokines/metabolism , Cytokines/genetics , Gene Regulatory Networks
6.
J Ethnopharmacol ; 335: 118616, 2024 Dec 05.
Article in English | MEDLINE | ID: mdl-39053710

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Paeonia lactiflora Pall. (called Shaoyao in China) is a common herb cultivated all over the world. In some Asian and European countries, such as China, Japan, South Korea and Britain, P. lactiflora has a long history of ethnomedical uses, which is widely used to relieve pain, treat gynecological diseases, anti-infection and so on. It is attributed to the extensive pharmacological activities of total glucosides of P. lactiflora. Up to now, it is still commonly used in clinical medicine. THE AIM OF THE REVIEW: The paper aims to make a comprehensive review on the botanical characterization and distribution, ethnopharmacology, phytochemistry, biosynthesis pathway, pharmacology, pharmacokinetics and quality control of P. lactiflora, so as to provide new insights and scientific evidence for the subsequent research. MATERIALS AND METHODS: The information of P. lactiflora was obtained from books related to traditional Chinese medicine and electronic databases, including Scifinder, PubMed, Web of Science, CNKI and Google Scholar. RESULTS: P. lactiflora is a kind of herb with a long history and it is used for medicine, food and ornamental, and shows high utilization value. There are 200 compounds have been identified from it, including terpenoids, flavonoids, polyphenols, organic acids and others, among those paeoniflorin, a monoterpenoid glycoside, has multiple activities and is currently the focus of pharmacological research. A great deal of pharmacological experiments supported the anti-inflammatory, anti-oxidant, hepatoprotective, neuroprotective, antibacterial, antitumor, dermatosis treating and other effects of P. lactiflora. In addition, evaluating the quality of P. lactiflora is essential to safe use of drug in humans. CONCLUSIONS: The chemical components of P. lactiflora are diverse and have a wide range of activities. Modern pharmacological studies have provided reliable evidence for the traditional efficacy, such as suppressing liver yang, regulating menstruation and relieving pain. However, there are still some problems to be solved, such as part of the pharmacological mechanism has not been clarified and the biosynthetic pathway of cage-like monoterpenoids remains poorly defined. In addition, further studies on compounds other than paeoniflorin are clearly warranted. It is hoped that P. lactiflora will serve the clinic better in the future.


Subject(s)
Ethnopharmacology , Paeonia , Phytochemicals , Quality Control , Paeonia/chemistry , Humans , Phytochemicals/pharmacology , Phytochemicals/pharmacokinetics , Phytochemicals/chemistry , Phytochemicals/therapeutic use , Animals , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/chemistry , Drugs, Chinese Herbal/pharmacokinetics , Phytotherapy , Medicine, Chinese Traditional
7.
Molecules ; 29(13)2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38998977

ABSTRACT

Paeonia lactiflora Pall. (PLP) is thought to promote blood circulation and remove blood stasis. This study used blood component analysis, network pharmacology, and molecular docking to predict the mechanism of PLP in the treatment of blood stasis syndrome (BSS). PLP was processed into Paeoniae Radix Alba (PRA) and Paeoniae Radix Rubra (PRR). PRA and PRR could significantly reduce whole blood viscosity (WBV) at 1/s shear rates and could increase the erythrocyte aggregation index (EAI), plasma viscosity (PV), and erythrocyte sedimentation rate (ESR) of rats with acute blood stasis. They prolonged the prothrombin time (PT), and PRR prolonged the activated partial thromboplastin time (APTT). PRA and PRR increased the thrombin time (TT) and decreased the fibrinogen (FBG) content. All the results were significant (p < 0.05). Ten components of Paeoniflorin, Albiflorin, Paeonin C, and others were identified in the plasma of rats using ultra-high-performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF-MS). A protein-protein interaction network (PPI) analysis showed that AKT1, EGFR, SRC, MAPK14, NOS3, and KDR were key targets of PLP in the treatment of BSS, and the molecular docking results further verified this. This study indicated that PLP improves BSS in multiple ways and that the potential pharmacological mechanisms may be related to angiogenesis, vasoconstriction and relaxation, coagulation, and the migration and proliferation of vascular cells.


Subject(s)
Molecular Docking Simulation , Network Pharmacology , Paeonia , Paeonia/chemistry , Animals , Rats , Chromatography, High Pressure Liquid/methods , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/chemistry , Male , Blood Viscosity/drug effects , Rats, Sprague-Dawley , Disease Models, Animal
8.
Chem Biodivers ; 21(8): e202401119, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38850115

ABSTRACT

Paeoniae Radix Rubra (PRR) known as Chishao, in China, is the dried root of Paeonia lactiflora Pall. or Paeonia veitchii Lynch, with a history of over 2000 years in traditional Chinese medicine, is employed to clear heat, cool the blood, dispel blood stasis, and alleviate pain. Phytochemical investigations identified 264 compounds that contained monoterpenes and their glycosides, sesquiterpenes, triterpenes, steroids, flavonoids, lignans, tannins, volatile oils, and other compounds. It has been reported to have different pharmacological activities, including cardiovascular-protective, antidepressive, neuroprotective, antitumor, hepatoprotective, and anti-inflammatory effects. This study offers a comprehensive review covering ethnopharmacology, phytochemistry, pharmacological activities, therapeutic mechanism for blood stasis syndrome, and quality control of PRR. The comprehensive analysis aims to achieve a thorough understanding of its effects and serves as a foundation for future research and development.


Subject(s)
Paeonia , Quality Control , Paeonia/chemistry , Humans , Phytochemicals/pharmacology , Phytochemicals/chemistry , Phytochemicals/isolation & purification , Medicine, Chinese Traditional , Ethnopharmacology , Animals , Drugs, Chinese Herbal/chemistry , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/therapeutic use
9.
J Cosmet Dermatol ; 23(9): 3030-3037, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38864461

ABSTRACT

BACKGROUND: In vitro single-cell experiments may yield inconsistent results compared to clinical trials. To enhance the reliability of cosmetic active ingredient screening, a coculture model of B16F10-HaCaT cells was established in vitro based on the structural characteristics of human skin, thereby improving the credibility of experimental outcomes. Currently, most cosmetic whitening additives primarily target simple efficacy goals such as inhibiting tyrosinase activity or melanin transfer. Therefore, investigating novel and efficient whitening additives has become a prominent research focus. OBJECTIVES: The aim is to establish an in vitro cell coculture model for more reliable experimental results and investigate the mechanism by which Paeonia lactiflora Pall seeds oil inhibits melanin production and transfer. METHODS: The impact of different concentrations of Paeonia lactiflora Pall seeds oil on cocultured cell proliferation rate was assessed using cck8 assay. Tyrosinase inhibition ability in cocultured cells was tested using levodopa as a substrate. Melanin production inhibition ability in coculture cells was evaluated by lysing cells with sodium hydroxide. The effect of Paeonia lactiflora Pall seeds oil on dendrite-related gene expression levels was examined through qPCR analysis. Additionally, Western blotting was employed to study the effect of Paeonia lactiflora Pall seeds oil on dendrite-related protein expression levels. RESULTS: Different concentrations of Paeonia lactiflora Pall seeds oil did not affect the proliferation activity of cocultured cells. A specific concentration of α-MSH increased cell tyrosinase activity, cellular melanin content, as well as Rac1, Cdc42, and PAR-2 gene and protein expression related to dendritic formation. Treatment with a certain concentration of Paeonia lactiflora Pall seeds oil resulted in decreased tyrosinase activity and melanin content in cells along with downregulated expression levels of Rac1, Cdc42, and PAR-2 genes and proteins associated with dendritic formation. CONCLUSIONS: Paeonia lactiflora Pall seeds oil at specific concentrations exhibits the ability to inhibit tyrosinase activity, decrease melanin content, and possesses the potential to impede melanin transfer.


Subject(s)
Cell Proliferation , Coculture Techniques , Melanins , Monophenol Monooxygenase , Paeonia , Plant Oils , Seeds , Skin Lightening Preparations , Paeonia/chemistry , Humans , Melanins/biosynthesis , Seeds/chemistry , Plant Oils/pharmacology , Monophenol Monooxygenase/metabolism , Cell Proliferation/drug effects , Skin Lightening Preparations/pharmacology , Mice , Animals , HaCaT Cells
10.
Sci Rep ; 14(1): 13621, 2024 06 13.
Article in English | MEDLINE | ID: mdl-38871725

ABSTRACT

In the current study, we evaluated the in vitro antibacterial efficacy of the roots' extracts of Jasminum officinale, Rosa damascene and Paeonia officinalis against MRSA (methicillin-resistant Staphylococcus aureus) by well diffusion technique. The root extract of P. officinalis exerted a potent anti-MRSA with MIC 0.4673 µg/ml, while both J. officinale and R. damascene exhibited very weak activity. Therefore, chemical profiling of the crude extract P. officinalis roots assisted by LC-HR-ESI-MS was performed and led to the dereplication of twenty metabolites of different classes, in which terpenes are the most abundant compounds. On a molecular level, network pharmacology was used to determine the targets of active metabolites to bacterial infections, particularly MRSA. Online databases PubChem, UniProt, STRING, and Swiss Target Prediction were used. In addition to using CYTOSCAPE software to display and analyze the findings, ShinyGO and FunRich tools were used to identify the gene enrichment analysis to the set of recognized genes. The results detected the identified metabolites were annotated by 254 targets. ALB, ACHE, TYMS, PRKCD, PLG, MMP9, MMP2, ERN1, EDNRA, BRD4 were found to be associated with MRSA infection. The top KEGG pathway was the vascular smooth muscle contraction pathway according to enrichment FDR. The present study suggested a possible implication of P. officinalis roots as a potent candidate having a powerful antibacterial activity against MRSA.


Subject(s)
Jasminum , Metabolomics , Methicillin-Resistant Staphylococcus aureus , Microbial Sensitivity Tests , Paeonia , Plant Extracts , Rosa , Methicillin-Resistant Staphylococcus aureus/drug effects , Rosa/chemistry , Metabolomics/methods , Plant Extracts/pharmacology , Plant Extracts/chemistry , Paeonia/chemistry , Jasminum/chemistry , Network Pharmacology , Anti-Bacterial Agents/pharmacology , Plant Roots/chemistry
11.
Skin Res Technol ; 30(6): e13769, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38887837

ABSTRACT

BACKGROUND: The total glucoside of paeony (TGP) is recognized for its immunomodulatory properties and anti-inflammatory effects. This study evaluates the efficacy of TGP combined with oral mini-pulse therapy (OMP) and narrow-band ultraviolet B (NB-UVB) in treating active nonsegmental vitiligo (NSV). MATERIALS AND METHODS: The combination therapy was contrasted against those from a group treated solely with OMP and NB-UVB. Data from 62 patients undergoing TGP combination treatment and 55 without were analyzed over a 3-month period. After 6 months, the differences in recurrence rate were investigated by follow-up. RESULTS: The findings indicate that integrating TGP may yield superior outcomes compared to OMP + NB-UVB alone. Moreover, the patient's oxidative stress makers were significantly reduced after the treatment. The majority of patients in the TGP cohort exhibited enhanced skin pigmentation over the duration. Notably, no increase in side effects or recurrence was observed in this group. Especially, patients with vitiligo on their head and neck experienced pronounced improvements. CONCLUSION: The efficacy of the combination treatment group was better than that of the control group at 2 and 3 months, and there was no difference in recurrence rate and side effects, suggesting that TGP may continue to show efficacy in NSV for a longer period of time by reducing the level of oxidative stress, and is especially suitable for patients with head and neck lesions.


Subject(s)
Glucosides , Paeonia , Ultraviolet Therapy , Vitiligo , Humans , Vitiligo/therapy , Vitiligo/radiotherapy , Vitiligo/drug therapy , Female , Male , Adult , Ultraviolet Therapy/methods , Retrospective Studies , Paeonia/chemistry , Glucosides/administration & dosage , Glucosides/therapeutic use , Combined Modality Therapy/methods , Middle Aged , Young Adult , Adrenal Cortex Hormones/administration & dosage , Adrenal Cortex Hormones/therapeutic use , Treatment Outcome , Administration, Oral , Plant Extracts/administration & dosage , Adolescent , Skin Pigmentation/drug effects , Skin Pigmentation/radiation effects
12.
Carbohydr Polym ; 339: 122255, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38823921

ABSTRACT

Mixed infectious vaginitis poses a serious threat to female reproductive health due to complex pathogenic factors, a long course and easy recurrence. Currently, antibiotic-based treatment methods are facing a crisis of drug resistance and secondary dysbiosis. Exploring effective drugs for the treatment of mixed vaginitis from Paeonia suffruticosa Andr., a natural traditional Chinese medicine with a long history of medicinal use, is a feasible treatment strategy. P. suffruticosa Andr. leaf extract (PLE) has significant anti-bacterial effects due to its rich content of polyphenols and flavonoids. The polyphenols in peony leaves have the potential to make carboxymethyl chitosan form in situ gel. In the current study, PLE and carboxymethyl chitosan were combined to develop another type of natural anti-bacterial anti-oxidant hydrogel for the treatment of mixed infectious vaginitis. Through a series of characterisations, CP had a three-dimensional network porous structure with good mechanical properties, high water absorption, long retention and a slow-release drug effect. The mixed infectious vaginitis mouse model induced by a mixture of pathogenic bacteria was used to investigate the therapeutic effects of CP in vivo. The appearance of the vagina, H&E colouring of the tissue and inflammatory factors (TNF-α, IL-6) confirm the good anti-vaginal effect of CP. Therefore, CP was expected to become an ideal effective strategy to improve mixed infection vaginitis due to its excellent hydrogel performance and remarkable ability to regulate flora.


Subject(s)
Anti-Bacterial Agents , Chitosan , Hydrogels , Paeonia , Plant Extracts , Plant Leaves , Chitosan/chemistry , Chitosan/pharmacology , Chitosan/analogs & derivatives , Female , Animals , Hydrogels/chemistry , Hydrogels/pharmacology , Plant Leaves/chemistry , Mice , Plant Extracts/chemistry , Plant Extracts/pharmacology , Paeonia/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/therapeutic use , Vaginosis, Bacterial/drug therapy , Vaginosis, Bacterial/microbiology , Antioxidants/pharmacology , Antioxidants/chemistry
13.
Eur Rev Med Pharmacol Sci ; 28(10): 3523-3531, 2024 May.
Article in English | MEDLINE | ID: mdl-38856127

ABSTRACT

OBJECTIVE: This study aimed to evaluate the efficacy and safety of total glucosides of paeony (TGP) in patients with primary Sjögren's syndrome (pSS). PATIENTS AND METHODS: This study included 236 patients with pSS, including 118 TGP users and 118 non-users. Propensity score matching and Binary logistic regression analyses were used to minimize confounding factors and determine the association between TGP treatment and clinical variables. RESULTS: The baseline indexes of TGP users and non-users were basically the same. The median time of follow-up in the two groups was also similar (p < 0.05). Compared with non-users, TGP users showed higher rates of improvement in dry mouth and eyes and musculoskeletal involvement, as well as more significant reductions in serum alanine aminotransferase (ALT) and direct bilirubin (DBIL) levels after treatment. Logistic regression confirmed that the use of TGP was negatively correlated with the increase of ALT and DBIL in pSS patients, and the reduction in these variables was more pronounced after 2 years of treatment. The incidence of adverse reactions in the TGP users was 11.9%, which was compatible with those in non-users. CONCLUSIONS: TGP is often a safe option for treating pSS patients with musculoskeletal features and abnormal ALT levels. Besides, it can help improve dry mouth and dry eyes and decrease DBIL levels.


Subject(s)
Glucosides , Paeonia , Propensity Score , Sjogren's Syndrome , Humans , Sjogren's Syndrome/drug therapy , Paeonia/chemistry , Glucosides/therapeutic use , Glucosides/adverse effects , Middle Aged , Female , Male , Treatment Outcome , Adult , Plant Extracts/therapeutic use , Plant Extracts/adverse effects , Aged
14.
J Pharm Biomed Anal ; 245: 116184, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38692214

ABSTRACT

The plant of Paeonia lactiflora Pall. belongs to Ranunculaceae, and its root can be divided into two categories according to different processing methods, which included that one was directly dried without peeling the root of the P. lactiflora (PR), and the other was peeled the root of the P. lactiflora (PPR) after boiled and dried. To evaluate the difference of chemical components, UPLC-ESI-Q-Exactive Focus-MS/MS and UPLC-QQQ-MS were applied. The distribution of chemical components in different tissues was located by laser microdissection (LMD), especially the different ingredients. A total of 86 compounds were identified from PR and PPR. Four kind of tissues were isolated from the fresh root of the P. lactiflora (FPR), and 54 compounds were identified. Especially the content of gallic acid, albiflorin, and paeoniflorin with high biological activities were the highest in the cork, but they were lower in PR than that in PPR, which probably related to the process. To illustrate the difference in pharmacological effects of PR and PPR, the tonifying blood and analgesic effects on mice were investigated, and it was found that the tonifying blood and analgesic effects of PPR was superior to that of PR, even though PR had more constituents. The material basis for tonifying blood and analgesic effect of the root of P. lactiflora is likely to be associated with an increase in constituents such as paeoniflorin and paeoniflorin lactone after boiled and peeled. The study was likely to provide some theoretical support for the standard and clinical application.


Subject(s)
Glucosides , Monoterpenes , Paeonia , Plant Roots , Animals , Male , Mice , Analgesics/pharmacology , Analgesics/chemistry , Analgesics/analysis , Bridged-Ring Compounds , Chromatography, High Pressure Liquid/methods , Drugs, Chinese Herbal/chemistry , Drugs, Chinese Herbal/pharmacology , Gallic Acid/analysis , Gallic Acid/chemistry , Glucosides/analysis , Glucosides/chemistry , Lasers , Liquid Chromatography-Mass Spectrometry , Microdissection/methods , Monoterpenes/pharmacology , Monoterpenes/analysis , Monoterpenes/chemistry , Paeonia/chemistry , Plant Extracts/chemistry , Plant Extracts/pharmacology , Plant Roots/chemistry , Spectrometry, Mass, Electrospray Ionization/methods , Tandem Mass Spectrometry/methods
15.
Phytochem Anal ; 35(6): 1486-1495, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38740517

ABSTRACT

INTRODUCTION: Sulfur-fumigation of Paeoniae Radix Alba (PRA) could induce the chemical transformation of its bioactive component paeoniflorin into a sulfur-containing derivative paeoniflorin sulfite, and thus alter the quality, bioactivities, pharmacokinetics, and toxicities of PRA. However, how sulfur-fumigated PRA (S-PRA) affects the quality of PRA-containing complex preparations has not been intensively evaluated. OBJECTIVES: We intend to evaluate the influence of S-PRA on the overall quality of three kinds of Si-Wu-Tang (SWT) formulations, i.e., decoction (SWT-D), granule (SWT-G), and mixture (SWT-M). MATERIAL AND METHODS: An UPLC-DAD multi-components quantification method was used to compare the transfer rates of paeoniflorin sulfite and other 10 bioactive components between S-PRA-containing and NS-PRA-containing SWT formulations. An UPLC-QTOF-MS/MS-based target metabolomics approach was applied to explore the differential sulfur-containing derivatives in S-PRA-containing SWT formulations. RESULTS: The transfer rates of paeoniflorin sulfite in three S-PRA-containing SWT formulations were all higher than 100%. Moreover, S-PRA also increased the transfer rate of 5-hydroxymethylfurfural, 1,2,3,4,6-O-pentagalloylglucose, whereas decreased that of paeoniflorin, albiflorin, and ferulic acid in three SWT formulations. Six pinane monoterpene glucoside sulfites originally identified in S-PRA, were also detectable in three S-PRA-containing SWT formulations. In addition, seven phenolic acid sulfites including (3Z)-6-sulfite-ligustilide, (3E)-6-sulfite-ligustilide, 6,8-disulfite-ligustilide, ferulic acid sulfite, neochlorogenic acid sulfite, chlorogenic acid sulfite, and angelicide sulfite (or isomer) were newly identified in these three S-PRA-containing formulations. CONCLUSION: S-PRA could differentially affect the transfer rate of paeoniflorin sulfite and other bioactive components during the preparation of three SWT formulations and subsequently the overall quality thereof.


Subject(s)
Drugs, Chinese Herbal , Fumigation , Paeonia , Sulfur , Tandem Mass Spectrometry , Paeonia/chemistry , Drugs, Chinese Herbal/chemistry , Chromatography, High Pressure Liquid/methods , Tandem Mass Spectrometry/methods , Sulfur/chemistry , Fumigation/methods , Glucosides/chemistry , Monoterpenes/chemistry , Metabolomics/methods
16.
Int J Mol Sci ; 25(10)2024 May 17.
Article in English | MEDLINE | ID: mdl-38791503

ABSTRACT

Paeonia ostii is an important economic oil and medicinal crop. Its anthers are often used to make tea in China with beneficial effects on human health. However, the metabolite profiles, as well as potential biological activities of P. ostii anthers and the pollen within anthers have not been systematically analyzed, which hinders the improvement of P. ostii utilization. With comprehensive untargeted metabolomic analysis using UPLC-QTOF-MS, we identified a total of 105 metabolites in anthers and pollen, mainly including phenylpropanoids, polyketides, organic acids, benzenoids, lipids, and organic oxygen compounds. Multivariate statistical analysis revealed the metabolite differences between anthers and pollen, with higher carbohydrates and flavonoids content in pollen and higher phenolic content in anthers. Meanwhile, both anthers and pollen extracts exhibited antioxidant activity, antibacterial activity, α-glucosidase and α-amylase inhibitory activity. In general, the anther stage of S4 showed the highest biological activity among all samples. This study illuminated the metabolites and biological activities of anthers and pollen of P. ostii, which supports the further utilization of them.


Subject(s)
Metabolomics , Paeonia , Pollen , Pollen/metabolism , Pollen/chemistry , Paeonia/metabolism , Paeonia/chemistry , Chromatography, High Pressure Liquid/methods , Metabolomics/methods , Antioxidants/metabolism , Metabolome , Plant Extracts/pharmacology , Plant Extracts/chemistry , Flowers/metabolism , Flavonoids/metabolism , Flavonoids/analysis , Mass Spectrometry/methods
17.
Zhongguo Zhong Yao Za Zhi ; 49(10): 2754-2765, 2024 May.
Article in Chinese | MEDLINE | ID: mdl-38812176

ABSTRACT

This study deciphered the ameliorating effect and molecular mechanism of the total glucosides of White Paeony Capsules(TGP) in the treatment of mice model with acute lung injury(ALI) via NOD-like receptor thermal protein domain associated protein 3(NLRP3) signaling pathway of the inflammasome. The study established an inflammasome activation model of primed bone marrow-derived macrophages(BMDMs), and its molecular mechanism was investigated by Western blot(WB), immunofluorescence staining, enzyme-linked immunosorbent assay(ELISA), and flow cytometry. C57BL/6J mice were randomly divided into a blank control group, a TGP group, a model group(LPS group), LPS+low-and high-dose TGP groups, LPS+MCC950 group, and LPS+MCC950+TGP group, with eight mice per group. The ALI model was induced in mice. Finally, bronchoalveolar lavage fluid(BALF) and lung tissue were collected. Lung index and lung weight wet-to-dry ratio were determined for each group of mice. The pathological changes in lung tissue were observed through hematoxylin-eosin(HE) staining. The number of neutrophils in the BALF of each group was detected using flow cytometry. The levels of interleukin(IL)-1ß, IL-6, and tumor necrosis factor(TNF)-α in the BALF were determined by ELISA. The expressions of IL-1ß, IL-18, IL-6, and TNF-α in the lung tissue were determined by real-time quantitative PCR(RT-qPCR). This study demonstrated that TGP dramatically blocked the activation of the NLRP3 inflammasome by inhibiting the production of upstream mitochondrial reactive oxygen species(mtROS) and the subsequent oligomerization of apoptosis-associated specks(ASC). Additionally, in the ALI mice model, compared with the blank control group, the model group showed alveolar structure rupture, thic-kening of alveolar septa, and dramatically increased lung index, lung weight wet-to-dry ratio in lung tissue, neutrophil count, and inflammatory factor levels. Compared with the model group, the pathological morphology of lung tissue was significantly ameliorated in the TGP and MCC950 groups, and the lung index and lung weight wet-to-dry ratio were significantly reduced. Neutrophil counts were reduced, and levels of inflammatory factors were significantly downregulated. Notably, compared with the MCC950 group, there was no significant difference in effect in the MCC950+TGP group. Collectively, the study reveals that TGP may ameliorate ALI in mice by inhibiting the activation of NLRP3 inflammasome, providing a safe and effective drug candidate for the prevention or treatment of ALI/ARDS.


Subject(s)
Acute Lung Injury , Drugs, Chinese Herbal , Glucosides , Inflammasomes , Mice, Inbred C57BL , NLR Family, Pyrin Domain-Containing 3 Protein , Paeonia , Animals , Acute Lung Injury/drug therapy , Acute Lung Injury/metabolism , Acute Lung Injury/immunology , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , Glucosides/pharmacology , Glucosides/chemistry , Mice , Inflammasomes/metabolism , Inflammasomes/drug effects , Male , Paeonia/chemistry , Drugs, Chinese Herbal/administration & dosage , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/chemistry , Capsules , Lung/drug effects , Lung/immunology , Lung/metabolism , Humans , Interleukin-1beta/genetics , Interleukin-1beta/immunology , Interleukin-1beta/metabolism
18.
Chin J Nat Med ; 22(5): 402-415, 2024 May.
Article in English | MEDLINE | ID: mdl-38796214

ABSTRACT

In the realm of autoimmune and inflammatory diseases, the cyclic GMP-AMP synthase (cGAS) stimulator of interferon genes (STING) signaling pathway has been thoroughly investigated and established. Despite this, the clinical approval of drugs targeting the cGAS-STING pathway has been limited. The Total glucosides of paeony (TGP) is highly anti-inflammatory and is commonly used in the treatment of rheumatoid arthritis (RA), emerged as a subject of our study. We found that the TGP markedly reduced the activation of the cGAS-STING signaling pathway, triggered by various cGAS-STING agonists, in mouse bone marrow-derived macrophages (BMDMs) and Tohoku Hospital Pediatrics-1 (THP-1) cells. This inhibition was noted alongside the suppression of interferon regulatory factor 3 (IRF3) phosphorylation and the expression of interferon-beta (IFN-ß), C-X-C motif chemokine ligand 10 (CXCL10), and inflammatory mediators such as tumor necrosis factor-alpha (TNF-α) and interleukin-6 (IL-6). The mechanism of action appeared to involve the TGP's attenuation of the STING-IRF3 interaction, without affecting STING oligomerization, thereby inhibiting the activation of downstream signaling pathways. In vivo, the TGP hindered the initiation of the cGAS-STING pathway by the STING agonist dimethylxanthenone-4-acetic acid (DMXAA) and exhibited promising therapeutic effects in a model of acute liver injury induced by lipopolysaccharide (LPS) and D-galactosamine (D-GalN). Our findings underscore the potential of the TGP as an effective inhibitor of the cGAS-STING pathway, offering a new treatment avenue for inflammatory and autoimmune diseases mediated by this pathway.


Subject(s)
Glucosides , Interferon Regulatory Factor-3 , Membrane Proteins , Nucleotidyltransferases , Paeonia , Signal Transduction , Interferon Regulatory Factor-3/metabolism , Animals , Membrane Proteins/metabolism , Membrane Proteins/genetics , Glucosides/pharmacology , Mice , Humans , Paeonia/chemistry , Nucleotidyltransferases/metabolism , Nucleotidyltransferases/genetics , Signal Transduction/drug effects , Macrophages/drug effects , Macrophages/metabolism , Mice, Inbred C57BL , THP-1 Cells
19.
J Pharm Biomed Anal ; 246: 116222, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38763106

ABSTRACT

Zhenwu Decoction (ZWD), a classic formula from Zhang Zhongjing's "Treatise on Typhoid Fever" in the Han Dynasty, consists of five traditional Chinese medicines: Aconiti Lateralis Radix Praeparata (ALRP), Paeoniae Radix Alba, Poria Cocos, Ginger, and Rhizoma Atractylodis Macrocephalae. To evaluate the chemical constituent consistency of ZWD before and after compatibility, an ultra-performance liquid chromatography-electrospray ionization-quadrupole time-of-flight mass spectrometry was established to comprehensively study the constituents of ZWD. By normalizing the peak area, the pairwise compatibility of ALRP and the other four medicinal herbs, as well as the compatibility of the entire formula were studied, respectively. Multivariate statistical analysis was used to identify the differences. The processed data were analyzed by principal component analysis and supervised orthogonal partial least squared discriminant analysis, and an S-plot was generated to compare the differences in the chemical composition of the two types of decoction samples. The results showed that during the decoction process of ZWD, a total of seven components were recognized as differential compounds before and after compatibility of ZWD, namely 6-gingerol, zingerone, benzoylhypaconine, hypaconitine, benzoylaconine, paeoniflorin and fuziline. The results of this study provide basic data reference for understanding the law of ZWD compatibility and are valuable for the compatibility study of other herbal medicines.


Subject(s)
Drugs, Chinese Herbal , Metabolomics , Spectrometry, Mass, Electrospray Ionization , Tandem Mass Spectrometry , Drugs, Chinese Herbal/chemistry , Drugs, Chinese Herbal/analysis , Spectrometry, Mass, Electrospray Ionization/methods , Chromatography, High Pressure Liquid/methods , Tandem Mass Spectrometry/methods , Metabolomics/methods , Fatty Alcohols/analysis , Fatty Alcohols/chemistry , Principal Component Analysis , Catechols/analysis , Catechols/chemistry , Zingiber officinale/chemistry , Glucosides/analysis , Glucosides/chemistry , Monoterpenes/analysis , Monoterpenes/chemistry , Benzoates/analysis , Benzoates/chemistry , Bridged-Ring Compounds/analysis , Bridged-Ring Compounds/chemistry , Multivariate Analysis , Paeonia/chemistry , Aconitum/chemistry , Aconitine/analogs & derivatives
20.
J Med Food ; 27(6): 502-509, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38669056

ABSTRACT

HemoHIM is a standardized medicinal herbal preparation consisting of extracts of Angelica gigas Nakai, Cnidium officinale Makino, and Paeonia lactiflora Pallas that possesses immune regulatory activities. This study aimed to research the potential antioxidant effects of HemoHIM and its capacity for reducing fatigue in aged mice subjected to forced exercise. After administering HemoHIM 125 (500 mg/kg orally) for 4 weeks in 8-month-old female C57BL/6 mice (4 groups of 10 mice), various parameters were evaluated. The analyses revealed that HemoHIM enhanced swimming time and grip strength. In addition, it significantly reduced serum lactate levels and increased liver glutathione peroxidase (GPx) levels after exercise challenge. The expression levels of antioxidant enzymes and factors, including nuclear factor erythroid 2-related factor-2 (Nrf-2), heme oxygenase 1, superoxide dismutase, GPx, and glutathione reductase, were significantly higher in liver and muscle tissues of mice treated with HemoHIM. These results indicate that HemoHIM might function as an anti-fatigue and antioxidant agent by modulating the Nrf-2 signaling pathway.


Subject(s)
Angelica , Antioxidants , Fatigue , Glutathione Peroxidase , Liver , Mice, Inbred C57BL , NF-E2-Related Factor 2 , Plant Extracts , Superoxide Dismutase , Animals , Antioxidants/pharmacology , Fatigue/drug therapy , Female , Angelica/chemistry , Mice , Glutathione Peroxidase/metabolism , Superoxide Dismutase/metabolism , Liver/drug effects , Liver/metabolism , Plant Extracts/pharmacology , Plant Extracts/administration & dosage , NF-E2-Related Factor 2/metabolism , Cnidium/chemistry , Paeonia/chemistry , Physical Conditioning, Animal , Glutathione Reductase/metabolism , Humans , Aging/drug effects , Heme Oxygenase-1/metabolism , Muscle, Skeletal/drug effects , Muscle, Skeletal/metabolism , Oxidative Stress/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL