ABSTRACT
Pt(II) and Pd(II) coordinating N-donor ligands have been extensively studied as anticancer agents after the success of cisplatin. In this work, a novel bidentate N-donor ligand, the N-[[4-(phenylmethoxy)phenyl]methyl]-2-pyridinemethanamine, was designed to explore the antiparasitic, antiviral and antitumor activity of its Pt(II) and Pd(II) complexes. Chemical and spectroscopic characterization confirm the formation of [MLCl2 ] complexes, where M=Pt(II) and Pd(II). Single crystal X-ray diffraction confirmed a square-planar geometry for the Pd(II) complex. Spectroscopic characterization of the Pt(II) complex suggests a similar structure. 1 H NMR, 195 Pt NMR and HR-ESI-MS(+) analysis of DMSO solution of complexes indicated that both compounds exchange the chloride trans to the pyridine for a solvent molecule with different reaction rates. The ligand and the two complexes were tested for inâ vitro antitumoral, antileishmanial, and antiviral activity. The Pt(II) complex resulted in a GI50 of 10.5â µM against the NCI/ADR-RES (multidrug-resistant ovarian carcinoma) cell line. The ligand and the Pd(II) complex showed good anti-SARS-CoV-2 activity with around 65 % reduction in viral replication at a concentration of 50â µM.
Subject(s)
Antineoplastic Agents , Coordination Complexes , Platinum/pharmacology , Platinum/chemistry , Ligands , Cisplatin , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antiviral Agents/pharmacology , Palladium/pharmacology , Palladium/chemistry , Crystallography, X-Ray , Coordination Complexes/pharmacology , Coordination Complexes/chemistry , Cell Line, TumorABSTRACT
Drug resistance, evasion of cell death and metastasis are factors that contribute to the low cure rate and disease-free survival in osteosarcomas (OS). In this study, we demonstrated that a new class of oxime-containing organometallic complexes called Pd-BPO (O3) and Pd-BMO (O4) are more cytotoxic than cisplatin (CDDP) for SaOS-2 and U2OS cells using the MTT assay. Annexin-FITC/7-AAD staining demonstrated a greater potential for palladium-oxime complexes to induce death in SaOS-2 cells than CDDP, an event confirmed using the pan-caspase inhibitor Z-VAD-FMK. Compared to CDDP, only palladium-oxime complexes eradicated the clonogenicity of SaOS-2 cells after 7 days of treatment. The involvement of the lysosome-mitochondria axis in the cell death-inducing properties of the complexes was also evaluated. Using LysoTracker Red to label the acidic organelles of SaOS-2 cells treated with the O3 and O4 complexes, a decrease in the fluorescence intensity of this probe was observed in relation to CDDP and the control. Lysosomal membrane permeabilization (LMP) was also induced by the O3 and O4 complexes in an assay using acridine orange (A/O). The greater efficiency of the complexes in depolarizing the mitochondrial membrane compared to SaOS-2 cells treated with CDDP was also observed using TMRE (tetramethyl rhodamine, ethyl ester). For in vivo studies, C. elegans was used and demonstrated that both complexes reduce body bends and pharyngeal pumping after 24 h of treatment to the same extent as CDDP. We conclude that both palladium-oxime complexes are more effective than CDDP in inducing tumor cell death. The toxicity of these complexes to C. elegans was like that induced by CDDP. These results encourage preclinical studies aimed at developing more effective drugs for the treatment of osteosarcoma (OS). Furthermore, we propose palladium-oxime complexes as a new class of antineoplastic agents.
Subject(s)
Antineoplastic Agents , Bone Neoplasms , Osteosarcoma , Animals , Humans , Cisplatin/pharmacology , Palladium/pharmacology , Caenorhabditis elegans , Apoptosis , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Osteosarcoma/pathology , Bone Neoplasms/pathology , Cell Line, TumorABSTRACT
In this work, two analogous coumarin-thio and semicarbazone hybrid compounds were prepared and evaluated as a potential antichagasic agents. Furthermore, palladium and platinum complexes with the thiosemicarbazone derivative as ligand (L1) were obtained in order to establish the effect of metal complexation on the antiparasitic activity. All compounds were fully characterized both in solution and in solid state including the resolution of the crystal structure of the palladium complex by X-ray diffraction methods. Unexpectedly, all experimental and theoretical characterizations in the solid state, demonstrated that the obtained palladium and platinum complexes are structurally different: [PdCl(L1)] and [PtCl2(HL1)]. All the studied compounds lower the proliferation of the amastigote form of Trypanosoma cruzi while some of them also have an effect on the trypomastigote stage. Additionally, the compounds inhibit T. cruzi release from host cells in variable extents. The Pd compound presented a remarkable profile in all the in vitro experiments, and it showed no toxicity for mammalian cells in the assayed concentrations. In this sense, in vivo experiments were performed for this compound using an acute model of Chagas disease. Results showed that the complex significantly lowered the parasite count in the mice blood with no significant toxicity.
Subject(s)
Thiosemicarbazones , Trypanocidal Agents , Trypanosoma cruzi , Animals , Mice , Palladium/pharmacology , Palladium/chemistry , Thiosemicarbazones/pharmacology , Thiosemicarbazones/chemistry , Ligands , Parasitemia , Platinum/chemistry , Trypanocidal Agents/pharmacology , Coumarins/pharmacology , MammalsABSTRACT
The current research describes the synthesis and characterization of 2-acetylpyridine N(4)-cyclohexyl-thiosemicarbazone ligand (HL) and their two metal complexes, [Au(L)Cl][AuCl2] (1) and [Pd(L)Cl]·DMF (2). The molecular structures of the compounds were determined by physicochemical and spectroscopic methods. Single crystal X-ray diffraction was employed in the structural elucidation of the new complexes. The complexes showed a square planar geometry to the metal center Au(III) and Pd(II), coordinated with a thiosemicarbazone molecule by the NNS-donor system and a chloride ion. Complex (1) also shows the [AuCl2]- counter-ion in the asymmetric unit, and complex (2) has one DMF solvent molecule. These molecules play a key role in the formation of supramolecular structures due to different interactions. Noncovalent interactions were investigated through the 3D Hirshfeld surface by the dnorm function and the 2D fingerprint plots. The biological activity of the compounds was evaluated in vitro against the human glioma U251 cells. The cytotoxicity results revealed great antitumor activity in complex (1) compared with complex (2) and the free ligand. Molecular docking simulations were used to predict interactions and properties with selected proteins and DNA of the synthesized compounds.
Subject(s)
Antineoplastic Agents , Coordination Complexes , Thiosemicarbazones , Humans , Molecular Docking Simulation , Thiosemicarbazones/pharmacology , Thiosemicarbazones/chemistry , Palladium/pharmacology , Palladium/chemistry , Gold/chemistry , Ligands , Coordination Complexes/pharmacology , Coordination Complexes/chemistry , Molecular Structure , Crystallography, X-Ray , Antineoplastic Agents/chemistryABSTRACT
The ability to control the activation of prodrugs by transition metals has been shown to have great potential for controlled drug release in cancer cells. However, the strategies developed so far promote the cleavage of C-O or C-N bonds, which limits the scope of drugs to only those that present amino or hydroxyl groups. Here, we report the decaging of an ortho-quinone prodrug, a propargylated ß-lapachone derivative, through a palladium-mediated C-C bond cleavage. The reaction's kinetic and mechanistic behavior was studied under biological conditions along with computer modeling. The results indicate that palladium (II) is the active species for the depropargylation reaction, activating the triple bond for nucleophilic attack by a water molecule before the C-C bond cleavage takes place. Palladium iodide nanoparticles were found to efficiently trigger the C-C bond cleavage reaction under biocompatible conditions. In drug activation assays in cells, the protected analogue of ß-lapachone was activated by nontoxic amounts of nanoparticles, which restored drug toxicity. The palladium-mediated ortho-quinone prodrug activation was further demonstrated in zebrafish tumor xenografts, which resulted in a significant anti-tumoral effect. This work expands the transition-metal-mediated bioorthogonal decaging toolbox to include cleavage of C-C bonds and payloads that were previously not accessible by conventional strategies.
Subject(s)
Naphthoquinones , Neoplasms , Prodrugs , Animals , Humans , Prodrugs/pharmacology , Prodrugs/chemistry , Palladium/chemistry , ZebrafishABSTRACT
This work describes the preparation, characterization and antimicrobial activity of four palladium(II) complexes, namely, [Pd(meg)(1,10-phen)] 1, [Pd(meg)(PPh3)2] 2, [Pd(og)(1,10-phen)] 3 and [Pd(og)(PPh3)2] 4, where meg = methyl gallate, og = octyl gallate, 1,10-phen = 1,10-phenanthroline and PPh3 = triphenylphosphine. As to the chemical structures, spectral and physicochemical studies of 1-4 indicated that methyl or octyl gallate coordinates a palladium(II) ion through two oxygen atoms upon deprotonation. A chelating bidentate phenanthroline or two triphenylphosphine molecules complete the coordination sphere of palladium(II) ion, depending on the complex. The metal complexes were tested against the Mycobacterium tuberculosis H37Rv strain and 2 exhibited high activity (MIC = 3.28 µg/mL). As to the tests with Campylobacter jejuni, complex 1 showed a significant effect in reducing bacterial population (greater than 7 log CFU) in planktonic forms, as well as in the biomass intensity (IBF: 0.87) when compared to peracetic acid (IBF: 1.11) at a concentration of 400 µg/mL. The effect provided by these complexes has specificity according to the target microorganism and represent a promising alternative for the control of microorganisms of public health importance.
Subject(s)
Campylobacter jejuni , Coordination Complexes , Mycobacterium tuberculosis , Palladium/pharmacology , Palladium/chemistry , Crystallography, X-Ray , Coordination Complexes/pharmacology , Coordination Complexes/chemistryABSTRACT
The production of sustainable catalytic supports for palladium nanoparticles is always desired, even more so through the recovery of biomass residues. In this sense, two different solids were investigated - chitosan/cellulose film and corn stem biochar - as catalytic supports of palladium nanoparticles. The solids were carefully characterized and tested in the Suzuki-Miyaura reaction, a typical cross-coupling reaction. The developed catalytic systems proved to be efficient and sustainable, promoted the formation of target products very well, and demanded green reactants under environmentally appropriate conditions. With the results shown in the manuscript, it is expected to contribute to the valorization of biomass and agro-industrial residues in the development of new catalysts for the chemical industry.
Subject(s)
Chitosan , Metal Nanoparticles , Metal Nanoparticles/chemistry , Palladium/chemistry , Chitosan/chemistry , Zea mays , Cellulose/chemistry , CatalysisABSTRACT
Pure (TiO2) and 0.1 nominal atomic percent of palladium-modified TiO2 (Pd-TiO2) films were synthesized via a sol-gel method and compared through their physicochemical properties and photocatalytic activity in the degradation of an emerging contaminant, 17-α-ethinylestradiol (EE2). The activity of the films was studied using a continuous flow, planar microreactor under simulated sunlight. Catalysts characterization included X-ray diffraction, UV-Visible diffuse reflectance and transmittance spectroscopy, atomic force microscopy, transmission electron microscopy, Raman spectroscopy, N2 physisorption analysis, and X-ray photoelectron spectroscopy. The modification of TiO2 with palladium confined the size of anatase phase crystallites, increased the specific surface area and improved radiation absorption. PdO domains on TiO2 were observed. In all the tested conditions, higher conversion of EE2 was achieved with the Pd-TiO2 film compared with the TiO2 film, presenting an 80% increase in the reaction rate. The performance of the catalytic films was also assessed by the calculation of two efficiency parameters: radiation absorption efficiency and quantum efficiency of reaction. The Pd-TiO2 film showed a notable enhancement of the absorption of the incident radiation and a more efficient utilization of the absorbed photons to degrade the target pollutant.
Subject(s)
Absorption, Radiation , Palladium , Microscopy, Electron, Transmission , Titanium/chemistry , CatalysisABSTRACT
A significant fraction of patients are affected by persistent fear and anxiety. Currently, there are several anxiolytic drug options, however their clinical outcomes do not fully manage the symptoms. Here, we evaluated the effects of a bromazepampalladium derivative [2-{(7-bromo-2-oxo-1,3-dihydro-2H-1,4-benzodiazepin-5-il)pyridinyl-κ2-N,N}chloropalladium(II)], [(BMZ)PdCl2], on fear/anxiety and memory-related behavior in mice. For this, female Swiss mice were treated intraperitoneally (i.p.) with saline (NaCl 0.9%) or [(BMZ)PdCl2] (0.5, 5.0, or 50 µg/kg). After 30 min, different tests were performed to evaluate anxiety, locomotion, and memory. We also evaluated the acute toxicity of [(BMZ)PdCl2] using a cell viability assay (neutral red uptake assay), and whether the drugs mechanism of action involves the γ-aminobutyric acid type A (GABAA) receptor complex by pre-treating animals with flumazenil (1.0 mg/kg, i.p., a competitive antagonist of GABAA-binding site). Our results demonstrate that [(BMZ)PdCl2] induces an anxiolytic-like phenotype in the elevated plus-maze test and that this effect can be blocked by flumazenil. Furthermore, there were no behavioral alterations induced by [(BMZ)PdCl2], as evaluated in the light-dark box, open field, and step-down passive avoidance tests. In the acute toxicity assay, [(BMZ)PdCl2] presented IC50 and LD50 values of 218 ± 60 µg/mL and 780 ± 80 mg/kg, respectively, and GSH category 4. Taken together, our results show that the anxiolytic-like effect of acute treatment with [(BMZ)PdCl2] occurs through the modulation of the benzodiazepine site in the GABAA receptor complex. Moreover, we show indications that [(BMZ)PdCl2] does not promote sedation and amnesia and presents the same toxicity as the bromazepam prototype.
Subject(s)
Anti-Anxiety Agents , Bromazepam , Animals , Mice , Female , Anti-Anxiety Agents/pharmacology , Anti-Anxiety Agents/therapeutic use , Flumazenil/pharmacology , Bromazepam/pharmacology , Palladium/pharmacology , gamma-Aminobutyric Acid , Behavior, Animal , Maze LearningABSTRACT
Biomass valorization is essential, particularly in emerging countries. Here, hydrochar from arabica coffee straw was functionalized with a triazole group (HD-TRz) for use as a support of palladium nanoparticles (PdNPs-HD-TRz) applied in the Ullmann coupling reaction for the first time. It provided remarkably excellent selectivities, conversions at a temperature as low as 45 °C and catalyst recyclability, surpassing previous literature performances. Hydrochar was obtained by one-pot reaction via hydrothermal synthesis, using NaOH solution as activating agent and functionalized with a 1,3-triazole group by CuAAC "click" reaction. The PdNPs were prepared via reduction of hydrochar-bound Pd(II) using NaBH4. Hydrochar functionalization was monitored by infrared spectroscopy, and X-ray diffraction (XRD) allowed to observe carbon and palladium planes in hydrochar and PdNPs HD-TRz structures. The PdNPs presented a spherical shape with 2.1 ± 0.1 nm size, homogeneously distributed in the carbon coverslips. The HD-TRz-supported PdNPs were used as a catalyst in the Ullmann reaction of iodobenzene, using ethanol as solvent with 100% of conversion and 91% selectivity at 45 °C. The material was reused, presenting 100% of conversion and selectivities of 92, 84 and 73% for the 1st, 2nd and 3rd cycle, respectively. The scope of the reaction was expanded to other molecules showing the potential of this and other triazole-hydrochar-supported nanocatalysts.
Subject(s)
Iodobenzenes , Metal Nanoparticles , Carbon , Coffee , Ethanol , Metal Nanoparticles/chemistry , Palladium/chemistry , Sodium Hydroxide , Solvents , TriazolesABSTRACT
Lignin is a natural polymer containing diverse functional groups and displaying an affinity for metals. Kraft lignin can be used as a carbon source, as a cleaving lignin structure for aromatic macromers or in the addition and modification of functional groups by the development of new active chemical sites. In this context, the aim of the present study is to investigate the adsorption of mono and multi-element metals solutions on lignin derivatives (unmodified Kraft lignin, acetylated Kraft lignin, charcoal Kraft lignin and activated carbon Kraft lignin). Parameters that affect adsorption processes, such as pH, contact time and adsorbent dose, were optimized in each case. The best adsorption condition was obtained at pH 7.00, a contact time of 120 min and with adsorbent dose of 30 mg. Also, unmodified Kraft lignin shows high adsorption selectivity (99%) for gold and palladium in acidic solutions. Acetylated and charcoal Kraft lignin resulted in lower adsorption levels in comparison with unmodified Kraft lignin. Activated carbon, however, reached adsorptions of over 86% for all metals. Finally, unmodified Kraft lignin impregnated with palladium presents a promising heterogeneous support in the Suzuki-Miyaura reaction.
Subject(s)
Charcoal , Lignin , Adsorption , Gold , Lignin/chemistry , PalladiumABSTRACT
Palladium-catalyzed functionalization was presently performed on two building blocks: 4-oxazolin-2-ones and 4-methylene-2-oxazolidinones. Direct Heck arylation of 4-oxazolin-2-ones led to a series of 5-aryl-4-oxazolin-2-ones, including analogues with N-chiral auxiliary, in an almost quantitative yield. The Pd(II)-catalyzed homocoupling reaction of 4-oxazolin-2-ones provided novel heterocyclic across-ring dienes. Meanwhile, the intramolecular cross-coupling of N-aryl-4-methylene-2-oxazolidinones furnished a series of oxazolo[3,4-a]indol-3-ones. Further functionalization of 4-methylene-2-oxazolidinones afforded substituted indoles and heterocyclic-fused indoles with aryl, bromo, carbinol, formyl, and vinyl groups. A computational study was carried out to account for the behavior of the formylated derivatives. The currently developed methodology was applied to a new formal total synthesis of ellipticine.
Subject(s)
Ellipticines , Oxazolidinones , Catalysis , Indoles , Methane/analogs & derivatives , Methanol , PalladiumABSTRACT
Potential use of metal complexes in medicine is an area of bioinorganic chemistry that has gained much interest. High-throughput omics approaches can provide in-depth insights into the mechanism of action of new metal-based compounds. Discovering new metallodrugs against Trypanosoma cruzi is an emerging field. Combining metallomics, proteomics, and transcriptomics allows the identification of multiple molecular targets and several parasitic metabolic pathways affected by V(IV), Pt(II), and Pd(II) potential antiparasitic drugs. Specifically, metallomics studies with Pd(II) and Pt(II) analogous compounds show higher parasite uptake of the Pt(II) than Pd(II), and both accumulate similarly in the parasite DNA fraction. Unexpectedly, vanadium did not associate with DNA. The studies reviewed illustrate the use of omics techniques for determining molecular targets of potential therapeutic agents.
Subject(s)
Coordination Complexes , Trypanocidal Agents , Trypanosoma cruzi , Antiparasitic Agents/pharmacology , Coordination Complexes/chemistry , DNA , Palladium/chemistry , Trypanocidal Agents/chemistry , Trypanocidal Agents/pharmacologyABSTRACT
The selective synthesis of 4-alkynyloxazolones and their further applications as substrates to electrophile-promoted nucleophilic cyclization have been developed. The reaction of ynamides with terminal alkynes proceeded smoothly to give 4-alkynyloxazolones in the presence of a catalytic amount of palladium(II) acetate. The products were obtained with the sequential formation of new C-C and C-O bonds via a cascade procedure. The first step involved a carbon-oxygen bond formation, via a 5-endo-dig closure, which was confirmed by X-ray analyses of the crystalline sample. Subsequently, the reaction of 4-alkynyloxazolones with an electrophilic selenium source gave 3-phenylselanyl benzofuran derivatives via an electrophile-promoted nucleophilic cyclization.
Subject(s)
Palladium , Catalysis , Cyclization , Molecular Structure , Palladium/chemistry , StereoisomerismABSTRACT
We report the synthesis and characterization of two novel tetra-cationic porphyrins, containing Pt(II) or Pd(II) polypyridyl complexes attached at the peripheral position of N4-macrocycle. Compounds were characterized through elemental analysis, molar conductivity, cyclic voltammetry, and spectroscopy analysis. Photophysical and photobiological parameters were also evaluated. Also, the binding capacity of each porphyrin with human serum albumin (HSA) was determined by UV-Vis, steady-state, and time-resolved fluorescence spectroscopy, combined with molecular docking calculations. The results suggest that the interaction of these compounds is spontaneous, weak to moderate, and probably occurs at site III (subdomain IB) by non-covalent forces, including van der Waals and H-bonding. Moreover, porphyrins containing peripheral complexes improve their interactions with biomolecules, show good photostability, generate reactive oxygen species under white light studied by electron paramagnetic resonance (EPR) analysis, and promote photo-damage of HSA.
Subject(s)
Palladium/pharmacology , Platinum Compounds/pharmacology , Porphyrins/pharmacology , Electron Spin Resonance Spectroscopy , Humans , Models, Molecular , Molecular Docking Simulation , Molecular Structure , Palladium/chemistry , Photochemotherapy , Photosensitizing Agents , Platinum Compounds/chemistry , Porphyrins/chemistry , Protein Conformation , Serum Albumin/chemistryABSTRACT
Heterogeneous photocatalysis is highlighted to treat volatile organic compound (VOC) emission. Then, this work analysed the influence of palladium (Pd) content loaded in TiO2 on n-octane and iso-octane photodegradation. For this, TiO2 was loaded with Pd in different contents: 0.4%, 0.7%, and 1.0%. The samples were characterized, and the photodegradation experiments were conducted by Pd/TiO2/UV process. The characterization analyses showed that the metal presence did not change the catalyst structure or its surface area; however, it reduced the bandgap energy. The photocatalytic results proved that palladium improved n-octane degradation from 62% (pure TiO2) to 92.6% (0.4%Pd/TiO2) and, iso-octane degradation enhanced from 59% (pure TiO2) to 90.6% (0.7%Pd/TiO2); all results were obtained in the space time of 39 s. Therefore, 0.4%Pd/TiO2 and 0.7%Pd/TiO2 showed better oxidation results to degradation n-octane and iso-octane, respectively. The kinetic model of pseudo-first order showed a good fit for the data of both VOCs. Heterogeneous photocatalysis with Pd/TiO2 showed to be an adequate technique to reduce VOCs emission.
Subject(s)
Volatile Organic Compounds , Catalysis , Octanes , Palladium/chemistry , Titanium/chemistry , Ultraviolet Rays , Volatile Organic Compounds/analysisABSTRACT
This study reports the synthesis, structural characterization and cytotoxic activity of four new palladium/pyridylporphyrin complexes, with the general formula {TPyP[PdCl(P-P)]4}(PF6)4, where P-P is 1,2-bis(diphenylphosphino)ethane (dppe), 1,3-bis(diphenylphosphino)propane (dppp), 1,2-bis(diphenylphosphino)butane (dppb) or 1,1'-bis(diphenylphosphino)ferrocene (dppf). The complexes were characterized by elemental analysis, and by FT-IR, UV/Vis, 1H and 31P{1H} NMR (1D/2D) spectroscopy. The slow evaporation of a methanolic solution of {TPyP[PdCl(dppb)]4}(PF6)4 (in an excess of NaBF4 salt) resulted in single crystals suitable for X ray diffraction, allowing the determination of the tridimensional structure of this complex, which crystallized in the P21/a space group. The cytotoxicity of the complexes against MDA-MB-231 (breast cancer cells) and MCF-10A (non-tumor breast cancer cells), was determined by the colorimetric MTT method, which revealed that all four complexes show selective indexes close to 1.2, lower than that of cisplatin for the same cells (12.12). The interaction of the complexes with CT-DNA was evaluated by UV-visible and viscosity measurements and it was determined that the complexes interact moderately with CT-DNA, probably by H-bonding/π-π stacking and electrostatic interactions.
Subject(s)
Antineoplastic Agents , Coordination Complexes , Palladium , Porphyrins , Antineoplastic Agents/administration & dosage , Antineoplastic Agents/chemistry , Cell Line , Cell Proliferation/drug effects , Cell Survival/drug effects , Coordination Complexes/administration & dosage , Coordination Complexes/chemistry , DNA/chemistry , Humans , Palladium/administration & dosage , Palladium/chemistry , Porphyrins/administration & dosage , Porphyrins/chemistry , ViscosityABSTRACT
In this paper, two biosystems based on filamentous fungi and Pd nanoparticles (NPs) were synthesized and structurally characterized. In the first case, results concerning the integration and distribution of Pd-NPs on Phialomyces macrosporus revealed that nanoparticles are accumulated on the cell wall, keeping the cytoplasm isolated from abiotic particles. However, the Penicillium sp. species showed an unexpected internalization of Pd-NPs in the fungal cytosol, becoming a promising biosystem to further studies of in vivo catalytic reactions. Next, we report a new solution-based strategy to prepare palladized biohybrids through sequential reduction of Pd2+ ions over previously harvested fungus/Au-NP composites. The chemical composition and the morphology of the biohybrid surface were characterized using a combination of scanning electron microscopy, transmission electron microscopy, and photoelectron spectroscopy. The deposition of Pd0 over the fungal surface produced biohybrids with a combination of Au and Pd in the NPs. Interestingly, other chemical species such as Au+ and Pd2+ are also observed on the outermost wall of microorganisms. Finally, the application of A. niger/AuPd-NP biohybrids in the 3-methyl-2-buten-1-ol hydrogenation reaction is presented for the first time. Biohybrids with a high fraction of Pd0 are active for this catalytic reaction.
Subject(s)
Fungi , Palladium , Catalysis , Microscopy, Electron, Transmission , Photoelectron SpectroscopyABSTRACT
This manuscript reports enhanced antimicrobial photoinactivation using tetra-cationic porphyrins with peripheral platinum(II) and palladium(II) complexes against fungal dermatophyte strains. Six different positively charged porphyrins were used and applied in antimicrobial photodynamic therapy experiments (aPDT) against dermatophyte fungi colonies. The microbiological tests were conducted with an adequate concentration of photosensitizer (PS) under white-light irradiation for 120 min and the most effective PS meta isomer 3PtP significantly reduced the concentration of viable fungal colony. In this way, tetra-cationic porphyrins containing platinum(II)-bipyridyl complexes may be promising fungicidal aPDT agents with potential applications in future clinical cases.
Subject(s)
Anti-Infective Agents , Photochemotherapy , Porphyrins , Palladium , Photochemotherapy/methods , Photosensitizing Agents/pharmacology , Platinum , Porphyrins/pharmacologyABSTRACT
Antimicrobial photodynamic therapy (aPDT) has gained prominence in microbiology, especially in treating non-invasive infections. Diseases such as mycobacteriosis, which causes localized infections and has a slow treatment, tend to be future targets for this type of technology. Therefore, this study aimed to explore the action of two isomeric Pd(II)-porphyrins on fast-growing mycobacterial strains (RGM). Tetra-cationic porphyrins (4-PdTPyP and 3-PdTPyP) were synthesized and applied against standard strains of Mycobacteroides abscessus subsp. abscessus (ATCC 19977), Mycolicibacterium fortuitum (ATCC 6841), Mycolicibacterium smegmatis (ATCC 700084), and Mycobacteroides abscessus subsp. massiliense (ATCC 48898). Reactive oxygen species (ROS) scavengers were used in an attempt to determine possible ROS produced by the photosensitizers (PS) under study. Moreover, the impact of porphyrin on the mycobacterial surface was further evaluated by atomic force microscopy (AFM), and we observed significant damage on cells walls and altered nanomechanical and electrostatic adhesion properties. The results presented herein show that the positively charged porphyrin at the meta position (3-PdTPyP) was the most efficient PS against the RGM strains, and its bactericidal activity was proven in two irradiation sessions, with singlet oxygen species being the main ROS involved in this process. This study demonstrated the therapeutic potential of porphyrins, especially the 3-PdTPyP derivative.