Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
Add more filters











Publication year range
1.
Chembiochem ; 25(6): e202300696, 2024 03 15.
Article in English | MEDLINE | ID: mdl-38146865

ABSTRACT

Pt(II) and Pd(II) coordinating N-donor ligands have been extensively studied as anticancer agents after the success of cisplatin. In this work, a novel bidentate N-donor ligand, the N-[[4-(phenylmethoxy)phenyl]methyl]-2-pyridinemethanamine, was designed to explore the antiparasitic, antiviral and antitumor activity of its Pt(II) and Pd(II) complexes. Chemical and spectroscopic characterization confirm the formation of [MLCl2 ] complexes, where M=Pt(II) and Pd(II). Single crystal X-ray diffraction confirmed a square-planar geometry for the Pd(II) complex. Spectroscopic characterization of the Pt(II) complex suggests a similar structure. 1 H NMR, 195 Pt NMR and HR-ESI-MS(+) analysis of DMSO solution of complexes indicated that both compounds exchange the chloride trans to the pyridine for a solvent molecule with different reaction rates. The ligand and the two complexes were tested for in vitro antitumoral, antileishmanial, and antiviral activity. The Pt(II) complex resulted in a GI50 of 10.5 µM against the NCI/ADR-RES (multidrug-resistant ovarian carcinoma) cell line. The ligand and the Pd(II) complex showed good anti-SARS-CoV-2 activity with around 65 % reduction in viral replication at a concentration of 50 µM.


Subject(s)
Antineoplastic Agents , Coordination Complexes , Platinum/pharmacology , Platinum/chemistry , Ligands , Cisplatin , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antiviral Agents/pharmacology , Palladium/pharmacology , Palladium/chemistry , Crystallography, X-Ray , Coordination Complexes/pharmacology , Coordination Complexes/chemistry , Cell Line, Tumor
2.
Eur J Med Chem ; 264: 116034, 2024 Jan 15.
Article in English | MEDLINE | ID: mdl-38103541

ABSTRACT

Drug resistance, evasion of cell death and metastasis are factors that contribute to the low cure rate and disease-free survival in osteosarcomas (OS). In this study, we demonstrated that a new class of oxime-containing organometallic complexes called Pd-BPO (O3) and Pd-BMO (O4) are more cytotoxic than cisplatin (CDDP) for SaOS-2 and U2OS cells using the MTT assay. Annexin-FITC/7-AAD staining demonstrated a greater potential for palladium-oxime complexes to induce death in SaOS-2 cells than CDDP, an event confirmed using the pan-caspase inhibitor Z-VAD-FMK. Compared to CDDP, only palladium-oxime complexes eradicated the clonogenicity of SaOS-2 cells after 7 days of treatment. The involvement of the lysosome-mitochondria axis in the cell death-inducing properties of the complexes was also evaluated. Using LysoTracker Red to label the acidic organelles of SaOS-2 cells treated with the O3 and O4 complexes, a decrease in the fluorescence intensity of this probe was observed in relation to CDDP and the control. Lysosomal membrane permeabilization (LMP) was also induced by the O3 and O4 complexes in an assay using acridine orange (A/O). The greater efficiency of the complexes in depolarizing the mitochondrial membrane compared to SaOS-2 cells treated with CDDP was also observed using TMRE (tetramethyl rhodamine, ethyl ester). For in vivo studies, C. elegans was used and demonstrated that both complexes reduce body bends and pharyngeal pumping after 24 h of treatment to the same extent as CDDP. We conclude that both palladium-oxime complexes are more effective than CDDP in inducing tumor cell death. The toxicity of these complexes to C. elegans was like that induced by CDDP. These results encourage preclinical studies aimed at developing more effective drugs for the treatment of osteosarcoma (OS). Furthermore, we propose palladium-oxime complexes as a new class of antineoplastic agents.


Subject(s)
Antineoplastic Agents , Bone Neoplasms , Osteosarcoma , Animals , Humans , Cisplatin/pharmacology , Palladium/pharmacology , Caenorhabditis elegans , Apoptosis , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Osteosarcoma/pathology , Bone Neoplasms/pathology , Cell Line, Tumor
3.
J Biol Inorg Chem ; 28(8): 711-723, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37768364

ABSTRACT

In this work, two analogous coumarin-thio and semicarbazone hybrid compounds were prepared and evaluated as a potential antichagasic agents. Furthermore, palladium and platinum complexes with the thiosemicarbazone derivative as ligand (L1) were obtained in order to establish the effect of metal complexation on the antiparasitic activity. All compounds were fully characterized both in solution and in solid state including the resolution of the crystal structure of the palladium complex by X-ray diffraction methods. Unexpectedly, all experimental and theoretical characterizations in the solid state, demonstrated that the obtained palladium and platinum complexes are structurally different: [PdCl(L1)] and [PtCl2(HL1)]. All the studied compounds lower the proliferation of the amastigote form of Trypanosoma cruzi while some of them also have an effect on the trypomastigote stage. Additionally, the compounds inhibit T. cruzi release from host cells in variable extents. The Pd compound presented a remarkable profile in all the in vitro experiments, and it showed no toxicity for mammalian cells in the assayed concentrations. In this sense, in vivo experiments were performed for this compound using an acute model of Chagas disease. Results showed that the complex significantly lowered the parasite count in the mice blood with no significant toxicity.


Subject(s)
Thiosemicarbazones , Trypanocidal Agents , Trypanosoma cruzi , Animals , Mice , Palladium/pharmacology , Palladium/chemistry , Thiosemicarbazones/pharmacology , Thiosemicarbazones/chemistry , Ligands , Parasitemia , Platinum/chemistry , Trypanocidal Agents/pharmacology , Coumarins/pharmacology , Mammals
4.
Int J Mol Sci ; 24(14)2023 Jul 14.
Article in English | MEDLINE | ID: mdl-37511201

ABSTRACT

The current research describes the synthesis and characterization of 2-acetylpyridine N(4)-cyclohexyl-thiosemicarbazone ligand (HL) and their two metal complexes, [Au(L)Cl][AuCl2] (1) and [Pd(L)Cl]·DMF (2). The molecular structures of the compounds were determined by physicochemical and spectroscopic methods. Single crystal X-ray diffraction was employed in the structural elucidation of the new complexes. The complexes showed a square planar geometry to the metal center Au(III) and Pd(II), coordinated with a thiosemicarbazone molecule by the NNS-donor system and a chloride ion. Complex (1) also shows the [AuCl2]- counter-ion in the asymmetric unit, and complex (2) has one DMF solvent molecule. These molecules play a key role in the formation of supramolecular structures due to different interactions. Noncovalent interactions were investigated through the 3D Hirshfeld surface by the dnorm function and the 2D fingerprint plots. The biological activity of the compounds was evaluated in vitro against the human glioma U251 cells. The cytotoxicity results revealed great antitumor activity in complex (1) compared with complex (2) and the free ligand. Molecular docking simulations were used to predict interactions and properties with selected proteins and DNA of the synthesized compounds.


Subject(s)
Antineoplastic Agents , Coordination Complexes , Thiosemicarbazones , Humans , Molecular Docking Simulation , Thiosemicarbazones/pharmacology , Thiosemicarbazones/chemistry , Palladium/pharmacology , Palladium/chemistry , Gold/chemistry , Ligands , Coordination Complexes/pharmacology , Coordination Complexes/chemistry , Molecular Structure , Crystallography, X-Ray , Antineoplastic Agents/chemistry
5.
Molecules ; 28(9)2023 May 05.
Article in English | MEDLINE | ID: mdl-37175297

ABSTRACT

This work describes the preparation, characterization and antimicrobial activity of four palladium(II) complexes, namely, [Pd(meg)(1,10-phen)] 1, [Pd(meg)(PPh3)2] 2, [Pd(og)(1,10-phen)] 3 and [Pd(og)(PPh3)2] 4, where meg = methyl gallate, og = octyl gallate, 1,10-phen = 1,10-phenanthroline and PPh3 = triphenylphosphine. As to the chemical structures, spectral and physicochemical studies of 1-4 indicated that methyl or octyl gallate coordinates a palladium(II) ion through two oxygen atoms upon deprotonation. A chelating bidentate phenanthroline or two triphenylphosphine molecules complete the coordination sphere of palladium(II) ion, depending on the complex. The metal complexes were tested against the Mycobacterium tuberculosis H37Rv strain and 2 exhibited high activity (MIC = 3.28 µg/mL). As to the tests with Campylobacter jejuni, complex 1 showed a significant effect in reducing bacterial population (greater than 7 log CFU) in planktonic forms, as well as in the biomass intensity (IBF: 0.87) when compared to peracetic acid (IBF: 1.11) at a concentration of 400 µg/mL. The effect provided by these complexes has specificity according to the target microorganism and represent a promising alternative for the control of microorganisms of public health importance.


Subject(s)
Campylobacter jejuni , Coordination Complexes , Mycobacterium tuberculosis , Palladium/pharmacology , Palladium/chemistry , Crystallography, X-Ray , Coordination Complexes/pharmacology , Coordination Complexes/chemistry
6.
J Inorg Biochem ; 237: 112012, 2022 12.
Article in English | MEDLINE | ID: mdl-36162209

ABSTRACT

A significant fraction of patients are affected by persistent fear and anxiety. Currently, there are several anxiolytic drug options, however their clinical outcomes do not fully manage the symptoms. Here, we evaluated the effects of a bromazepam­palladium derivative [2-{(7-bromo-2-oxo-1,3-dihydro-2H-1,4-benzodiazepin-5-il)pyridinyl-κ2-N,N}chloropalladium(II)], [(BMZ)PdCl2], on fear/anxiety and memory-related behavior in mice. For this, female Swiss mice were treated intraperitoneally (i.p.) with saline (NaCl 0.9%) or [(BMZ)PdCl2] (0.5, 5.0, or 50 µg/kg). After 30 min, different tests were performed to evaluate anxiety, locomotion, and memory. We also evaluated the acute toxicity of [(BMZ)PdCl2] using a cell viability assay (neutral red uptake assay), and whether the drugs mechanism of action involves the γ-aminobutyric acid type A (GABAA) receptor complex by pre-treating animals with flumazenil (1.0 mg/kg, i.p., a competitive antagonist of GABAA-binding site). Our results demonstrate that [(BMZ)PdCl2] induces an anxiolytic-like phenotype in the elevated plus-maze test and that this effect can be blocked by flumazenil. Furthermore, there were no behavioral alterations induced by [(BMZ)PdCl2], as evaluated in the light-dark box, open field, and step-down passive avoidance tests. In the acute toxicity assay, [(BMZ)PdCl2] presented IC50 and LD50 values of 218 ± 60 µg/mL and 780 ± 80 mg/kg, respectively, and GSH category 4. Taken together, our results show that the anxiolytic-like effect of acute treatment with [(BMZ)PdCl2] occurs through the modulation of the benzodiazepine site in the GABAA receptor complex. Moreover, we show indications that [(BMZ)PdCl2] does not promote sedation and amnesia and presents the same toxicity as the bromazepam prototype.


Subject(s)
Anti-Anxiety Agents , Bromazepam , Animals , Mice , Female , Anti-Anxiety Agents/pharmacology , Anti-Anxiety Agents/therapeutic use , Flumazenil/pharmacology , Bromazepam/pharmacology , Palladium/pharmacology , gamma-Aminobutyric Acid , Behavior, Animal , Maze Learning
7.
Dalton Trans ; 51(4): 1646-1657, 2022 Jan 25.
Article in English | MEDLINE | ID: mdl-35015799

ABSTRACT

We report the synthesis and characterization of two novel tetra-cationic porphyrins, containing Pt(II) or Pd(II) polypyridyl complexes attached at the peripheral position of N4-macrocycle. Compounds were characterized through elemental analysis, molar conductivity, cyclic voltammetry, and spectroscopy analysis. Photophysical and photobiological parameters were also evaluated. Also, the binding capacity of each porphyrin with human serum albumin (HSA) was determined by UV-Vis, steady-state, and time-resolved fluorescence spectroscopy, combined with molecular docking calculations. The results suggest that the interaction of these compounds is spontaneous, weak to moderate, and probably occurs at site III (subdomain IB) by non-covalent forces, including van der Waals and H-bonding. Moreover, porphyrins containing peripheral complexes improve their interactions with biomolecules, show good photostability, generate reactive oxygen species under white light studied by electron paramagnetic resonance (EPR) analysis, and promote photo-damage of HSA.


Subject(s)
Palladium/pharmacology , Platinum Compounds/pharmacology , Porphyrins/pharmacology , Electron Spin Resonance Spectroscopy , Humans , Models, Molecular , Molecular Docking Simulation , Molecular Structure , Palladium/chemistry , Photochemotherapy , Photosensitizing Agents , Platinum Compounds/chemistry , Porphyrins/chemistry , Protein Conformation , Serum Albumin/chemistry
8.
J Biol Inorg Chem ; 25(3): 509-519, 2020 05.
Article in English | MEDLINE | ID: mdl-32232584

ABSTRACT

Bisphosphonates are the most commonly prescribed drugs for the treatment of osteoporosis and other bone illnesses. Some of them have also shown antiparasitic activity. In search of improving the pharmacological profile of commercial bisphosphonates, our group had previously developed first row transition metal complexes with N-containing bisphosphonates (NBPs). In this work, we extended our studies to heteroleptic palladium-NBP complexes including DNA intercalating polypyridyl co-ligands (NN) with the aim of obtaining potential multi-target species. Complexes of the formula [Pd(NBP)2(NN)]·2NaCl·xH2O with NBP = alendronate (ale) or pamidronate (pam) and NN = 1,10 phenanthroline (phen) or 2,2'-bipyridine (bpy) were synthesized and fully characterized. All the obtained compounds were much more active in vitro against T. cruzi (amastigote form) than the corresponding NBP ligands. In addition, complexes were nontoxic to mammalian cells up to 50-100 µM. Compounds with phen as ligand were 15 times more active than their bpy analogous. Related to the potential mechanism of action, all complexes were potent inhibitors of two parasitic enzymes of the isoprenoid biosynthetic pathway. No correlation between the anti-T. cruzi activity and the enzymatic inhibition results was observed. On the contrary, the high antiparasitic activity of phen-containing complexes could be related to their ability to interact with DNA in an intercalative-like mode. These rationally designed compounds are good candidates for further studies and good leaders for future drug developments. Four new palladium heteroleptic complexes with N-containing commercial bisphosphonates and DNA intercalating polypyridyl co-ligands were synthesized and fully characterized. All complexes displayed high anti-T. cruzi activity which could be related to the inhibition of the parasitic farnesyl diphosphate synthase enzyme but mainly to their ability to interact DNA.


Subject(s)
Coordination Complexes/pharmacology , Diphosphonates/pharmacology , Palladium/pharmacology , Trypanocidal Agents/pharmacology , Coordination Complexes/chemical synthesis , Coordination Complexes/chemistry , Diphosphonates/chemistry , Molecular Structure , Palladium/chemistry , Parasitic Sensitivity Tests , Trypanocidal Agents/chemical synthesis , Trypanocidal Agents/chemistry , Trypanosoma cruzi/drug effects
9.
Eur J Med Chem ; 180: 213-223, 2019 Oct 15.
Article in English | MEDLINE | ID: mdl-31306908

ABSTRACT

Reactions of Ni(II) and Pd(II) precursors with S-benzyl-N-(ferrocenyl)methylenedithiocarbazate (HFedtc) led to the formation of heterobimetallic complexes of the type [MII(Fedtc)2] (M = Ni and Pd). The characterization of the compounds involved the determination of melting point, FTIR, UV-Vis, 1H NMR, elemental analysis and electrochemical experiments. Furthermore, the crystalline structures of HFedtc and [NiII(Fedtc)2] were determined by single crystal X-ray diffraction. The compounds were evaluated against the intracellular form of Trypanosoma cruzi (Tulahuen Lac-Z strain) and the cytotoxicity assays were assessed using LLC-MK2 cells. The results showed that the coordination of HFedtc to Ni(II) or Pd(II) decreases the in vitro trypanocidal activity while the cytotoxicity against LLC-MK2 cells does not change significantly. [PdII(Fedtc)2] showed the greater potential between the two complexes studied, showing an SI value of 8.9. However, this value is not better than that of the free ligand with an SI of 40, a similar value to that of the standard drug benznidazole (SI = 48). Additionally, molecular docking simulations were performed with Trypanosoma cruzi Old Yellow Enzyme (TcOYE), which predicted that HFedtc binds to the protein, almost parallel to the flavin mononucleotide (FMN) prosthetic group, while the [NiII(Fedtc)2] complex was docked into the enzyme binding site in a significantly different manner. In order to confirm the hypothetical interaction, in vitro experiments of fluorescence quenching and enzymatic activity were performed which indicated that, although HFedtc was not processed by the enzyme, it was able to act as a competitive inhibitor, blocking the hydride transfer from the FMN prosthetic group of the enzyme to the menadione substrate.


Subject(s)
Benzyl Compounds/pharmacology , Coordination Complexes/pharmacology , Enzyme Inhibitors/pharmacology , Hydrazines/pharmacology , Metallocenes/pharmacology , NADPH Dehydrogenase/antagonists & inhibitors , Nickel/pharmacology , Palladium/pharmacology , Trypanocidal Agents/pharmacology , Trypanosoma cruzi/drug effects , Animals , Cell Survival/drug effects , Coordination Complexes/chemistry , Coordination Complexes/metabolism , Dose-Response Relationship, Drug , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/metabolism , Humans , Hydrazines/chemistry , Macaca mulatta , Metallocenes/chemistry , Molecular Docking Simulation , Molecular Structure , NADPH Dehydrogenase/chemistry , NADPH Dehydrogenase/metabolism , Nickel/chemistry , Nickel/metabolism , Palladium/chemistry , Palladium/metabolism , Structure-Activity Relationship , Trypanocidal Agents/chemistry , Trypanocidal Agents/metabolism , Trypanosoma cruzi/metabolism
10.
Biometals ; 31(6): 961-974, 2018 12.
Article in English | MEDLINE | ID: mdl-30259247

ABSTRACT

Chagas disease is a neglected tropical disease caused by the protozoan parasite Trypanosoma cruzi. It is estimated that 6 million people are infected in Latin America. Current treatment is not effective due to the severe side effects and the limited efficacy towards the chronic phase of the disease. Considering the growing need for specific anti-Trypanosoma cruzi drugs, organometallic Pt and Pd based compounds were previously synthesized. Although the Pt-based compound effects on T. cruzi death have been reported, no mechanism of action has been proposed for the Pd-based analogous compound. In this work, we determined excellent to very good values of IC50 and SI. To analyze the compound mode of action, we measured Pd uptake and its association to the macromolecules of the parasite by electrothermal atomic absorption spectrometry. We found a poor uptake, which reaches only 16% after 24 h of incubation using 10× IC50, being the scarce incorporated metal preferentially associated to DNA. However, this compound has a trypanocidal effect, leading to morphological changes such as shortening of the parasite cell body and inducing necrosis after 24 h of treatment. Furthermore, this compound impairs the parasite development in the host both at the trypomastigote infection process and the intracellular amastigotes replication. In conclusion, our findings support that Pd-dppf-mpo compound constitutes a promising anti-T. cruzi compound effective against the chronic phase of the disease.


Subject(s)
Organometallic Compounds/pharmacology , Palladium/pharmacology , Trypanocidal Agents/pharmacology , Trypanosoma cruzi/drug effects , Cell Proliferation/drug effects , Cell Survival/drug effects , Dose-Response Relationship, Drug , Molecular Conformation , Organometallic Compounds/chemical synthesis , Organometallic Compounds/chemistry , Palladium/chemistry , Parasitic Sensitivity Tests , Structure-Activity Relationship , Trypanocidal Agents/chemical synthesis , Trypanocidal Agents/chemistry , Trypanosoma cruzi/cytology
11.
Eur J Med Chem ; 141: 615-631, 2017 Dec 01.
Article in English | MEDLINE | ID: mdl-29107428

ABSTRACT

New complexes of composition [MX(HL1)] (M = PtII, PdII, X = Cl- or I-) and [MX(L1)] (M = AuIII, X = Cl-; M = PtII, PdII, X = PPh3) have been synthesized using a potentially tridentate thiosemicarbazone (H2L1) containing an additional oxime binding site. Among other analytical methods, all the seven complexes have been structurally characterized by single crystal X-ray diffractometry. Interesting structural features such as the influence of the halide ligands on hydrogen bonds and the formation of supramolecular structures for the phosphine derivatives are discussed. The in vitro trypanocidal activity of the free ligand H2L1 and its derivatives against both extracellular trypomastigote and intracellular amastigote (IC50try/ama) forms of Trypanosoma cruzi (Tulahuen Lac-Z strain) and the cytotoxicity was assessed on LLC-MK2 cell line. The results showed that complexation of the thiosemicarbazone ligand H2L1 to PtII, PdII and AuIII metal centers enhances the in vitro trypanocidal activity and that the cytotoxicity is dependent on both the metal center and coligands. Within the studied series, the AuIII complex showed the greatest potential, being not the most active but the most selective compound with a similar selectivity index to that of the standard drug benznidazole. In order to get a preliminary insight into the mechanism of action of these compounds, in vitro experiments of fluorescence quenching and enzymatic activity were performed using the AuIII complex and Trypanosoma cruzi Old Yellow Enzyme (TcOYE) which indicated that the gold derivative was capable of abstracting the hydride from the prosthetic FMN group of the enzyme. Additionally, molecular docking studies followed by semiempirical simulations showed that the [AuCl(L1)] binds to the binary complex TcOYE/FMN, almost parallel to the FMN prosthetic group, in a close distance that an electron/proton transfer might occur among them.


Subject(s)
Organometallic Compounds/pharmacology , Oximes/pharmacology , Trypanocidal Agents/pharmacology , Trypanosoma cruzi/drug effects , Dose-Response Relationship, Drug , Gold/chemistry , Gold/pharmacology , Models, Molecular , Molecular Structure , Organometallic Compounds/chemical synthesis , Organometallic Compounds/chemistry , Oximes/chemistry , Palladium/chemistry , Palladium/pharmacology , Parasitic Sensitivity Tests , Platinum/chemistry , Platinum/pharmacology , Structure-Activity Relationship , Thiosemicarbazones/chemistry , Thiosemicarbazones/pharmacology , Trypanocidal Agents/chemical synthesis , Trypanocidal Agents/chemistry
12.
Biomedica ; 36(4): 603-611, 2016 Dec 01.
Article in Spanish | MEDLINE | ID: mdl-27992987

ABSTRACT

INTRODUCTION: Thiosemicarbazones and palladium (II) complexes have antineoplastic activities with mild side effects, for which they are considered new alternative antineoplastic drugs. However, the IC50 ranges of these complexes vary due to differences in their structure and solubility and their sensitivities for various cellular targets. Beta-cyclodextrin is an additive used to improve the solubility and stability of various drugs for therapeutic use, but the combination of beta-cyclodextrin with palladium (II) complexes and thiosemicarbazones has not been tested yet. OBJECTIVE: To study the cytotoxic effect of palladium (II) inclusion complexes in beta-cyclodextrin. MATERIALS AND METHODS: We tested the cytotoxic activity of palladium complexes combined with beta-cyclodextrin in the breast cancer cell line MCF-7 using a sulforhodamine B assay. RESULTS: We tested the antiproliferative activity of palladium (II) complexes with and without the ligands MePhPzTSC and Ph2PzTSC and with and without beta-cyclodextrin in MCF-7 cells and compared them to that of cisplatin. All combinations showed antiproliferative activity; however, the activity was greater for the combinations that included beta-cyclodextrin: ([Pd (MePhPzTSC) 2] • ß-CD and [Pd (Ph2PzTSC) 2] • ß-CD), at concentrations of 0.14 and 0.49 µM, respectively. The IC50 for this complex was 5-fold lower than that of the ligand-free combinations (1.4 and 2.9 µM, respectively). The IC50 for free palladium (II) complex was 0.571.24 µM and that for cisplatin was 6.87 µM. CONCLUSIONS: Beta-cyclodextrin significantly enhanced the cytotoxic activities of palladium (II) complexes and thiosemicarbazones probably by improving their solubility and bioavailability. The addition of beta-cyclodextrin is a possible strategy for designing new anticancer drugs.


Subject(s)
Adjuvants, Pharmaceutic/pharmacology , Antineoplastic Agents/pharmacology , Organometallic Compounds/pharmacology , Palladium/pharmacology , beta-Cyclodextrins/pharmacology , Antineoplastic Agents/chemistry , Biological Availability , Cell Division/drug effects , Cisplatin/pharmacology , Cytotoxins/chemistry , Cytotoxins/pharmacology , Drug Design , Drug Screening Assays, Antitumor , Drug Synergism , Female , Humans , Inhibitory Concentration 50 , Leukocytes, Mononuclear/drug effects , MCF-7 Cells , Molecular Structure , Organometallic Compounds/chemistry , Palladium/chemistry , Solubility
13.
Biomédica (Bogotá) ; Biomédica (Bogotá);36(4): 603-611, dic. 2016. tab, graf
Article in Spanish | LILACS | ID: biblio-950926

ABSTRACT

Resumen Introducción. Las tiosemicarbazonas y sus complejos de paladio (II) poseen actividad antineoplásica con pocos efectos secundarios, por lo cual se las considera como una nueva alternativa terapéutica. Sin embargo, existen diferencias en los rangos de la concentración inhibitoria media (CI50) asociada a la divergencia estructural y la solubilidad de los complejos, así como a la sensibilidad de los blancos celulares. La inclusión de fármacos en la beta-ciclodextrina con fines terapéuticos ha mejorado su solubilidad y estabilidad, pero los efectos de su combinación con los complejos de paladio (II) y las tiosemicarbazonas no se han comprobado aún. Objetivo. Estudiar el efecto citotóxico de los complejos de paladio en la beta-ciclodextrina. Materiales y métodos. La actividad citotóxica de los complejos de paladio en la beta-ciclodextrina se evaluó en la línea celular de cáncer de mama (MCF-7), empleando el método de la sulforodamina B. Resultados. Los ligandos MePhPzTSC y Ph2PzTSC, sus complejos de paladio (II) libres e incluidos en la beta-ciclodextrina y el cisplatino mostraron actividad citotóxica en la línea celular MCF-7; sin embargo, la citotoxicidad fue mayor con la inclusión en la beta-ciclodextrina ([Pd(MePhPzTSC)2]•ß-CD y [Pd(Ph2PzTSC)2]•ß-CD). La concentración inhibitoria media (CI50) para estos complejos se obtuvo en concentraciones de 0,14 y 0,49 μM, y con dosis hasta cinco veces inferiores comparadas con las concentraciones de los ligandos libres (1,4 y 2,9 μM), de los complejos de paladio (II) libres (0,57 y 1,24 μM) y del cisplatino (6,87 μM). Conclusiones. El uso de la beta-ciclodextrina mejoró significativamente la actividad citotóxica de las tiosemicarbazonas y sus complejos de paladio (II), lo cual probablemente está asociado al incremento de la solubilidad y biodisponibilidad del compuesto, estrategia que se puede sugerir para el diseño de futuros fármacos antineoplásicos.


Abstract Introduction: Thiosemicarbazones and palladium (II) complexes have antineoplastic activities with mild side effects, for which they are considered new alternative antineoplastic drugs. However, the IC50 ranges of these complexes vary due to differences in their structure and solubility and their sensitivities for various cellular targets. Beta-cyclodextrin is an additive used to improve the solubility and stability of various drugs for therapeutic use, but the combination of beta-cyclodextrin with palladium (II) complexes and thiosemicarbazones has not been tested yet. Objective: To study the cytotoxic effect of palladium (II) inclusion complexes in beta-cyclodextrin. Materials and methods: We tested the cytotoxic activity of palladium complexes combined with betacyclodextrin in the breast cancer cell line MCF-7 using a sulforhodamine B assay. Results: We tested the antiproliferative activity of palladium (II) complexes with and without the ligands MePhPzTSC and Ph2PzTSC and with and without beta-cyclodextrin in MCF-7 cells and compared them to that of cisplatin. All combinations showed antiproliferative activity; however, the activity was greater for the combinations that included beta-cyclodextrin: ([Pd (MePhPzTSC) 2] • ß-CD and [Pd (Ph2PzTSC) 2] • ß-CD), at concentrations of 0.14 and 0.49 μM, respectively. The IC50 for this complex was 5-fold lower than that of the ligand-free combinations (1.4 and 2.9 μM, respectively). The IC50 for free palladium (II) complex was 0.571.24 μM and that for cisplatin was 6.87 μM. Conclusions: Beta-cyclodextrin significantly enhanced the cytotoxic activities of palladium (II) complexes and thiosemicarbazones probably by improving their solubility and bioavailability. The addition of betacyclodextrin is a possible strategy for designing new anticancer drugs.


Subject(s)
Female , Humans , Organometallic Compounds/pharmacology , Palladium/pharmacology , Adjuvants, Pharmaceutic/pharmacology , beta-Cyclodextrins/pharmacology , Antineoplastic Agents/pharmacology , Organometallic Compounds/chemistry , Palladium/chemistry , Solubility , Drug Screening Assays, Antitumor , Leukocytes, Mononuclear/drug effects , Biological Availability , Drug Design , Molecular Structure , Cell Division/drug effects , Cisplatin/pharmacology , Inhibitory Concentration 50 , Cytotoxins/pharmacology , Cytotoxins/chemistry , Drug Synergism , MCF-7 Cells , Antineoplastic Agents/chemistry
14.
Antimicrob Agents Chemother ; 59(12): 7214-23, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26349827

ABSTRACT

Paracoccidioidomycosis (PCM), caused by Paracoccidioides species, is the main cause of death due to systemic mycoses in Brazil and other Latin American countries. Therapeutic options for PCM and other systemic mycoses are limited and time-consuming, and there are high rates of noncompliance, relapses, toxic side effects, and sequelae. Previous work has shown that the cyclopalladated 7a compound is effective in treating several kinds of cancer and parasitic Chagas disease without significant toxicity in animals. Here we show that cyclopalladated 7a inhibited the in vitro growth of Paracoccidioides lutzii Pb01 and P. brasiliensis isolates Pb18 (highly virulent), Pb2, Pb3, and Pb4 (less virulent) in a dose-response manner. Pb18 was the most resistant. Opportunistic Candida albicans and Cryptococcus neoformans were also sensitive. BALB/c mice showed significantly lighter lung fungal burdens when treated twice a day for 20 days with a low cyclopalladated 7a dose of 30 µg/ml/day for 30 days after intratracheal infection with Pb18. Electron microscopy images suggested that apoptosis- and autophagy-like mechanisms are involved in the fungal killing mechanism of cyclopalladated 7a. Pb18 yeast cells incubated with the 7a compound showed remarkable chromatin condensation, DNA degradation, superoxide anion production, and increased metacaspase activity suggestive of apoptosis. Autophagy-related killing mechanisms were suggested by increased autophagic vacuole numbers and acidification, as indicated by an increase in LysoTracker and monodansylcadaverine (MDC) staining in cyclopalladated 7a-treated Pb18 yeast cells. Considering that cyclopalladated 7a is highly tolerated in vivo and affects yeast fungal growth through general apoptosis- and autophagy-like mechanisms, it is a novel promising drug for the treatment of PCM and other mycoses.


Subject(s)
Antifungal Agents/pharmacology , Organometallic Compounds/pharmacology , Palladium/pharmacology , Paracoccidioides/drug effects , Paracoccidioidomycosis/drug therapy , Animals , Antifungal Agents/chemical synthesis , Apoptosis/drug effects , Autophagy/drug effects , Cadaverine/analogs & derivatives , Cadaverine/biosynthesis , Candida albicans/drug effects , Candida albicans/growth & development , Caspases/genetics , Caspases/metabolism , Chromatin/drug effects , Chromatin/pathology , Chromatin/ultrastructure , Cryptococcus neoformans/drug effects , Cryptococcus neoformans/growth & development , DNA Fragmentation/drug effects , Dose-Response Relationship, Drug , Fungal Proteins/genetics , Fungal Proteins/metabolism , Gene Expression , Lung/drug effects , Lung/microbiology , Lung/pathology , Male , Mice , Mice, Inbred BALB C , Organometallic Compounds/chemical synthesis , Palladium/chemistry , Paracoccidioides/genetics , Paracoccidioides/growth & development , Paracoccidioides/ultrastructure , Paracoccidioidomycosis/microbiology , Paracoccidioidomycosis/pathology , Superoxides/metabolism , Vacuoles/drug effects , Vacuoles/pathology , Vacuoles/ultrastructure
15.
Z Naturforsch C J Biosci ; 68(7-8): 293-301, 2013.
Article in English | MEDLINE | ID: mdl-24066514

ABSTRACT

Palladium(II) complexes are an important class of cyclopalladated compounds that play a pivotal role in various pharmaceutical applications. Here, we investigated the antitumour, anti-inflammatory, and mutagenic effects of two complexes: [Pd(dmba)(Cl)tu] (1) and [Pd(dmba)(N3)tu] (2) (dmba = N,N-dimethylbenzylamine and tu = thiourea), on Ehrlich ascites tumour (EAT) cells and peritoneal exudate cells (PECs) from mice bearing solid Ehrlich tumour. The cytotoxic effects of the complexes on EAT cells and PECs were assessed using the 3-(4,5-dimethylthiazol-3-yl)-2,5-diphenyl-tetrazolium bromide (MTT) assay. The effects of the complexes on the immune system were assessed based on the production of nitric oxide (NO) (Griess assay) and tumour necrosis factor-alpha (TNF-alpha), interleukin-12 (IL-12), and interleukin-10 (IL-10) (ELISA). Finally the mutagenic activity was assessed by the Ames test using the Salmonella typhimurium strain TA 98. Cisplatin was used as a standard. The IC50 ranges for the growth inhibition of EAT cells and PECs were found to be (72.8 +/- 3.23) microM and (137.65 +/- 0.22) microM for 1 and (39.7 +/- 0.30) microM and (146.51 +/- 2.67) microM for 2, respectively. The production of NO, IL-12, and TNF-alpha, but not IL-10, was induced by both complexes and cisplatin. The complexes showed no mutagenicity in vitro, unlike cisplatin, which was mutagenic in the strain. These results indicate that the complexes are not mutagenic and have potential immunological and antitumour activities. These properties make them promising alternatives to cisplatin.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Antineoplastic Agents/pharmacology , Carcinoma, Ehrlich Tumor/pathology , Palladium/pharmacology , Animals , Cell Line, Tumor , Mice , Nitric Oxide/metabolism
16.
Viruses ; 3(7): 1041-1058, 2011 Jul.
Article in English | MEDLINE | ID: mdl-21994769

ABSTRACT

Adult T-cell leukemia/lymphoma (ATLL) is a highly aggressive disease that occurs in individuals infected with the human T lymphotropic virus type 1 (HTLV-1). Patients with aggressive ATLL have a poor prognosis because the leukemic cells are resistant to conventional chemotherapy. We have investigated the therapeutic efficacy of a biphosphinic cyclopalladated complex {Pd(2) [S(-)C(2), N-dmpa](2) (µ-dppe)Cl(2)}, termed C7a, in a patient-derived xenograft model of ATLL, and investigated the mechanism of C7a action in HTLV-1-positive and negative transformed T cell lines in vitro. In vivo survival studies in immunocompromised mice inoculated with human RV-ATL cells and intraperitoneally treated with C7a led to significantly increased survival of the treated mice. We investigated the mechanism of C7a activity in vitro and found that it induced mitochondrial release of cytochrome c, caspase activation, nuclear condensation and DNA degradation. These results suggest that C7a triggers apoptotic cell death in both HTLV-1 infected and uninfected human transformed T-cell lines. Significantly, C7a was not cytotoxic to peripheral blood mononuclear cells (PBMC) from healthy donors and HTLV-1-infected individuals. C7a inhibited more than 60% of the ex vivo spontaneous proliferation of PBMC from HTLV-1-infected individuals. These results support a potential therapeutic role for C7a in both ATLL and HTLV-1-negative T-cell lymphomas.


Subject(s)
Apoptosis/drug effects , Coordination Complexes/pharmacology , Human T-lymphotropic virus 1/growth & development , Leukemia-Lymphoma, Adult T-Cell/drug therapy , Palladium/pharmacology , Pheniramine/analogs & derivatives , Animals , Cell Line, Transformed , Cell Survival/drug effects , Cytochromes c/metabolism , Flow Cytometry , Humans , Leukemia-Lymphoma, Adult T-Cell/virology , Mice , Mice, SCID , Pheniramine/pharmacology , Specific Pathogen-Free Organisms , Xenograft Model Antitumor Assays
17.
BMC Cancer ; 11: 296, 2011 Jul 14.
Article in English | MEDLINE | ID: mdl-21756336

ABSTRACT

BACKGROUND: Systemic therapy for cancer metastatic lesions is difficult and generally renders a poor clinical response. Structural analogs of cisplatin, the most widely used synthetic metal complexes, show toxic side-effects and tumor cell resistance. Recently, palladium complexes with increased stability are being investigated to circumvent these limitations, and a biphosphinic cyclopalladated complex {Pd(2) [S((-))C(2), N-dmpa](2) (µ-dppe)Cl(2)} named C7a efficiently controls the subcutaneous development of B16F10-Nex2 murine melanoma in syngeneic mice. Presently, we investigated the melanoma cell killing mechanism induced by C7a, and extended preclinical studies. METHODS: B16F10-Nex2 cells were treated in vitro with C7a in the presence/absence of DTT, and several parameters related to apoptosis induction were evaluated. Preclinical studies were performed, and mice were endovenously inoculated with B16F10-Nex2 cells, intraperitoneally treated with C7a, and lung metastatic nodules were counted. The cytotoxic effects and the respiratory metabolism were also determined in human tumor cell lines treated in vitro with C7a. RESULTS: Cyclopalladated complex interacts with thiol groups on the mitochondrial membrane proteins, causes dissipation of the mitochondrial membrane potential, and induces Bax translocation from the cytosol to mitochondria, colocalizing with a mitochondrial tracker. C7a also induced an increase in cytosolic calcium concentration, mainly from intracellular compartments, and a significant decrease in the ATP levels. Activation of effector caspases, chromatin condensation and DNA degradation, suggested that C7a activates the apoptotic intrinsic pathway in murine melanoma cells. In the preclinical studies, the C7a complex protected against murine metastatic melanoma and induced death in several human tumor cell lineages in vitro, including cisplatin-resistant ones. The mitochondria-dependent cell death was also induced by C7a in human tumor cells. CONCLUSIONS: The cyclopalladated C7a complex is an effective chemotherapeutic anticancer compound against primary and metastatic murine and human tumors, including cisplatin-resistant cells, inducing apoptotic cell death via the intrinsic pathway.


Subject(s)
Apoptosis/drug effects , Mitochondrial Proteins/drug effects , Organometallic Compounds/pharmacology , Palladium/pharmacology , Animals , Antineoplastic Agents/chemistry , Antineoplastic Agents/metabolism , Antineoplastic Agents/pharmacology , Caspases/metabolism , Cell Line, Tumor , Cisplatin/pharmacology , Drug Resistance, Neoplasm , Enzyme Activation/drug effects , Humans , Lung Neoplasms/metabolism , Lung Neoplasms/prevention & control , Lung Neoplasms/secondary , Male , Melanoma, Experimental/drug therapy , Melanoma, Experimental/metabolism , Melanoma, Experimental/pathology , Membrane Potential, Mitochondrial/drug effects , Mice , Mice, Inbred C57BL , Mitochondria, Liver/drug effects , Mitochondria, Liver/metabolism , Mitochondria, Liver/physiology , Mitochondrial Membranes/metabolism , Mitochondrial Proteins/metabolism , Molecular Structure , Organometallic Compounds/chemistry , Organometallic Compounds/metabolism , Palladium/chemistry , Palladium/metabolism , Rats , Rats, Wistar , Sulfhydryl Compounds/metabolism , bcl-2-Associated X Protein/metabolism
18.
Article in English | MEDLINE | ID: mdl-21050807

ABSTRACT

Nuclear magnetic resonance studies, molecular modeling and antibacterial assays of the palladium(II) complex with S-allyl-L-cysteine (deoxyalliin) are presented. Studies based on solid and solution 13C and 15N nuclear magnetic resonance (NMR) spectroscopy confirmed that the palladium(II) complex preserved the same structural arrangement in both states, with no modifications on coordination sphere when dissolved in water. Density functional theory (DFT) studies stated that the trans isomer is the most stable one. Antibacterial activities of S-allyl-L-cysteine and its palladium(II) complex were evaluated by antibiogram assays using the disc diffusion method. The palladium(II) complex showed an effective antibacterial activity against Staphylococcus aureus (Gram-positive), Escherichia coli and Pseudomonas aeruginosa (Gram-negative) bacterial cells.


Subject(s)
Anti-Bacterial Agents/pharmacology , Cysteine/analogs & derivatives , Microbial Sensitivity Tests/methods , Models, Molecular , Palladium/chemistry , Palladium/pharmacology , Bacteria/drug effects , Cysteine/chemistry , Cysteine/pharmacology , Magnetic Resonance Spectroscopy , Solutions
19.
Eur J Med Chem ; 44(11): 4611-5, 2009 Nov.
Article in English | MEDLINE | ID: mdl-19632008

ABSTRACT

The reactions between [Pd(C(2),N-dmba)(micro-X)](2) (dmba=N,N-dimethylbenzylamine; X=Cl, Br) and thiourea (tu) in the 1:2 molar ratio at room temperature resulted in the mononuclear compounds [Pd(C(2),N-dmba)(Cl)(tu)] (1) and [Pd(C(2),N-dmba)(Br)(tu)] (2), which were characterized by elemental analyses and infrared (IR), (1)H- and (13)C{(1)H} NMR spectroscopies. The crystal and molecular structures of 2 were determined by single-crystal X-ray diffraction. In vitro cytotoxicity assays of the compounds 1, 2, tu, dmba and cisplatin were carried out using two murine tumor cell lines, namely mammary adenocarcinoma (LM3) and lung adenocarcinoma (LP07). The compounds 1, 2, tu and dmba were also tested against Mycobacterium tuberculosis and their MIC values were determined.


Subject(s)
Antibiotics, Antineoplastic/chemistry , Antibiotics, Antineoplastic/pharmacology , Antibiotics, Antitubercular/chemistry , Antibiotics, Antitubercular/pharmacology , Palladium/chemistry , Palladium/pharmacology , Animals , Cell Line, Tumor , Cell Survival/drug effects , Crystallography, X-Ray , Drug Screening Assays, Antitumor , Infrared Rays , Magnetic Resonance Spectroscopy , Models, Molecular , Mycobacterium tuberculosis/drug effects , Thiourea/chemistry , Thiourea/pharmacology
20.
Bioorg Med Chem ; 17(4): 1623-9, 2009 Feb 15.
Article in English | MEDLINE | ID: mdl-19162490

ABSTRACT

Four new palladium(II) complexes with the formula Pd(L)(2), where L are quinoxaline-2-carbonitrile N(1),N(4)-dioxide derivatives, were synthesized as a contribution to the chemistry and pharmacology of metal compounds with this class of pharmacologically interesting bioreductive prodrugs. Compounds were characterized by elemental, conductometric and thermogravimetric analyses, fast atom bombardment mass spectrometry (FAB-MS) and electronic, Fourier transform infrared (FTIR) and (1)H-nuclear magnetic resonance spectroscopies. The complexes were subjected to cytotoxic evaluation on V79 cells in hypoxic and aerobic conditions. In addition, a preliminary study on interaction with plasmid DNA in normoxia was performed. Complexes showed different in vitro biological behavior depending on the nature of the substituent on the quinoxaline ring. Pd(L1)(2) and Pd(L2)(2), where L1 is 3-aminoquinoxaline-2-carbonitrile N(1),N(4)-dioxide and L2 is 3-amino-6(7)-methylquinoxaline-2-carbonitrile N(1),N(4)-dioxide, showed non selective cytotoxicity, being cytotoxic either in hypoxic or in aerobic conditions. On the other hand, Pd(L3)(2), where L3 is 3-amino-6(7)-chloroquinoxaline-2-carbonitrile N(1),N(4)-dioxide, resulted in vitro more potent cytotoxin in hypoxia (P=5.0 microM) than the corresponding free ligand (P=9.0 microM) and tirapazamine (P=30.0 microM), the first bioreductive cytotoxic drug introduced into clinical trials. In addition, it showed a very good selective cytotoxicity in hypoxic conditions, being non-cytotoxic in normoxia. Its hypoxic cytotoxicity relationship value, HCR, was of the same order than those of other hypoxia selective cytotoxins (i.e., Mitomycine C, Misonidazole and the N-oxide RB90740). Interaction of the complexes with plasmid DNA in normoxia showed dose dependent ability to relax the negative supercoiled forms via different mechanisms. Pd(L2)(2) introduced a scission event in supercoiled DNA yielding the circular relaxed form. Meanwhile, both Pd(L1)(2) and Pd(L3)(2) produced the loss of negative supercoils rendering a family of topoisomers with reduced electrophoretic mobility. Pd(L3)(2) showed a more marked effect than Pd(L1)(2). Indeed, for the highest doses assayed, Pd(L3)(2) was even able to introduce positive supercoils on the plasmid DNA.


Subject(s)
Nitriles/chemistry , Nitriles/pharmacology , Organometallic Compounds/chemistry , Palladium/chemistry , Prodrugs/chemistry , Quinoxalines/chemistry , Quinoxalines/pharmacology , Animals , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Cell Line , Cricetinae , Cricetulus , DNA/chemistry , DNA/genetics , Ligands , Magnetic Resonance Spectroscopy , Organometallic Compounds/chemical synthesis , Organometallic Compounds/pharmacology , Palladium/pharmacology , Plasmids/chemistry , Plasmids/genetics , Prodrugs/chemical synthesis , Prodrugs/pharmacology , Spectrometry, Mass, Fast Atom Bombardment , Spectroscopy, Fourier Transform Infrared
SELECTION OF CITATIONS
SEARCH DETAIL