Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 4.967
Filter
1.
J Ethnopharmacol ; 336: 118724, 2025 Jan 10.
Article in English | MEDLINE | ID: mdl-39181283

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Wenshen Xiaozheng Tang (WXT), a traditional Chinese medicine (TCM) decoction, is effective for treating endometriosis. However, the effect of WXT on endometrium-derived mesenchymal stem cells (eMSCs) which play a key role in the fibrogenesis of endometriosis requires further elucidation. AIMS OF THE STUDY: The aim of this study was to clarify the potential mechanism of WXT in improving fibrosis in endometriosis by investigating the regulation of WXT on differentiation and paracrine of eMSCs. MATERIALS AND METHODS: The nude mice with endometriosis were randomly divided into model group, WXT group and mifepristone group. After 21 days of treatment, the lesion volume was calculated. Fibrosis in the lesions was evaluated by Masson staining and expression of fibrotic proteins. The differentiation of eMSCs in vivo was explored using a fate-tracking experiment. To further clarify the regulation of WXT on eMSCs, primary eMSCs from the ectopic lesions of endometriosis patients were isolated and characterized. The effect of WXT on the proliferation and differentiation of ectopic eMSCs was examined. To evaluate the role of WXT on the paracrine activity of ectopic eMSCs, the conditioned medium (CM) from ectopic eMSCs pretreated with WXT was collected and applied to treat ectopic endometrial stromal cells (ESCs), after which the expression of fibrotic proteins in ectopic ESCs was assessed. In addition, transcriptome sequencing was used to investigate the regulatory mechanism of WXT on ectopic eMSCs, and western blot and ELISA were employed to determine the key mediator. RESULTS: WXT impeded the growth of ectopic lesions in nude mice with endometriosis and reduced collagen deposition and the expression of fibrotic proteins fibronectin, collagen I, α-SMA and CTGF in the endometriotic lesions. The fate-tracking experiment showed that WXT prevented human eMSCs from differentiating into myofibroblasts in the nude mice. We successfully isolated eMSCs from the lesions of patients with endometriosis and demonstrated that WXT suppressed proliferation and myofibroblast differentiation of ectopic eMSCs. Moreover, the expression of α-SMA, collagen I, fibronectin and CTGF in ectopic ESCs was significantly down-regulated by the CM of ectopic MSCs pretreated with WXT. Combining the results of RNA sequencing, western blot and ELISA, we found that WXT not only reduced thrombospondin 4 expression in ectopic eMSCs, but also decreased thrombospondin 4 secretion from ectopic eMSCs. Thrombospondin 4 concentration-dependently upregulated the expression of collagen I, fibronectin, α-SMA and CTGF in ectopic ESCs, indicating that thrombospondin 4 was a key mediator of WXT in inhibiting the fibrotic process in endometriosis. CONCLUSION: WXT improved fibrosis in endometriosis by regulating differentiation and paracrine signaling of eMSCs. Thrombospondin 4, whose release from ectopic eMSCs is inhibited by WXT, may be a potential target for the treatment of endometriosis.


Subject(s)
Cell Differentiation , Drugs, Chinese Herbal , Endometriosis , Endometrium , Fibrosis , Mesenchymal Stem Cells , Mice, Nude , Paracrine Communication , Endometriosis/drug therapy , Endometriosis/pathology , Endometriosis/metabolism , Female , Animals , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/therapeutic use , Mesenchymal Stem Cells/drug effects , Mesenchymal Stem Cells/metabolism , Paracrine Communication/drug effects , Humans , Cell Differentiation/drug effects , Endometrium/drug effects , Endometrium/metabolism , Endometrium/pathology , Mice , Cells, Cultured , Adult , Disease Models, Animal
2.
Proc Natl Acad Sci U S A ; 121(40): e2410269121, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39320918

ABSTRACT

Organ architecture is established during development through intricate cell-cell communication mechanisms, yet the specific signals mediating these communications often remain elusive. Here, we used the anterior pituitary gland that harbors different interdigitated hormone-secreting homotypic cell networks to dissect cell-cell communication mechanisms operating during late development. We show that blocking differentiation of corticotrope cells leads to pituitary hypoplasia with a major effect on somatotrope cells that directly contact corticotropes. Gene knockout of the corticotrope-restricted transcription factor Tpit results in fewer somatotropes, with less secretory granules and a loss of cell polarity, resulting in systemic growth retardation. Single-cell transcriptomic analyses identified FGF1 as a corticotrope-specific Tpit dosage-dependent target gene responsible for these phenotypes. Consistently, genetic ablation of FGF1 in mice phenocopies pituitary hypoplasia and growth impairment observed in Tpit-deficient mice. These findings reveal FGF1 produced by the corticotrope cell network as an essential paracrine signaling molecule participating in pituitary architecture and size.


Subject(s)
Fibroblast Growth Factor 1 , Mice, Knockout , Paracrine Communication , Pituitary Gland , Animals , Mice , Fibroblast Growth Factor 1/metabolism , Fibroblast Growth Factor 1/genetics , Pituitary Gland/metabolism , Pituitary Gland/cytology , Corticotrophs/metabolism , Signal Transduction , Pituitary Gland, Anterior/metabolism , Pituitary Gland, Anterior/cytology , Cell Differentiation , Somatotrophs/metabolism , Cell Communication
3.
Mol Cell Endocrinol ; 593: 112339, 2024 Nov 01.
Article in English | MEDLINE | ID: mdl-39111616

ABSTRACT

Enteroendocrine cells (EECs) are well-known for their systemic hormonal effects, especially in the regulation of appetite and glycemia. Much less is known about how the products made by EECs regulate their local environment within the intestine. Here, we focus on paracrine interactions between EECs and other intestinal cells as they regulate three essential aspects of intestinal homeostasis and physiology: 1) intestinal stem cell function and proliferation; 2) nutrient absorption; and 3) mucosal barrier function. We also discuss the ability of EECs to express multiple hormones, describe in vitro and in vivo models to study EECs, and consider how EECs are altered in GI disease.


Subject(s)
Enteroendocrine Cells , Homeostasis , Intestinal Mucosa , Enteroendocrine Cells/metabolism , Humans , Animals , Intestinal Mucosa/metabolism , Intestinal Mucosa/cytology , Stem Cells/metabolism , Stem Cells/cytology , Cell Proliferation , Intestinal Absorption , Intestines/cytology , Intestines/physiology , Paracrine Communication
4.
Acta Histochem ; 126(5-7): 152191, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39216306

ABSTRACT

Tumour endothelial cells (TECs) are genetically and phenotypically distinct from their normal, healthy counterparts and provide various pro-tumourigenic effects. This study aimed to investigate the impact of conditioned media (CM) from non-tumourigenic MCF-12A breast epithelial cells as well as from MCF-7 and MDA-MB-231 breast cancer cells on human umbilical vein endothelial cells (HUVECs). Significant increases in cell viability were observed across all breast CM groups compared to controls, with notable differences between the MCF-12A, MCF-7, and MDA-MB-231 groups. Despite increased viability, no significant differences in MCM2 expression, a marker of cell proliferation, were detected. Morphological changes in HUVECs, including elongation, lumen formation, and branching, were more pronounced in breast cancer CM groups, especially in the MDA-MB-231 CM group. qPCR and Western blot analyses showed increased expression of TEC markers such as MDR1, LOX, and TEM8 in HUVECs treated with MCF-12A CM. The MCF-7 CM group significantly enhanced HUVEC migratory activity compared to MCF-12A CM, as evidenced by a scratch assay. These findings underscore distinct angiogenic responses elicited by non-tumourigenic and tumourigenic breast epithelial cells, with tumourigenic cells inducing a hyperactivated angiogenic response. The study highlights the differential effects of breast cancer cell paracrine signalling on endothelial cells and suggests the need for further investigation into TEC markers' role in both physiological and tumour angiogenesis.


Subject(s)
Breast Neoplasms , Human Umbilical Vein Endothelial Cells , Paracrine Communication , Humans , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Female , Human Umbilical Vein Endothelial Cells/metabolism , Culture Media, Conditioned/pharmacology , Phenotype , MCF-7 Cells , Cell Proliferation , Cell Line, Tumor , Cell Movement , Neovascularization, Pathologic/metabolism , Neovascularization, Pathologic/pathology , Cell Survival
5.
Cells ; 13(16)2024 Aug 12.
Article in English | MEDLINE | ID: mdl-39195225

ABSTRACT

Colorectal cancer (CRC) is a leading cause of cancer mortality worldwide, and cancer-associated fibroblasts (CAFs) play a major role in the tumor microenvironment (TME), which facilitates the progression of CRC. It is critical to understand how CAFs promote the progression of CRC for the development of novel therapeutic approaches. The purpose of this study was to understand how CAF-derived stromal-derived factor-1 (SDF-1) and its interactions with the corresponding C-X-C motif chemokine receptor 4 (CXCR4) promote CRC progression. Our study focused on their roles in promoting tumor cell migration and invasion and their effects on the characteristics of cancer stem cells (CSCs), which ultimately impact patient outcomes. Here, using in vivo approaches and clinical histological samples, we analyzed the influence of secreted SDF-1 on CRC progression, especially in terms of tumor cell behavior and stemness. We demonstrated that CAF-secreted SDF-1 significantly enhanced CRC cell migration and invasion through paracrine signaling. In addition, the overexpression of SDF-1 in CRC cell lines HT29 and HCT-116 triggered these cells to generate autocrine SDF-1 signaling, which further enhanced their CSC characteristics, including those of migration, invasion, and spheroid formation. An immunohistochemical study showed a close relationship between SDF-1 and CXCR4 expression in CRC tissue, and this significantly affected patient outcomes. The administration of AMD3100, an inhibitor of CXCR4, reversed the entire phenomenon. Our results strongly suggest that targeting this signaling axis in CRC is a feasible approach to attenuating tumor progression, and it may, therefore, serve as an alternative treatment method to improve the prognosis of patients with CRC, especially those with advanced, recurrent, or metastatic CRC following standard therapy.


Subject(s)
Autocrine Communication , Cancer-Associated Fibroblasts , Cell Movement , Chemokine CXCL12 , Colorectal Neoplasms , Neoplastic Stem Cells , Paracrine Communication , Receptors, CXCR4 , Signal Transduction , Humans , Colorectal Neoplasms/pathology , Colorectal Neoplasms/metabolism , Colorectal Neoplasms/genetics , Chemokine CXCL12/metabolism , Receptors, CXCR4/metabolism , Cancer-Associated Fibroblasts/metabolism , Cancer-Associated Fibroblasts/pathology , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/pathology , Animals , Neoplasm Invasiveness , Mice , Tumor Microenvironment , Cell Line, Tumor , HCT116 Cells , Male , Female , HT29 Cells
6.
Stem Cell Res Ther ; 15(1): 250, 2024 Aug 13.
Article in English | MEDLINE | ID: mdl-39135129

ABSTRACT

BACKGROUND: In the repair of massive tissue defects using expanded large skin flaps, the incidence of complications increases with the size of the expanded area. Currently, stem cell therapy has limitations to solve this problem. We hypothesized that conditioned medium of adipose-derived stem cells (ADSC-CM) collected following mechanical pretreatment can assist skin expansion. METHODS: Rat aortic endothelial cells and fibroblasts were cultured with ADSC-CM collected under 0%, 10%, 12%, and 15% stretching force. Ten-milliliter cylindrical soft tissue expanders were subcutaneously implanted into the backs of 36 Sprague-Dawley rats. The 0% and 10% stretch groups were injected with ADSC-CM collected under 0% and 10% stretching force, respectively, while the control group was not injected. After 3, 7, 14, and 30 days of expansion, expanded skin tissue was harvested for staining and qPCR analyses. RESULTS: Endothelial cells had the best lumen formation and highest migration rate, and fibroblasts secreted the most collagen upon culture with ADSC-CM collected under 10% stretching force. The skin expansion rate was significantly increased in the 10% stretch group. After 7 days of expansion, the number of blood vessels in the expanded area, expression of the angiogenesis-associated proteins vascular endothelial growth factor, basic fibroblast growth factor, and hepatocyte growth factor, and collagen deposition were significantly increased in the 10% stretch group. CONCLUSIONS: The optimal mechanical force upregulates specific paracrine proteins in ADSCs to increase angiogenesis and collagen secretion, and thereby promote skin regeneration and expansion. This study provides a new auxiliary method to expand large skin flaps.


Subject(s)
Adipose Tissue , Paracrine Communication , Rats, Sprague-Dawley , Skin , Animals , Rats , Adipose Tissue/cytology , Adipose Tissue/metabolism , Skin/metabolism , Fibroblasts/metabolism , Fibroblasts/cytology , Endothelial Cells/metabolism , Endothelial Cells/cytology , Culture Media, Conditioned/pharmacology , Tissue Expansion/methods , Male , Stem Cells/metabolism , Stem Cells/cytology , Vascular Endothelial Growth Factor A/metabolism , Vascular Endothelial Growth Factor A/genetics , Cells, Cultured , Neovascularization, Physiologic , Stress, Mechanical
7.
Commun Biol ; 7(1): 983, 2024 Aug 13.
Article in English | MEDLINE | ID: mdl-39138287

ABSTRACT

The mechanism of action of bispecific antibodies (bsAbs) directing T-cell immunity to solid tumors is incompletely understood. Here, we screened a series of CD3xHER2 bsAbs using extracellular matrix (ECM) embedded breast cancer tumoroid arrays exposed to healthy donor-derived T-cells. An initial phase of random T-cell movement throughout the ECM (day 1-2), was followed by a bsAb-dependent phase of active T-cell recruitment to tumoroids (day 2-4), and tumoroid killing (day 4-6). Low affinity HER2 or CD3 arms were compensated for by increasing bsAb concentrations. Instead, a bsAb binding a membrane proximal HER2 epitope supported tumor killing whereas a bsAb binding a membrane distal epitope did not, despite similar affinities and intra-tumoroid localization of the bsAbs, and efficacy in 2D co-cultures. Initial T-cell-tumor contact through effective bsAbs triggered a wave of subsequent T-cell recruitment. This critical surge of T-cell recruitment was explained by paracrine signaling and preceded a full-scale T-cell tumor attack.


Subject(s)
Antibodies, Bispecific , CD3 Complex , Paracrine Communication , T-Lymphocytes , Antibodies, Bispecific/pharmacology , Antibodies, Bispecific/immunology , Humans , CD3 Complex/immunology , CD3 Complex/metabolism , T-Lymphocytes/immunology , Female , Breast Neoplasms/immunology , Breast Neoplasms/pathology , Receptor, ErbB-2/immunology , Receptor, ErbB-2/metabolism , Cell Line, Tumor
8.
Sci Rep ; 14(1): 18030, 2024 08 04.
Article in English | MEDLINE | ID: mdl-39098880

ABSTRACT

Pancreatic stellate cells (PSC) are one source of cancer-associated fibroblasts (CAF) and play, therefore, an essential role in pancreatic ductal adenocarcinoma (PDA). Paracrine signalling between PDA cells and CAF has been widely studied, yet external influences on paracrine crosstalk are poorly understood. This study aimed to gain a deeper insight into the communication of PSC and cancer cells under different co-culture conditions via analysis of PSC gene expression profiles. Two contactless co-culture models with tumor cells from the p48-Cre; lox-stop-lox-KrasG12D/+; lox-stop-lox-Trp53R172H/+ mouse model (KPC) and murine PSC separated through a microporous membrane and grown in different compartments (standard co-culture) or on different sides of the same membrane (inverse co-culture), were established. RNA-Sequencing analysis of PSC mRNA was performed 24 h and 72 h after co-culture with KPC cells. For selected genes, results were confirmed by quantitative RT-PCR and immunocytochemistry. Standard co-culture displayed 19 differentially expressed genes (DEG) at 24 h and 52 DEG at 72 h. In inverse co-culture, 800 DEG at 24 h and 2213 DEG at 72 h were enriched. PSC showed great heterogeneity in their gene expression profiles; however, mutually regulated genes of both co-cultures, such as VCAN and CHST11, could be identified. VCAN-protein-protein interaction-network analysis revealed several shared genes between co-culture models, such as SDC4 and FN1. In conclusion, PSC show a varying susceptibility to cancer cell signals depending on the co-culture method, with intensified transcriptome changes with closer proximity.


Subject(s)
Carcinoma, Pancreatic Ductal , Coculture Techniques , Pancreatic Neoplasms , Pancreatic Stellate Cells , Paracrine Communication , Transcriptome , Pancreatic Stellate Cells/metabolism , Pancreatic Stellate Cells/pathology , Carcinoma, Pancreatic Ductal/genetics , Carcinoma, Pancreatic Ductal/pathology , Carcinoma, Pancreatic Ductal/metabolism , Animals , Mice , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/pathology , Pancreatic Neoplasms/metabolism , Gene Expression Regulation, Neoplastic , Cell Line, Tumor , Humans , Cancer-Associated Fibroblasts/metabolism , Cancer-Associated Fibroblasts/pathology , Gene Expression Profiling
9.
Biomater Sci ; 12(18): 4806-4822, 2024 Sep 10.
Article in English | MEDLINE | ID: mdl-39150417

ABSTRACT

Rotator cuff injuries present a clinical challenge for repair due to current limitations in functional regeneration of the native tendon-to-bone enthesis. A biomaterial that can regionally instruct unique tissue-specific phenotypes offers potential to promote enthesis repair. We have recently demonstrated the mechanical benefits of a stratified triphasic biomaterial made up of tendon- and bone-mimetic collagen scaffold compartments connected via a continuous hydrogel, and we now explore the potential of a biologically favorable enthesis hydrogel for this application. Here we report in vitro behavior of human mesenchymal stem cells (hMSCs) within thiolated gelatin (Gel-SH) hydrogels in response to chondrogenic stimuli as well as paracrine signals derived from MSC-seeded bone and tendon scaffold compartments. Chondrogenic differentiation media promoted upregulation of cartilage and entheseal fibrocartilage matrix markers COL2, COLX, and ACAN as well as the enthesis-associated transcription factors SCX, SOX9, and RUNX2 in hMSCs within Gel-SH. Similar effects were observed in response to TGF-ß3 and BMP-4, enthesis-associated growth factors known to play a role in entheseal development and maintenance. Conditioned media generated by hMSCs seeded in tendon- and bone-mimetic collagen scaffolds influenced patterns of gene expression regarding enthesis-relevant growth factors, matrix markers, and tendon-to-bone transcription factors for hMSCs within the material. Together, these findings demonstrate that a Gel-SH hydrogel provides a permissive environment for enthesis tissue engineering and highlights the significance of cellular crosstalk between adjacent compartments within a spatially graded biomaterial.


Subject(s)
Cell Differentiation , Fibrocartilage , Gelatin , Hydrogels , Mesenchymal Stem Cells , Paracrine Communication , Humans , Gelatin/chemistry , Hydrogels/chemistry , Hydrogels/pharmacology , Cell Differentiation/drug effects , Mesenchymal Stem Cells/drug effects , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/cytology , Paracrine Communication/drug effects , Fibrocartilage/chemistry , Fibrocartilage/drug effects , Fibrocartilage/metabolism , Chondrogenesis/drug effects , Rotator Cuff , Core Binding Factor Alpha 1 Subunit/metabolism , SOX9 Transcription Factor/metabolism , Tissue Scaffolds/chemistry , Rotator Cuff Injuries/therapy , Aggrecans/metabolism , Basic Helix-Loop-Helix Transcription Factors
10.
Sci Rep ; 14(1): 17522, 2024 07 30.
Article in English | MEDLINE | ID: mdl-39080370

ABSTRACT

Peritoneal metastasis (PM), the regional progression of intra-abdominal malignancies, is a common sequelae of colorectal cancer (CRC). Immunotherapy is slated to be effective in generating long-lasting anti-tumour response as it utilizes the specificity and memory of the immune system. In the tumour microenvironment, tumour associated macrophages (TAMs) are posited to create an anti-inflammatory pro-tumorigenic environment. In this paper, we aimed to identify immunomodulatory factors associated with colorectal PM (CPM). A publicly available colorectal single cell database (GSE183916) was analysed to identify possible immunological markers that are associated with the activation of macrophages in cancers. Immunohistochemical analysis for V-set and immunoglobin containing domain 4 (VSIG4) expression was performed on tumour microarrays (TMAs) of tumours of colorectal origin (n = 211). Expression of VSIG4 in cell-free ascites obtained from CPM patients (n = 39) was determined using enzyme-linked immunosorbent assay (ELISA). CD163-positive TAMs cluster expression was extracted from a publicly available single cell database and evaluated for the top 100 genes. From these macrophage-expressed genes, VSIG4, a membrane protein produced by the M2 macrophages, mediates the up-regulation of anti-inflammatory and down-regulation of pro-inflammatory macrophages, contributing to an overall anti-inflammatory state. CRC TMA IHC staining showed that low expression of VSIG4 in stromal tissues of primary CRC are associated with poor prognosis (p = 0.0226). CPM ascites also contained varying concentrations of VSIG4, which points to a possible role of VSIG4 in the ascites. The contribution of VSIG4 to CPM development can be further evaluated for its potential as an immunotherapeutic agent.


Subject(s)
Colorectal Neoplasms , Peritoneal Neoplasms , Aged , Female , Humans , Male , Middle Aged , Colorectal Neoplasms/pathology , Colorectal Neoplasms/metabolism , Colorectal Neoplasms/immunology , Gene Expression Regulation, Neoplastic , Immunomodulation , Paracrine Communication , Peritoneal Neoplasms/secondary , Peritoneal Neoplasms/metabolism , Tumor Microenvironment/immunology , Tumor-Associated Macrophages/metabolism , Tumor-Associated Macrophages/immunology
11.
Adv Sci (Weinh) ; 11(34): e2400741, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38992961

ABSTRACT

Myocardial infarction (MI) triggers a poor ventricular remodeling response, but the underlying mechanisms remain unclear. Here, the authors show that sentrin-specific protease 1 (SENP1) is downregulated in post-MI mice and in patients with severe heart failure. By generating cardiomyocyte-specific SENP1 knockout and overexpression mice to assess cardiac function and ventricular remodeling responses under physiological and pathological conditions. Increased cardiac fibrosis in the cardiomyocyte-specific SENP1 deletion mice, associated with increased fibronectin (Fn) expression and secretion in cardiomyocytes, promotes fibroblast activation in response to myocardial injury. Mechanistically, SENP1 deletion in mouse cardiomyocytes increases heat shock protein 90 alpha family class B member 1 (HSP90ab1) SUMOylation with (STAT3) activation and Fn secretion after ventricular remodeling initiated. Overexpression of SENP1 or mutation of the HSP90ab1 Lys72 ameliorates adverse ventricular remodeling and dysfunction after MI. Taken together, this study identifies SENP1 as a positive regulator of cardiac repair and a potential drug target for the treatment of MI. Inhibition of HSP90ab1 SUMOylation stabilizes STAT3 to inhibit the adverse ventricular remodeling response.


Subject(s)
Cysteine Endopeptidases , Disease Models, Animal , Fibrosis , HSP90 Heat-Shock Proteins , Myocytes, Cardiac , Animals , Myocytes, Cardiac/metabolism , Mice , Cysteine Endopeptidases/metabolism , Cysteine Endopeptidases/genetics , Fibrosis/metabolism , Fibrosis/genetics , HSP90 Heat-Shock Proteins/metabolism , HSP90 Heat-Shock Proteins/genetics , Paracrine Communication/genetics , Sumoylation , Mice, Knockout , Humans , Myocardial Infarction/metabolism , Myocardial Infarction/genetics , Myocardial Infarction/pathology , Ventricular Remodeling/genetics , Ventricular Remodeling/physiology , Male
12.
Int Immunopharmacol ; 139: 112707, 2024 Sep 30.
Article in English | MEDLINE | ID: mdl-39032472

ABSTRACT

Telmisartan, an angiotensin II type 1 receptor (AT1R) blocker, exhibits broad anti-tumor activity. However, in vitro, anti-proliferative effects are shown at doses far beyond the therapeutic plasma concentration. Considering the role of tumor microenvironment in glioma progression, glioma-astrocyte co-cultures were employed to test the anti-tumor potential of low-dose telmisartan. When a high dose was required for a direct anti-proliferative effect on glioma cell lines, a low dose significantly inhibited glioma cell proliferation and migration in the co-culture system. Under co-culture conditions, upregulated IL-6 expression in astrocytes played a critical role in glioma progression. Silencing IL-6 in astrocytes or IL-6R in glioma cells reduced proliferation and migration. Telmisartan (5 µM) inhibited astrocytic IL-6 expression, and its anti-tumor effects were reversed by silencing IL-6 or IL-6R and inhibiting signal transducer and activator of transcription 3 (STAT3) activity in glioma cells. Moreover, the telmisartan-driven IL-6 downregulation was not imitated by losartan, an AT1R blocker with little capacity of peroxisome proliferator-activated receptor-gamma (PPARγ) activation, but was eliminated by a PPARγ antagonist, indicating that the anti-glioma effects of telmisartan rely on its PPARγ agonistic activity rather than AT1R blockade. This study highlights the importance of astrocytic IL-6-mediated paracrine signaling in glioma growth and the potential of telmisartan as an adjuvant therapy for patients with glioma, especially those with hypertension.


Subject(s)
Angiotensin II Type 1 Receptor Blockers , Astrocytes , Cell Proliferation , Coculture Techniques , Glioma , Interleukin-6 , PPAR gamma , STAT3 Transcription Factor , Telmisartan , Telmisartan/pharmacology , Telmisartan/therapeutic use , Astrocytes/drug effects , Astrocytes/metabolism , Interleukin-6/metabolism , Glioma/drug therapy , Glioma/metabolism , Glioma/pathology , Humans , Cell Proliferation/drug effects , STAT3 Transcription Factor/metabolism , Cell Line, Tumor , Angiotensin II Type 1 Receptor Blockers/pharmacology , Angiotensin II Type 1 Receptor Blockers/therapeutic use , PPAR gamma/metabolism , Paracrine Communication/drug effects , Cell Movement/drug effects , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Receptors, Interleukin-6/metabolism , Losartan/pharmacology , Brain Neoplasms/drug therapy , Brain Neoplasms/metabolism , Brain Neoplasms/pathology , Tumor Microenvironment/drug effects
13.
Biochem Biophys Res Commun ; 727: 150313, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-38954981

ABSTRACT

Sepsis, a life-threatening condition resulting in multiple organ dysfunction, is characterized by a dysregulated immune response to infection. Current treatment options are limited, leading to unsatisfactory outcomes for septic patients. Here, we present a series of studies utilizing compact bone mesenchymal stem cells (CB-MSCs) and their derived paracrine mediators, especially exosome (CB-MSCs-Exo), to treat mice with cecal ligation and puncture-induced sepsis. Our results demonstrate that CB-MSCs treatment significantly improves the survival rate of septic mice by mitigating excessive inflammatory response and attenuating sepsis-induced organ injuries. Furthermore, CB-MSCs-conditioned medium, CB-MSCs secretome (CB-MSCs-Sec), and CB-MSCs-Exo exhibit potent anti-inflammatory effects in lipopolysaccharide (LPS)-stimulated murine macrophage (RAW264.7). Intriguingly, intravenous administration of CB-MSCs-Exo confers superior protection against inflammation and organ damage in septic mice compared to CB-MSCs in certain aspects. Using liquid chromatography-tandem mass spectrometry (LC-MS/MS) shotgun proteomic analysis, we identify a range of characterized proteins derived from the paracrine activity of CB-MSCs, involved in critical biological processes such as immunomodulation and apoptosis. Our findings highlight that the paracrine products of CB-MSCs could serve as a promising cell-free therapeutic agent for sepsis.


Subject(s)
Exosomes , Mesenchymal Stem Cells , Mice, Inbred C57BL , Paracrine Communication , Sepsis , Animals , Sepsis/therapy , Sepsis/metabolism , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/cytology , Mice , RAW 264.7 Cells , Exosomes/metabolism , Exosomes/transplantation , Male , Mesenchymal Stem Cell Transplantation/methods , Lipopolysaccharides , Culture Media, Conditioned/pharmacology
14.
Biomater Adv ; 163: 213952, 2024 Oct.
Article in English | MEDLINE | ID: mdl-38991495

ABSTRACT

Despite of being in different microenvironment, breast cancer cells influence the bone cells and persuade cancer metastasis from breast to bone. Multiple co-culture approaches have been explored to study paracrine signaling between these cells and to study the progression of cancer. However, lack of native tissue microenvironment remains a major bottleneck in existing co-culture technologies. Therefore, in the present study, a tumorigenic and an osteogenic microenvironment have been sutured together to create a multi-cellular environment and has been appraised to study cancer progression in bone tissue. The PCL-polystyrene and PCL-collagen fibrous scaffolds were characterized for tumorigenic and osteogenic potential induction on MDA-MB-231 and MC3T3-E1 cells respectively. Diffusion ability of crystal violet, glucose, and bovine serum albumin across the membrane were used to access the potential paracrine interaction facilitated by device. While in co-cultured condition, MDA-MB-231 cells showed EMT phenotype along with secretion of TNFα and PTHrP which lower down the expression of osteogenic markers including alkaline phosphatase, RUNX2, Osteocalcin and Osteoprotegerin. The cancer progression in bone microenvironment demonstrated the role and necessity of creating multiple tissue microenvironment and its contribution in studying multicellular disease progression and therapeutics.


Subject(s)
Coculture Techniques , Osteogenesis , Humans , Animals , Mice , Osteogenesis/physiology , Cell Line, Tumor , Tissue Scaffolds/chemistry , Tumor Microenvironment/physiology , Cellular Microenvironment/physiology , Breast Neoplasms/pathology , Breast Neoplasms/metabolism , Female , Tumor Necrosis Factor-alpha/metabolism , Parathyroid Hormone-Related Protein/metabolism , Paracrine Communication
15.
Immunity ; 57(8): 1828-1847.e11, 2024 Aug 13.
Article in English | MEDLINE | ID: mdl-39002541

ABSTRACT

Interaction of mast cells (MCs) with fibroblasts is essential for MC maturation within tissue microenvironments, although the underlying mechanism is incompletely understood. Through a phenotypic screening of >30 mouse lines deficient in lipid-related genes, we found that deletion of the lysophosphatidic acid (LPA) receptor LPA1, like that of the phospholipase PLA2G3, the prostaglandin D2 (PGD2) synthase L-PGDS, or the PGD2 receptor DP1, impairs MC maturation and thereby anaphylaxis. Mechanistically, MC-secreted PLA2G3 acts on extracellular vesicles (EVs) to supply lysophospholipids, which are converted by fibroblast-derived autotaxin (ATX) to LPA. Fibroblast LPA1 then integrates multiple pathways required for MC maturation by facilitating integrin-mediated MC-fibroblast adhesion, IL-33-ST2 signaling, L-PGDS-driven PGD2 generation, and feedforward ATX-LPA1 amplification. Defective MC maturation resulting from PLA2G3 deficiency is restored by supplementation with LPA1 agonists or PLA2G3-modified EVs. Thus, the lipid-orchestrated paracrine circuit involving PLA2G3-driven lysophospholipid, eicosanoid, integrin, and cytokine signaling fine-tunes MC-fibroblast communication, ensuring MC maturation.


Subject(s)
Anaphylaxis , Fibroblasts , Lysophospholipids , Mast Cells , Mice, Knockout , Paracrine Communication , Phosphoric Diester Hydrolases , Receptors, Lysophosphatidic Acid , Signal Transduction , Animals , Mast Cells/immunology , Mast Cells/metabolism , Anaphylaxis/immunology , Anaphylaxis/metabolism , Mice , Fibroblasts/metabolism , Lysophospholipids/metabolism , Receptors, Lysophosphatidic Acid/metabolism , Receptors, Lysophosphatidic Acid/genetics , Phosphoric Diester Hydrolases/metabolism , Phosphoric Diester Hydrolases/genetics , Prostaglandin D2/metabolism , Extracellular Vesicles/metabolism , Interleukin-33/metabolism , Intramolecular Oxidoreductases/metabolism , Intramolecular Oxidoreductases/genetics , Receptors, Prostaglandin/metabolism , Receptors, Prostaglandin/genetics , Cell Differentiation , Mice, Inbred C57BL , Interleukin-1 Receptor-Like 1 Protein , Lipocalins
16.
Gen Comp Endocrinol ; 356: 114580, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-38964421

ABSTRACT

Thyroid stimulating hormone (TSH), a glycoprotein synthesized and secreted from thyrotrophs of the pituitary gland, is composed of a glycoprotein hormone common alpha subunit (CGA) and a specific beta subunit (TSHB). The major biological function of TSH is to stimulate thyroidal follicles to synthesize and secrete thyroid hormones through activating its cognate receptor, the thyroid stimulating hormone receptor (TSHR). In the present study, polyclonal antisera against ricefield eel Tshb and Tshr were generated respectively, and the expression of Tshb and Tshr was examined at mRNA and protein levels. RT-PCR analysis showed that tshb mRNA was expressed mainly in the pituitary as well as in some extrapituitary tissues including the ovary and testis. Tshr mRNA was also expressed in a tissue-specific manner, with transcripts detected in tissues including the kidney, ovary, and testis. The immunoreactive Tshb signals in the pituitary were shown to be localized to the inner areas of adenohypophysis which are close to the neurohypophysis of adult ricefield eels. Tshb-immunoreatvie cells in the pituitary of ricefield eel larvae were firstly observed at hatching. The expression of immunoreactive Tshb and Cga was also detected in ricefield eel ovary and testis together with Tshr. In the ovary, immunoreactive Tshb, Cga, and Tshr were observed in oocytes and granulosa cells. In the testis, immunoreactive Tshb was mainly observed in Sertoli cells while immunoreactive Cga and Tshr were detected in germ cells as well as somatic cells. Results of the present study suggest that Tsh may be synthesized both in the ovary and testis locally, which may play paracrine and/or autocrine roles in gonadal development in ricefield eels.


Subject(s)
Eels , Receptors, Thyrotropin , Animals , Receptors, Thyrotropin/metabolism , Receptors, Thyrotropin/genetics , Female , Male , Eels/metabolism , Eels/genetics , Testis/metabolism , Gonads/metabolism , Paracrine Communication/physiology , Ovary/metabolism , Pituitary Gland/metabolism , Thyrotropin, beta Subunit/metabolism , Thyrotropin, beta Subunit/genetics , Autocrine Communication/physiology
17.
Biochim Biophys Acta Mol Cell Res ; 1871(7): 119801, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39038611

ABSTRACT

Cancer-associated fibroblasts (CAFs) are key contributors to ovarian cancer (OC) progression and therapeutic resistance through dysregulation of the extracellular matrix (ECM). CAFs are a heterogenous population derived from different cell types through activation and reprogramming. Current studies rely on uncharacterized heterogenous primary CAFs or normal fibroblasts that fail to recapitulate CAF-like tumor behavior. Here, we present that conditioned media from ovarian cancer lines leads to an increase in the activated state of fibroblasts demonstrated by functional assays and up-regulation of known CAF-related genes and ECM pathways. Phenotypic and functional characterization demonstrated that the conditioned CAFs expressed a CAF-like phenotype, strengthened proliferation, secretory, contractility, and ECM remodeling properties when compared to resting normal fibroblasts, consistent with an activated fibroblast status. Moreover, conditioned CAFs significantly enhanced drug resistance and tumor progression. Critically, the conditioned CAFs resemble a transcriptional signature with involvement of ECM remodeling. The present study provides mechanistic and functional insights about the activation and reprogramming of CAFs in the ovarian tumor microenvironment mediated by non-vesicular paracrine signaling. Moreover, it provides a translational based approach to reprogram normal fibroblasts from both uterine and ovarian origin into CAFs using tumor-derived conditioned media. Using these resources, further development of therapeutics that possess potentiality and specificity towards CAF/ECM-mediated chemoresistance in OC are further warranted.


Subject(s)
Cancer-Associated Fibroblasts , Ovarian Neoplasms , Paracrine Communication , Tumor Microenvironment , Female , Humans , Ovarian Neoplasms/pathology , Ovarian Neoplasms/genetics , Ovarian Neoplasms/metabolism , Cancer-Associated Fibroblasts/metabolism , Cancer-Associated Fibroblasts/pathology , Tumor Microenvironment/genetics , Cellular Reprogramming/genetics , Cell Line, Tumor , Extracellular Matrix/metabolism , Phenotype , Culture Media, Conditioned/pharmacology , Animals , Fibroblasts/metabolism , Fibroblasts/pathology , Cell Proliferation , Mice , Gene Expression Regulation, Neoplastic , Drug Resistance, Neoplasm/genetics
18.
Int J Mol Sci ; 25(14)2024 Jul 16.
Article in English | MEDLINE | ID: mdl-39063044

ABSTRACT

Endothelial dysfunction is cause and consequence of cardiovascular diseases. The endothelial hormone C-type natriuretic peptide (CNP) regulates vascular tone and the vascular barrier. Its cGMP-synthesizing guanylyl cyclase-B (GC-B) receptor is expressed in endothelial cells themselves. To characterize the role of endothelial CNP/cGMP signaling, we studied mice with endothelial-selective GC-B deletion. Endothelial EC GC-B KO mice had thicker, stiffer aortae and isolated systolic hypertension. This was associated with increased proinflammatory E-selectin and VCAM-1 expression and impaired nitric oxide bioavailability. Atherosclerosis susceptibility was evaluated in such KO and control littermates on Ldlr (low-density lipoprotein receptor)-deficient background fed a Western diet for 10 weeks. Notably, the plaque areas and heights within the aortic roots were markedly increased in the double EC GC-B/Ldlr KO mice. This was accompanied by enhanced macrophage infiltration and greater necrotic cores, indicating unstable plaques. Finally, we found that EC GC-B KO mice had diminished vascular regeneration after critical hind-limb ischemia. Remarkably, all these genotype-dependent changes were only observed in female and not in male mice. Auto/paracrine endothelial CNP/GC-B/cGMP signaling protects from arterial stiffness, systolic hypertension, and atherosclerosis and improves reparative angiogenesis. Interestingly, our data indicate a sex disparity in the connection of diminished CNP/GC-B activity to endothelial dysfunction.


Subject(s)
Cyclic GMP , Mice, Knockout , Natriuretic Peptide, C-Type , Signal Transduction , Animals , Natriuretic Peptide, C-Type/metabolism , Natriuretic Peptide, C-Type/genetics , Cyclic GMP/metabolism , Mice , Male , Female , Endothelium, Vascular/metabolism , Endothelium, Vascular/pathology , Atherosclerosis/metabolism , Atherosclerosis/genetics , Atherosclerosis/pathology , Receptors, Atrial Natriuretic Factor/metabolism , Receptors, Atrial Natriuretic Factor/genetics , Endothelial Cells/metabolism , Receptors, LDL/metabolism , Receptors, LDL/genetics , Paracrine Communication , Hypertension/metabolism , Hypertension/genetics , Mice, Inbred C57BL , Aorta/metabolism , Aorta/pathology
19.
Cell Mol Life Sci ; 81(1): 312, 2024 Jul 27.
Article in English | MEDLINE | ID: mdl-39066917

ABSTRACT

Ischemia-reperfusion injury (IRI) is a major event in renal transplantation, leading to adverse outcomes. Bone marrow mesenchymal stem cells (BMSCs) are novel promising therapeutics for repairing kidney injuries. The therapeutic efficacy of BMSCs with ISL1 overexpression in renal IRI and its underlying mechanism need to be investigated. The unilateral renal IRI rat model was established to mimic clinical acute kidney injury. Rats were injected with PBS, BMSCs-Scrambled or BMSCs-ISL1 via the tail vein at the timepoint of reperfusion, and then sacrificed after 24 h of reperfusion. The administration of BMSCs-ISL1 significantly improved renal function, inhibited tubular cells apoptosis, inflammation, oxidative stress in rats. In vitro, HKC cells subjected to H2O2 stimulation were pretreated with the conditioned medium (CM) of BMSCs-Scrambled or BMSCs-ISL1. The pretreatment of ISL1-CM attenuated apoptosis and oxidative stress induced by H2O2 in HKC cells. Our proteomic data suggested that haptoglobin (Hp) was one of the secretory proteins in ISL1-CM. Subsequent experiments confirmed that Hp was the important paracrine factor from BMSCs-ISL1 that exerted anti-apoptotic and antioxidant functions. Mechanistically, Hp played a cytoprotective role via the inhibition of ERK signaling pathway, which could be abrogated by Ro 67-7476, the ERK phosphorylation agonist. The results suggested that paracrine action may be the main mechanism for BMSCs-ISL1 to exert protective effects. As an important anti-apoptotic and antioxidant factor in ISL1-CM, Hp may serve as a new therapeutic agent for treating IRI, providing new insights for overcoming the long-term adverse effects of stem cell therapy.


Subject(s)
Apoptosis , LIM-Homeodomain Proteins , Mesenchymal Stem Cells , Oxidative Stress , Paracrine Communication , Reperfusion Injury , Transcription Factors , Animals , Reperfusion Injury/metabolism , Reperfusion Injury/pathology , Reperfusion Injury/therapy , Oxidative Stress/drug effects , Apoptosis/drug effects , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/cytology , LIM-Homeodomain Proteins/metabolism , LIM-Homeodomain Proteins/genetics , Rats , Male , Transcription Factors/metabolism , Transcription Factors/genetics , Rats, Sprague-Dawley , Kidney/metabolism , Kidney/pathology , Humans , Hydrogen Peroxide/pharmacology , Hydrogen Peroxide/metabolism , Mesenchymal Stem Cell Transplantation/methods , Acute Kidney Injury/metabolism , Acute Kidney Injury/pathology , Acute Kidney Injury/therapy , Culture Media, Conditioned/pharmacology , Cell Line
20.
Redox Biol ; 75: 103241, 2024 09.
Article in English | MEDLINE | ID: mdl-38901103

ABSTRACT

BACKGROUND: We previously demonstrated that the human amniotic fluid (hAF) from II trimester of gestation is a feasible source of stromal progenitors (human amniotic fluid stem cells, hAFSC), with significant paracrine potential for regenerative medicine. Extracellular vesicles (EVs) separated and concentrated from hAFSC secretome can deliver pro-survival, proliferative, anti-fibrotic and cardioprotective effects in preclinical models of skeletal and cardiac muscle injury. While hAFSC-EVs isolation can be significantly influenced by in vitro cell culture, here we profiled EVs directly concentrated from hAF as an alternative option and investigated their paracrine potential against oxidative stress. METHODS: II trimester hAF samples were obtained as leftover material from prenatal diagnostic amniocentesis following written informed consent. EVs were separated by size exclusion chromatography and concentrated by ultracentrifugation. hAF-EVs were assessed by nanoparticle tracking analysis, transmission electron microscopy, Western Blot, and flow cytometry; their metabolic activity was evaluated by oximetric and luminometric analyses and their cargo profiled by proteomics and RNA sequencing. hAF-EV paracrine potential was tested in preclinical in vitro models of oxidative stress and dysfunction on murine C2C12 cells and on 3D human cardiac microtissue. RESULTS: Our protocol resulted in a yield of 6.31 ± 0.98 × 109 EVs particles per hAF milliliter showing round cup-shaped morphology and 209.63 ± 6.10 nm average size, with relevant expression of CD81, CD63 and CD9 tetraspanin markers. hAF-EVs were enriched in CD133/1, CD326, CD24, CD29, and SSEA4 and able to produce ATP by oxygen consumption. While oxidative stress significantly reduced C2C12 survival, hAF-EV priming resulted in significant rescue of cell viability, with notable recovery of ATP synthesis and concomitant reduction of cell damage and lipid peroxidation activity. 3D human cardiac microtissues treated with hAF-EVs and experiencing H2O2 stress and TGFß stimulation showed improved survival with a remarkable decrease in the onset of fibrosis. CONCLUSIONS: Our results suggest that leftover samples of II trimester human amniotic fluid can represent a feasible source of EVs to counteract oxidative damage on target cells, thus offering a novel candidate therapeutic option to counteract skeletal and cardiac muscle injury.


Subject(s)
Amniotic Fluid , Extracellular Vesicles , Oxidative Stress , Paracrine Communication , Pregnancy Trimester, Second , Humans , Extracellular Vesicles/metabolism , Amniotic Fluid/metabolism , Amniotic Fluid/cytology , Pregnancy , Female , Mice , Pregnancy Trimester, Second/metabolism , Animals , Cell Line
SELECTION OF CITATIONS
SEARCH DETAIL