Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
1.
Front Immunol ; 11: 566476, 2020.
Article in English | MEDLINE | ID: mdl-33329529

ABSTRACT

Background: Considering the complexity of the factors involved in the immunopathology of Chagas disease, which influence the Chagas' disease pathogenesis, anti-T. cruzi immune response, and chemotherapy outcome, further studies are needed to improve our understanding about these relationships. On this way, in this article we analyzed the host genetic influence on hematological, histopathological and immunological aspects after T. cruzi infection. Methods: BALB/c and A mice were intragastrically infected with T. cruzi SC2005 strain, isolated from a patient of an outbreak of Chagas disease. Parameters such as parasite load, survival rates, cytokines production, macrophages, T and B cell frequencies, and histopathology analysis were carried out. Results: BALB/c mice presented higher parasitemia and mortality rates than A mice. Both mouse lineages exhibited hematological alterations suggestive of microcytic hypochromic anemia and histopathological alterations in stomach, heart and liver. The increase of CD8+ T cells, in heart, liver and blood, and the increase of CD19+ B cells, in liver, associated with a high level of proinflammatory cytokines (IL-6, TNF-α, IFN-γ), confer a resistance profile to the host. Although BALB/c animals exhibited the same findings observed in A mice, the response to infection occurred later, after a considerable parasitemia increase. By developing an early response to the infection, A mice were found to be less susceptible to T. cruzi SC2005 infection. Conclusions: Host genetics background shaping the response to infection. The early development of a cytotoxic cellular response profile with the production of proinflammatory cytokines is important to lead a less severe manifestation of Chagas disease.


Subject(s)
Chagas Disease , Animals , Chagas Disease/genetics , Chagas Disease/immunology , Chagas Disease/parasitology , Chagas Disease/pathology , Cytokines/immunology , Female , Heart/parasitology , Liver/parasitology , Liver/pathology , Mice, Inbred Strains , Myocardium/pathology , Parasite Load , Parasitemia/genetics , Parasitemia/immunology , Parasitemia/pathology , Species Specificity , Stomach/parasitology , Stomach/pathology
2.
Front Immunol ; 11: 521409, 2020.
Article in English | MEDLINE | ID: mdl-33193300

ABSTRACT

Background: Chagas disease caused by Trypanosoma cruzi (T. cruzi) affects approximately six million individuals worldwide. Clinical manifestations are expected to occur due to the parasite persistence and host immune response. Herein we investigated potential associations between IL1B, IL6, IL17A, or IL18 polymorphism profiles and cardiomyopathy or T. cruzi parasitemia, as well as the impact of HIV infection on cardiopathy. Methods: Two hundred twenty-six patients and 90 control individuals were analyzed. IL1B rs1143627 T>C, IL6 rs1800795 C>G, IL17A rs2275913 G>A, IL18 rs187238 C>G, and IL18 rs1946518 C>A SNVs were analyzed by real-time PCR and T. cruzi parasitemia by PCR. Results: Our data revealed association between a cytokine gene polymorphism and parasitemia never previously reported. The IL6 rs1800795 CG genotype lowered the risk of positive parasitemia (OR = 0.45, 95% CI 0.24-0.86, P = 0.015). Original findings included associations between IL17A rs2275913 AA and IL18 s1946518 AA genotypes with decreased risk of developing cardiomyopathy (OR = 0.27, 95% CI 0.07-0.97, P = 0.044; and OR = 0.35, 95% CI 0.14-0.87, P = 0.023, respectively). IL18 rs1946518 AA and IL1B rs1143627 TC were associated with reduced risk for cardiomyopathy severity, including NYHA (New York Heart Association) class ≥ 2 (OR = 0.21, 95% CI 0.06-0.68, P = 0.009; and OR = 0.48, 95% CI 0.24-0.95, P = 0.036, respectively) and LVEF (left ventricular ejection fraction) <45% for IL18 rs1946518 AA (OR = 0.22, 95% CI 0.05-0.89, P = 0.034). A novel, unexpected protective effect of HIV infection against development/progression of cardiomyopathy was identified, based on a lower risk of developing cardiopathy (OR = 0.48, 95% CI 0.23-0.96, P = 0.039), NYHA class ≥ 2 (OR = 0.15, 95% CI 0.06-0.39, P < 0.001), and LVEF < 45% (OR = 0.03, 95% CI 0.00-0.25, P = 0.001). Digestive involvement was negatively associated with NYHA ≥ 2 and LVEF < 45% (OR = 0.20, 95% CI 0.09-0.47, P < 0.001; and OR = 0.24, 95% CI 0.09-0.62, P = 0.004, respectively). Conclusions: Our data support a protective role of IL17A AA, IL18 AA, and IL1B TC genotypes against development/progression of cardiomyopathy and a modulatory effect of the IL6 CG genotype on the risk of parasitemia in Chagas disease. Notably, HIV infection was shown to protect against development/progression of cardiopathy, potentially associated with a synergistic effect of HIV and highly active antiretroviral therapy (HAART), attenuating a Th1-mediated response in the myocardium. This proposed hypothesis requires confirmation, however, in larger and more comprehensive future studies.


Subject(s)
Chagas Disease , Genotype , Interleukin-17 , Interleukin-18 , Interleukin-1beta , Interleukin-6 , Parasitemia , Polymorphism, Genetic , Trypanosoma cruzi/immunology , Adult , Chagas Disease/genetics , Chagas Disease/immunology , Female , Humans , Interleukin-17/genetics , Interleukin-17/immunology , Interleukin-18/genetics , Interleukin-18/immunology , Interleukin-1beta/genetics , Interleukin-1beta/immunology , Interleukin-6/genetics , Interleukin-6/immunology , Male , Middle Aged , Parasitemia/genetics , Parasitemia/immunology
3.
Free Radic Biol Med ; 129: 227-236, 2018 12.
Article in English | MEDLINE | ID: mdl-30248443

ABSTRACT

Elderly organisms are more susceptible to infectious diseases. However, the impact of aging on antiparasitic mechanisms, especially the nitric oxide pathway, is poorly understood. Using an integrated in vivo and in vitro model, we compared the severity of Trypanosoma cruzi infection in young and elderly (8 or 72 weeks old) mice. Forty C57BL/6 mice were randomized into four groups: Y-inf, young infected; Yn-inf, young uninfected; A-inf, aged infected; An-inf, aged uninfected. Parasitemia was measured daily, and animals were euthanized after 15 days of infection. Trypanosoma cruzi-induced inflammatory processes were analyzed in blood and heart samples, as well as in bone marrow-derived macrophages (BMDMs) co-cultured with splenocytes isolated from young or elderly mice. Our results indicated upregulated IgG2b and IL-17 production in elderly animals, which was not sufficient to reduce parasitemia, parasitic load and myocarditis to levels observed in young animals. The higher susceptibility of elderly mice to T. cruzi infection was accompanied by reduced cardiac inducible nitric oxide synthase (iNOS) gene expression, nitric oxide (NO) and IFN-γ levels, as well as an antagonistic upregulation of arginase-1 expression and arginase activity. The same responses were observed when BMDMs co-cultured with splenocytes from elderly mice were stimulated with T. cruzi antigens. Our findings indicate that elderly mice were more susceptible to T. cruzi infection, which was potentially related to an attenuated response to antigenic stimulation, inhibition of iNOS gene expression and NO production, and antagonistic upregulation of arginase gene expression and activity, which created favorable conditions for heart parasitism and myocarditis development.


Subject(s)
Aging/genetics , Arginase/genetics , Chagas Cardiomyopathy/genetics , Chagas Disease/genetics , Nitric Oxide Synthase Type II/genetics , Parasitemia/genetics , Trypanosoma cruzi/pathogenicity , Aging/immunology , Animals , Antigens, Protozoan/pharmacology , Arginase/blood , Chagas Cardiomyopathy/immunology , Chagas Cardiomyopathy/parasitology , Chagas Disease/immunology , Chagas Disease/parasitology , Coculture Techniques , Gene Expression Regulation , Heart/parasitology , Host-Pathogen Interactions/genetics , Host-Pathogen Interactions/immunology , Immunoglobulin G/blood , Immunoglobulin G/genetics , Interferon-gamma/blood , Interferon-gamma/genetics , Interleukin-10/blood , Interleukin-10/genetics , Interleukin-17/blood , Interleukin-17/genetics , Macrophages/drug effects , Macrophages/immunology , Macrophages/parasitology , Mice , Mice, Inbred C57BL , Nitric Oxide Synthase Type II/blood , Parasitemia/immunology , Severity of Illness Index , Signal Transduction , T-Lymphocytes/drug effects , T-Lymphocytes/immunology , T-Lymphocytes/parasitology , Trypanosoma cruzi/immunology
4.
Pharmacogenomics ; 18(15): 1393-1400, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28975866

ABSTRACT

AIM: The association of transporters gene polymorphisms with chloroquine/primaquine malaria treatment response was investigated in a Brazilian population. PATIENTS & METHODS: Totally, 164 Plasmodium vivax malaria infected patients were included. Generalized estimating equations were performed to determine gene influences on parasitemia and/or gametocytemia clearance over treatment time. RESULTS: Significant interaction between SLCO2B1 genotypes and treatment over time for parasitemia clearance rate on day 2 were observed (p FDR = 0.002). SLCO1A2 and SLCO1B1 gene treatment over time interactions were associated with gametocytemia clearance rate (p FDR = 0.018 and p FDR = 0.024). ABCB1, ABCC4 and SLCO1B3 were not associated with treatment response. CONCLUSION: The present work presents the first pharmacogenetic report of an association between chloroquine/primaquine responses with OATP transporters.


Subject(s)
Chloroquine/therapeutic use , Liver-Specific Organic Anion Transporter 1/genetics , Malaria, Vivax/genetics , Organic Anion Transporters/genetics , Polymorphism, Genetic/genetics , Primaquine/therapeutic use , Adult , Antimalarials/therapeutic use , Brazil , Drug Therapy, Combination/methods , Female , Genotype , Humans , Malaria, Vivax/drug therapy , Male , Parasitemia/drug therapy , Parasitemia/genetics , Plasmodium vivax/drug effects , Treatment Outcome
5.
PLoS One ; 12(8): e0183840, 2017.
Article in English | MEDLINE | ID: mdl-28850598

ABSTRACT

BACKGROUND: Plasmodium vivax malaria (Pv-malaria) is still considered a neglected disease despite an alarming number of individuals being infected annually. Malaria pathogenesis occurs with the onset of the vector-parasite-host interaction through the binding of pathogen-associated molecular patterns (PAMPs) and receptors of innate immunity, such as toll-like receptors (TLRs). The triggering of the signaling cascade produces an elevated inflammatory response. Genetic polymorphisms in TLRs are involved in susceptibility or resistance to infection, and the identification of genes involved with Pv-malaria response is important to elucidate the pathogenesis of the disease and may contribute to the formulation of control and elimination tools. METHODOLOGY/PRINCIPAL FINDINGS: A retrospective case-control study was conducted in an intense transmission area of Pv-malaria in the state of Amazonas, Brazil. Genetic polymorphisms (SNPs) in different TLRs, TIRAP, and CD14 were genotyped by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) analysis in 325 patients infected with P. vivax and 274 healthy individuals without malaria history in the prior 12 months from the same endemic area. Parasite load was determined by qPCR. Simple and multiple logistic/linear regressions were performed to investigate association between the polymorphisms and the occurrence of Pv-malaria and parasitemia. The C/T (TLR5 R392StopCodon) and T/T (TLR9 -1486C/T) genotypes appear to be risk factors for infection by P. vivax (TLR5: C/C vs. C/T [OR: 2.116, 95% CI: 1.054-4.452, p = 0.031]; TLR9: C/C vs. T/T [OR: 1.919, 95% CI: 1.159-3.177, p = 0.010]; respectively). Fever (COEF = 7599.46, 95% CI = 3063.80-12135.12, p = 0.001) and the C/C genotype of TLR9 -1237C/T (COEF = 17006.63, 95% CI = 3472.83-30540.44, p = 0.014) were independently associated with increased parasitemia in patients with Pv-malaria. CONCLUSIONS: Variants of TLRs may predispose individuals to infection by P. vivax. The TLR5 R392StopCodon and TLR9 -1486C/T variants are associated with susceptibility to Pv-malaria. Furthermore, the TLR9 variant -1237C/C correlates with high parasitemia.


Subject(s)
Genetic Predisposition to Disease , Malaria, Vivax/genetics , Parasitemia/genetics , Polymorphism, Single Nucleotide , Adult , Alleles , Brazil , Case-Control Studies , Female , Genetic Association Studies , Genotype , Humans , Lipopolysaccharide Receptors/genetics , Male , Membrane Glycoproteins/genetics , Middle Aged , Plasmodium vivax , Receptors, Interleukin-1/genetics , Retrospective Studies , Toll-Like Receptor 5/genetics , Toll-Like Receptor 9/genetics , Young Adult
6.
Mol Cell Probes ; 31: 65-69, 2017 02.
Article in English | MEDLINE | ID: mdl-27554834

ABSTRACT

We describe an improved real-time PCR assay (designated as "Leishmania-FAST15") for the detection and quantification of Leishmania infantum and Leishmania braziliensis kinetoplast DNA minicircles in canine blood samples. The analytical sensitivity of this technique is 0.1 fg of DNA, which is equivalent to 0.002 parasite per reaction. This assay uses a small reaction volume (15 µl) and is rapid to perform, with the results being available in less than 34 min. This improved assay might also be suitable for detecting and quantifying L. infantum and L. braziliensis DNA in other tissues, such as bone marrow and lymph nodes.


Subject(s)
Costs and Cost Analysis , DNA, Kinetoplast/blood , Dogs/blood , Dogs/parasitology , Leishmania braziliensis/isolation & purification , Leishmania infantum/isolation & purification , Real-Time Polymerase Chain Reaction/economics , Animals , DNA, Kinetoplast/genetics , Dog Diseases/blood , Dog Diseases/genetics , Dog Diseases/parasitology , Leishmania braziliensis/genetics , Leishmania infantum/genetics , Parasitemia/blood , Parasitemia/genetics , Parasitemia/parasitology , Reference Standards , Sensitivity and Specificity
7.
J Mol Diagn ; 17(5): 605-15, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26320872

ABSTRACT

An international study was performed by 26 experienced PCR laboratories from 14 countries to assess the performance of duplex quantitative real-time PCR (qPCR) strategies on the basis of TaqMan probes for detection and quantification of parasitic loads in peripheral blood samples from Chagas disease patients. Two methods were studied: Satellite DNA (SatDNA) qPCR and kinetoplastid DNA (kDNA) qPCR. Both methods included an internal amplification control. Reportable range, analytical sensitivity, limits of detection and quantification, and precision were estimated according to international guidelines. In addition, inclusivity and exclusivity were estimated with DNA from stocks representing the different Trypanosoma cruzi discrete typing units and Trypanosoma rangeli and Leishmania spp. Both methods were challenged against 156 blood samples provided by the participant laboratories, including samples from acute and chronic patients with varied clinical findings, infected by oral route or vectorial transmission. kDNA qPCR showed better analytical sensitivity than SatDNA qPCR with limits of detection of 0.23 and 0.70 parasite equivalents/mL, respectively. Analyses of clinical samples revealed a high concordance in terms of sensitivity and parasitic loads determined by both SatDNA and kDNA qPCRs. This effort is a major step toward international validation of qPCR methods for the quantification of T. cruzi DNA in human blood samples, aiming to provide an accurate surrogate biomarker for diagnosis and treatment monitoring for patients with Chagas disease.


Subject(s)
Chagas Disease/blood , DNA, Protozoan/analysis , Real-Time Polymerase Chain Reaction/methods , Trypanosoma cruzi/genetics , Chagas Disease/diagnosis , Chagas Disease/genetics , Chagas Disease/parasitology , DNA, Protozoan/isolation & purification , Humans , International Cooperation , Laboratory Proficiency Testing , Molecular Typing , Parasitemia/blood , Parasitemia/diagnosis , Parasitemia/genetics , Sensitivity and Specificity , Trypanosoma cruzi/isolation & purification
8.
Malar J ; 14: 30, 2015 Jan 28.
Article in English | MEDLINE | ID: mdl-25627396

ABSTRACT

BACKGROUND: Cytokines play an important role in human immune responses to malaria and variation in their production may influence the course of infection and determine the outcome of the disease. The differential production of cytokines has been linked to single nucleotide polymorphisms in gene promoter regions, signal sequences, and gene introns. Although some polymorphisms play significant roles in susceptibility to malaria, gene polymorphism studies in Brazil are scarce. METHODS: A population of 267 individuals from Brazilian Amazon exposed to malaria was genotyped for five single nucleotide polymorphisms (SNPs), IFNG + 874 T/A, IL10A-1082G/A, IL10A-592A/C, IL10A-819 T/C and NOS2A-954G/C. Specific DNA fragments were amplified by polymerase chain reaction, allowing the detection of the polymorphism genotypes. The polymorphisms IL10A-592A/C and IL10A-819 T/C were estimated by a single analysis due to the complete linkage disequilibrium between the two SNPs with D' = 0.99. Plasma was used to measure the levels of IFN-γ and IL-10 cytokines by Luminex and nitrogen radicals by Griess reaction. RESULTS: No differences were observed in genotype and allelic frequency of IFNG + 874 T/A and NOS2A-954G/C between positive and negative subjects for malaria infection. Interesting, the genotype NOS2A-954C/C was not identified in the study population. Significant differences were found in IL10A-592A/C and IL10A-819 T/C genotypes distribution, carriers of IL10A -592A/-819 T alleles (genotypes AA/TT + AC/TC) were more frequent among subjects with malaria than in negative subjects that presented a higher frequency of the variant C allele (p < 0.0001). The presence of the allele C was associated with low producer of IL-10 and low parasitaemia. In addition, the GTA haplotypes formed from combinations of investigated polymorphisms in IL10A were significantly associated with malaria (+) and the CCA haplotype with malaria (-) groups. The IL10A-1082G/A polymorphism showed high frequency of heterozygous AG genotype in the population, but it was not possible to infer any association of the polymorphism because their distribution was not in Hardy Weinberg equilibrium. CONCLUSION: This study shows that the IL10A-592A/C and IL10A-819 T/C polymorphisms were associated with malaria and decreased IL-10 levels and low parasite density suggesting that this polymorphism influence IL-10 levels and may influence in the susceptibility to clinical malaria.


Subject(s)
Interleukin-10/blood , Interleukin-10/genetics , Malaria/genetics , Polymorphism, Single Nucleotide/genetics , Adolescent , Adult , Aged , Brazil/epidemiology , Child , Child, Preschool , Cytokines/blood , Cytokines/genetics , Endemic Diseases , Female , Gene Frequency , Haplotypes , Humans , Linkage Disequilibrium , Malaria/epidemiology , Male , Middle Aged , Parasitemia/epidemiology , Parasitemia/genetics , Young Adult
9.
Cytokine ; 65(1): 42-7, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24139871

ABSTRACT

OBJECTIVE: To investigate the influence of IL6, IL12B and VDR single nucleotide polymorphisms (SNPs) in uncomplicated Plasmodium vivax infection symptoms intensity, parasitemia and gametocytemia levels in a Brazilian Amazonian population. METHODS: A total of 167 malaria patients infected by P. vivax have parasitemia and gametocytemia levels estimated before treatment. Fourteen clinical symptoms were evaluated and included in a principal component analysis to derive a clinical symptom index. Patients were genotyped for IL6-174C>G, IL12B 735T>C, 458A>G, 159A>C, and VDR FokI, TaqI, BsmI SNPs by Taqman 5' nuclease assays. A General Linear Model analysis of covariance with age, gender, exposure period and infection history and genetic ancestry was performed to investigate the association of genotypes with parasitemia and gametocytemia levels and with a clinical symptom index. RESULTS: Higher parasitemia levels were observed in IL6-174C carriers (p=0.02) whereas IL12B CGT haplotype carriers presented lower parasitemia levels (p=0.008). VDR TaqIC/BsmIA haplotype carriers showed higher gametocyte levels than non-carriers (p=0.013). Based on the clinical index values the IL6-174C>G polymorphism was associated with malaria severity. The IL6-174C carriers presented a more severe clinical index when compared to GG homozygotes (p=0.001). CONCLUSION: The present study suggests that IL6, IL12 and VDR influence severity, parasitemia and gametocytemia clearance in P. vivax infections, and highlights their potential role in malaria immune response in an Amazonian population.


Subject(s)
Interleukin-12 Subunit p40/genetics , Interleukin-6/genetics , Malaria, Vivax/genetics , Parasitemia/genetics , Plasmodium vivax , Receptors, Calcitriol/genetics , Adolescent , Adult , Aged , Aged, 80 and over , Brazil/epidemiology , Child , Female , Genotype , Humans , Interleukin-12 Subunit p40/immunology , Interleukin-6/immunology , Malaria, Vivax/epidemiology , Malaria, Vivax/immunology , Male , Middle Aged , Parasitemia/parasitology , Polymorphism, Single Nucleotide , Receptors, Calcitriol/immunology , Young Adult
10.
Cell Immunol ; 279(1): 53-9, 2012 Sep.
Article in English | MEDLINE | ID: mdl-23089194

ABSTRACT

The thymus plays a crucial role in the generation of T-cells, and so our laboratory has been interested in the study of the intrathymic events that occur during infection diseases and may cause disruption in its functions. Previously, we showed that thymus from experimentally Plasmodium berghei-infected mice present histological alterations with high levels of apoptosis, changes in cell migration-related molecules, and premature egress of immature thymocytes to periphery. In addition, parasites were found inside the thymus. In this work we investigated alterations in the expression pattern and activity of matrix metalloproteinases MMP-2 and -9, and their tissue inhibitors, TIMP-1 and TIMP-2. Our results show enhanced expression and widespread distribution of these molecules in thymus from infected animals. Also, the presence of active MMP-2 was detected. These data are suggestive of MMPs and TIMPs importance in the earlier observed changes in the extracellular matrix during thymic alterations after plasmodium infection.


Subject(s)
Malaria/parasitology , Parasitemia/parasitology , Plasmodium berghei/physiology , Thymus Gland/parasitology , Animals , Gene Expression Profiling , Host-Parasite Interactions , Immunohistochemistry , Malaria/genetics , Malaria/metabolism , Male , Matrix Metalloproteinase 2/genetics , Matrix Metalloproteinase 2/metabolism , Matrix Metalloproteinase 9/genetics , Matrix Metalloproteinase 9/metabolism , Mice , Mice, Inbred BALB C , Parasitemia/genetics , Parasitemia/metabolism , Reverse Transcriptase Polymerase Chain Reaction , Thymus Gland/metabolism , Thymus Gland/pathology , Time Factors , Tissue Inhibitor of Metalloproteinase-1/genetics , Tissue Inhibitor of Metalloproteinase-1/metabolism , Tissue Inhibitor of Metalloproteinase-2/genetics , Tissue Inhibitor of Metalloproteinase-2/metabolism
11.
Vet Parasitol ; 175(3-4): 245-51, 2011 Feb 10.
Article in English | MEDLINE | ID: mdl-21074325

ABSTRACT

The aim of this study was to compare the immune responses to live Neospora caninum tachyzoites and N. caninum native antigens formulated with immune stimulating complexes matrix (ISCOM-matrix) in calves. Fifteen calves were used in this study: 3 were intravenously inoculated with 1 × 10(8) live tachyzoites (Group A), 3 were inoculated twice with N. caninum native antigens formulated with ISCOMs (Group B); 3 with N. caninum native antigens in phosphate-buffered saline (PBS) (Group C); 3 received ISCOM-matrix (ISCOMs without antigen) (Group D) and 3 were negative controls receiving PBS (Group E). The last four groups were inoculated subcutaneously. The specific total IgG and its subtypes were analyzed by an indirect enzyme-linked immunosorbent assays (ELISAs) and by Western blot. IFN-γ levels in plasma was quantified using a commercial kit. All calves were challenged intravenously with 1 × 10(8) live tachyzoites at week 11 after receiving the first dose. Parasitemia was assessed in plasma samples by semi-nested PCR. Neospora-specific antibodies were detected in animals from Groups A and B in the week 2 after inoculation. The ELISA OD values were higher in Group B compared with Group A from weeks 6 to 11 (P<0.05). Analysis of the subisotype specific antibodies in experimentally infected calves revealed a predominant IgG(2) response; however, a predominant IgG(1) response was observed in animals inoculated with N. caninum native antigens formulated with ISCOM-matrix. Control calves remained seronegative until challenge infection. The pattern of bands by Western blot was similar when testing sera from animals in Groups A and B. The levels of IFN-γ production after respective immunization schedules were similar between Groups A and B. Neospora-DNA was detected in plasma samples shortly after intravenous challenge in calves from all groups including those receiving the experimental vaccine formulation. The duration of the parasitemia was similar in all groups.


Subject(s)
Antigens, Protozoan/immunology , Cattle Diseases/immunology , Coccidiosis/veterinary , Neospora/immunology , Animals , Antibodies, Protozoan/biosynthesis , Antibodies, Protozoan/blood , Antigens, Protozoan/pharmacology , Blotting, Western/veterinary , Cattle , Cattle Diseases/parasitology , Coccidiosis/immunology , Coccidiosis/parasitology , DNA, Protozoan/genetics , Enzyme-Linked Immunosorbent Assay/veterinary , ISCOMs/immunology , Immunoglobulin Isotypes/immunology , Interferon-gamma/biosynthesis , Interferon-gamma/blood , Interferon-gamma/immunology , Neospora/genetics , Neospora/pathogenicity , Parasitemia/genetics , Polymerase Chain Reaction/veterinary , Random Allocation , Time Factors , Vaccination/veterinary
12.
Exp Parasitol ; 100(4): 269-75, 2002 Apr.
Article in English | MEDLINE | ID: mdl-12128054

ABSTRACT

Chagas' disease, caused by the protozoan parasite Trypanosoma cruzi, has quite a variable clinical presentation, ranging from asymptomatic to severe chronic cardiac and/or gastrointestinal disease. The reason for that is not completely understood, but both parasite and host genetic traits are certainly involved. Recently, we have demonstrated clinically and experimentally that the genetic variability of T. cruzi is one of the determinants of the pattern of tissue involvement in Chagas' disease. We then decided to turn our attention to the role of host genetic background. To study this, we compared the infection of four lineages of mice [three inbred (BALB/c, DBA-2, and c57Black/6) and one outbred (Swiss)] with two T. cruzi clonal populations, the Col1.7G2 clone and the JG monoclonal strain. The tissue distribution of T. cruzi strains was identical for BALB/c and DBA-2 mice, but very different in C57BL/6 (H-2(b)) and outbred Swiss mice. This result clearly demonstrates the importance of host genetic aspects in the process. Since BALB/c and DBA-2 have the same H-2 haplotype (H-2(d)) and C57BL/6 does not (H-2(b)), it is possible that MHC variability may be involved in influencing the tissue distribution of involvement in experimental Chagas' disease of the mouse.


Subject(s)
Chagas Disease/genetics , Chagas Disease/parasitology , Trypanosoma cruzi/physiology , Animals , Brain/parasitology , Brain/pathology , Chagas Cardiomyopathy/genetics , Chagas Cardiomyopathy/pathology , Chagas Disease/pathology , DNA, Kinetoplast/analysis , Diaphragm/parasitology , Diaphragm/pathology , Esophagus/parasitology , Esophagus/pathology , Heart/parasitology , Humans , Male , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Inbred DBA , Parasitemia/genetics , Parasitemia/parasitology , Parasitemia/pathology , Polymerase Chain Reaction , Rectum/parasitology , Rectum/pathology , Trypanosoma cruzi/genetics , Trypanosoma cruzi/isolation & purification
13.
Exp Parasitol ; 96(2): 97-107, 2000 Oct.
Article in English | MEDLINE | ID: mdl-11052868

ABSTRACT

Although a complete cellular and humoral immune response is elicited in Chagas' disease, recent data suggest that other natural elements of innate immunity may also contribute to the initial host primary defense. alpha-Macroglobulins are a family of plasma proteinase inhibitors that are acute-phase reactants in Trypanosoma cruzi-infected mice and humans. Mice contain a tetrameric alpha-2-macroglobulin (MAM) and a monomeric murinoglobulin (MUG). Heterogeneity in their reactions was observed in murine T. cruzi-infected plasma A2M levels despite an overall increase. In addition, up-regulation of the A2M receptor (A2MR/LRP) was observed in peritoneal macrophages during T. cruzi infection. Here, we show that during T. cruzi infection (Y strain), the MAM and MUG hepatic mRNA levels and the corresponding plasma protein levels were up-regulated in C3H and C57BL/6 (B6) mice, but with different kinetics. On the contrary, A2MR/LRP mRNA levels increased in acutely infected C3H mice, but decreased in B6 mice, in both liver and heart. Immunocytochemistry of infected B6 heart cryosections confirmed a less intense endothelium labeling by the fluoresceinated ligand for A2MR/LRP. On the other hand, infected B6 spleen cells displayed higher F-A2M-FITC binding and MAC1 expression, confirming higher A2MR/LRP expression in macrophages. In uninfected mice, as well as after T. cruzi infection, higher A2M plasma levels were measured in C3H mice than in B6 mice. The lower tissue T. cruzi parasitism found in C3H-infected mice could reflect an inhibitory effect of A2M on parasite invasion. Our present data further contribute to clarifying aspects of the role of A2MR/LRP in a model of acute Chagas' disease in different mouse strains.


Subject(s)
Chagas Disease/metabolism , Receptors, Immunologic/biosynthesis , alpha-Macroglobulins/biosynthesis , Acute Disease , Animals , Chagas Disease/genetics , Chagas Disease/parasitology , Gene Expression , Heart/parasitology , Liver/chemistry , Liver/metabolism , Liver/pathology , Low Density Lipoprotein Receptor-Related Protein-1 , Male , Mice , Mice, Inbred BALB C , Mice, Inbred C3H , Myocardium/chemistry , Myocardium/metabolism , Myocardium/pathology , Organ Size , Parasitemia/genetics , Parasitemia/metabolism , Parasitemia/parasitology , RNA, Messenger/analysis , Receptors, Immunologic/genetics , Serum Globulins/biosynthesis , Serum Globulins/genetics , Spleen/chemistry , Spleen/metabolism , Spleen/pathology , Trypanosoma cruzi/physiology , Up-Regulation , alpha-Macroglobulins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL