Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 30.210
1.
BMC Complement Med Ther ; 24(1): 222, 2024 Jun 08.
Article En | MEDLINE | ID: mdl-38851758

CONTEXT: Bu-shen-yi-jing-fang (BSYJF) has been reported to reduce amyloid-ß (Aß)1-42 deposition in the brain of APP/PS1 mice and ameliorate cognitive function. However, its neuroprotective mechanism remains unclear. OBJECTIVE: This study aims to investigate whether BSYJF exerts a protective effect on Aß1-42-induced oxidative stress injury and explore its possible mechanism. MATERIALS AND METHODS: The platform databases TCMSP, Swiss, TTD, DrugBank, and GeneCards were used to mine the targets of Alzheimer's disease (AD) and BSYJF. The platform databases STRING and Metascape were used to build the interaction network of the target protein, and Cytoscape software was used to analyze this network and screen out the key pathways. Aß1-42-treated SKNMC cells were established to verify the mechanism of BSYJF and the key proteins. The downstream proteins and antioxidants as well as apoptosis and ferroptosis of the PI3K/AKT/Nrf2 signaling pathway were validated using an in vitro SKNMC cell model experiment. The expression levels of related proteins were detected using Western blotting. Flow cytometry and immunofluorescence staining were used to analyze apoptosis and ferroptosis. RESULTS: Kyoto encyclopedia of genes and genomes (KEGG) pathway enrichment analysis considered the key signal pathways, mainly involving the PI3K/AKT signaling pathway. Experimental validation demonstrated that BSYJF treatment markedly increased the activity of the PI3K/AKT pathway, which could exert anti-AD effects. CONCLUSIONS: Our data provided compelling evidence that the protective effects of BSYJF might be associated with their regulation of the PI3K/AKT/Nrf2 signaling pathway. These studies offered a potential therapy for natural herbal medicine treatment of AD.


Alzheimer Disease , Drugs, Chinese Herbal , Network Pharmacology , Signal Transduction , Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , Drugs, Chinese Herbal/pharmacology , Signal Transduction/drug effects , Humans , Amyloid beta-Peptides/metabolism , Neuroprotective Agents/pharmacology , Oxidative Stress/drug effects , NF-E2-Related Factor 2/metabolism , Animals , Mice , Peptide Fragments/metabolism
2.
Acta Neuropathol ; 147(1): 97, 2024 Jun 10.
Article En | MEDLINE | ID: mdl-38856925

Β-site amyloid precursor protein (APP) cleaving enzyme (BACE1) is a crucial protease in the production of amyloid-ß (Aß) in Alzheimer's disease (AD) patients. However, the side effects observed in clinical trials of BACE1 inhibitors, including reduction in brain volume and cognitive worsening, suggest that the exact role of BACE1 in AD pathology is not fully understood. To further investigate this, we examined cerebrospinal fluid (CSF) levels of BACE1 and its cleaved product sAPPß that reflects BACE1 activity in the China Aging and Neurodegenerative Disorder Initiative cohort. We found significant correlations between CSF BACE1 or sAPPß levels and CSF Aß40, Aß42, and Aß42/Aß40 ratio, but not with amyloid deposition detected by 18F-Florbetapir PET. Additionally, CSF BACE1 and sAPPß levels were positively associated with cortical thickness in multiple brain regions, and higher levels of sAPPß were linked to increased cortical glucose metabolism in frontal and supramarginal areas. Interestingly, individuals with higher baseline levels of CSF BACE1 exhibited slower rates of brain volume reduction and cognitive worsening over time. This suggests that increased levels and activity of BACE1 may not be the determining factor for amyloid deposition, but instead, may be associated with increased neuronal activity and potentially providing protection against neurodegeneration in AD.


Alzheimer Disease , Amyloid Precursor Protein Secretases , Amyloid beta-Peptides , Aspartic Acid Endopeptidases , Brain , Humans , Amyloid Precursor Protein Secretases/cerebrospinal fluid , Amyloid Precursor Protein Secretases/metabolism , Aspartic Acid Endopeptidases/cerebrospinal fluid , Aspartic Acid Endopeptidases/metabolism , Alzheimer Disease/pathology , Alzheimer Disease/cerebrospinal fluid , Male , Aged , Female , Amyloid beta-Peptides/cerebrospinal fluid , Amyloid beta-Peptides/metabolism , Brain/pathology , Brain/metabolism , Positron-Emission Tomography , Aged, 80 and over , Middle Aged , Cognition/physiology , Biomarkers/cerebrospinal fluid , Peptide Fragments/cerebrospinal fluid , Peptide Fragments/metabolism
3.
Science ; 384(6700): 1091-1095, 2024 Jun 07.
Article En | MEDLINE | ID: mdl-38843321

Successive cleavages of amyloid precursor protein C-terminal fragment with 99 residues (APP-C99) by γ-secretase result in amyloid-ß (Aß) peptides of varying lengths. Most cleavages have a step size of three residues. To elucidate the underlying mechanism, we determined the atomic structures of human γ-secretase bound individually to APP-C99, Aß49, Aß46, and Aß43. In all cases, the substrate displays the same structural features: a transmembrane α-helix, a three-residue linker, and a ß-strand that forms a hybrid ß-sheet with presenilin 1 (PS1). Proteolytic cleavage occurs just ahead of the substrate ß-strand. Each cleavage is followed by unwinding and translocation of the substrate α-helix by one turn and the formation of a new ß-strand. This mechanism is consistent with existing biochemical data and may explain the cleavages of other substrates by γ-secretase.


Amyloid Precursor Protein Secretases , Amyloid beta-Peptides , Amyloid beta-Protein Precursor , Presenilin-1 , Humans , Amyloid beta-Peptides/chemistry , Amyloid beta-Protein Precursor/chemistry , Amyloid Precursor Protein Secretases/chemistry , Crystallography, X-Ray , Models, Molecular , Peptide Fragments/metabolism , Peptide Fragments/chemistry , Presenilin-1/chemistry , Protein Conformation, alpha-Helical , Protein Conformation, beta-Strand , Proteolysis , Substrate Specificity
4.
Biotechnol J ; 19(6): e2300662, 2024 Jun.
Article En | MEDLINE | ID: mdl-38863126

Alzheimer's disease (AD), the most common form of dementia, has gotten considerable attention. Previous studies have demonstrated that clioquinol (CQ) as a metal chelator is a potential drug for the treatment of AD. However, the mode of action of CQ in AD is still unclear. In our study, the antioxidant effects of CQ on yeast cells expressing Aß42 were investigated. We found that CQ could reduce Aß42 toxicity by alleviating reactive oxygen species (ROS) generation and lipid peroxidation level in yeast cells. These alterations were mainly attributable to the increased reduced glutathione (GSH) content and independent of activities of superoxide dismutase (SOD) and/or catalase (CAT). CQ could affect antioxidant enzyme activity by altering the transcription level of related genes. Interestingly, it was noted for the first time that CQ could combine with antioxidant enzymes to reduce their enzymatic activities by molecular docking and circular dichroism spectroscopy. In addition, CQ restored Aß42-mediated disruption of GSH homeostasis via regulating YAP1 expression to protect cells against oxidative stress. Our findings not only improve the current understanding of the mechanism of CQ as a potential drug for AD treatment but also provide ideas for subsequent drug research and development.


Amyloid beta-Peptides , Antioxidants , Clioquinol , Glutathione , Oxidative Stress , Reactive Oxygen Species , Saccharomyces cerevisiae , Oxidative Stress/drug effects , Amyloid beta-Peptides/metabolism , Amyloid beta-Peptides/toxicity , Saccharomyces cerevisiae/drug effects , Saccharomyces cerevisiae/metabolism , Clioquinol/pharmacology , Reactive Oxygen Species/metabolism , Glutathione/metabolism , Antioxidants/pharmacology , Lipid Peroxidation/drug effects , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae Proteins/genetics , Superoxide Dismutase/metabolism , Superoxide Dismutase/genetics , Peptide Fragments/metabolism , Molecular Docking Simulation , Catalase/metabolism , Transcription Factors/metabolism , Transcription Factors/genetics , Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism
5.
Sci Rep ; 14(1): 11313, 2024 05 17.
Article En | MEDLINE | ID: mdl-38760452

Physical activity promotes various metabolic benefits by balancing pro and anti-inflammatory adipokines. Recent studies suggest that asprosin might be involved in progression of metabolic syndrome (MetS), however, the underlying mechanisms have not been understood yet. This study aimed to evaluate the effects of high-intensity interval training (HIIT), moderate-intensity continuous training (MICT), and further detraining on MetS indices, insulin resistance, serum and the liver levels of asprosin, and AMP-activated protein kinase (AMPK) pathway in menopause-induced MetS model of rats. A total of 64 Wistar rats were used in this study and divided into eight groups: Sham1, OVX1 (ovariectomized), Sham2, OVX2, OVX + HIIT, OVX + MICT, OVX + HIIT + Det (detraining), and OVX + MICT + Det. Animals performed the protocols, and then serum concentrations of asprosin, TNF-α, insulin, fasting blood glucose, and lipid profiles (TC, LDL, TG, and HDL) were assessed. Additionally, the liver expression of asprosin, AMPK, and P-AMPK was measured by western blotting. Both HIIT and MICT caused a significant decrease in weight, waist circumference, BMI (P = 0.001), and serum levels of glucose, insulin, asprosin (P = 0.001), triglyceride, total cholesterol, low-density lipoprotein (LDL), and TNF-α (P = 0.001), but an increase in the liver AMPK, P-AMPK, and P-AMPK/AMPK (P = 0.001), compared with OVX2 noexercised group. MICT was superior to HIIT in reducing serum asprosin, TNF-a, TG, LDL (P = 0.001), insulin, fasting blood glucose, HOMA-IR, and QUEKI index (P = 0.001), but an increase in the liver AMPK, and p-AMPK (P = 0.001). Although after two months of de-training almost all indices returned to the pre exercise values (P < 0.05). The findings suggest that MICT effectively alleviates MetS induced by menopause, at least partly through the activation of liver signaling of P-AMPK and the reduction of asprosin and TNF-α. These results have practical implications for the development of exercise interventions targeting MetS in menopausal individuals, emphasizing the potential benefits of MICT in mitigating MetS-related complications.


AMP-Activated Protein Kinases , Disease Models, Animal , Fibrillin-1 , Metabolic Syndrome , Physical Conditioning, Animal , Rats, Wistar , Signal Transduction , Animals , Fibrillin-1/metabolism , Metabolic Syndrome/metabolism , Metabolic Syndrome/therapy , Rats , Female , AMP-Activated Protein Kinases/metabolism , High-Intensity Interval Training/methods , Liver/metabolism , Insulin Resistance , Blood Glucose/metabolism , Insulin/blood , Insulin/metabolism , Peptide Fragments/blood , Peptide Fragments/metabolism
6.
World J Gastroenterol ; 30(18): 2391-2396, 2024 May 14.
Article En | MEDLINE | ID: mdl-38764773

This editorial contains comments on the article by Zhao et al in print in the World Journal of Gastroenterology. The mechanisms responsible for hepatic fibrosis are also involved in cancerogenesis. Here, we recapitulated the complexity of the renin-angiotensin system, discussed the role of hepatic stellate cell (HSC) autophagy in liver fibrogenesis, and analyzed the possible implications in the development of hepatocarcinoma (HCC). Angiotensin-converting enzyme inhibitors and angiotensin receptor blockers definitively contribute to reducing hepatic fibrogenesis, whereas their involvement in HCC is more evident in experimental conditions than in human studies. Angiotensin-converting enzyme 2 (ACE2), and its product Angiotensin (Ang) 1-7, not only regulate HSC autophagy and liver fibrosis, but they also represent potential targets for unexplored applications in the field of HCC. Finally, ACE2 overexpression inhibits HSC autophagy through the AMP-activated protein kinase (AMPK)/mammalian target of rapamycin (mTOR) pathway. In this case, Ang 1-7 acts binding to the MasR, and its agonists could modulate this pathway. However, since AMPK utilizes different targets to suppress the mTOR downstream complex mTOR complex 1 effectively, we still need to unravel the entire pathway to identify other potential targets for the therapy of fibrosis and liver cancer.


AMP-Activated Protein Kinases , Angiotensin-Converting Enzyme 2 , Autophagy , Carcinoma, Hepatocellular , Hepatic Stellate Cells , Liver Cirrhosis , Liver Neoplasms , Renin-Angiotensin System , Signal Transduction , TOR Serine-Threonine Kinases , Humans , TOR Serine-Threonine Kinases/metabolism , Angiotensin-Converting Enzyme 2/metabolism , Liver Cirrhosis/pathology , Liver Cirrhosis/metabolism , AMP-Activated Protein Kinases/metabolism , Signal Transduction/drug effects , Autophagy/drug effects , Hepatic Stellate Cells/metabolism , Liver Neoplasms/pathology , Liver Neoplasms/drug therapy , Liver Neoplasms/metabolism , Carcinoma, Hepatocellular/pathology , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/metabolism , Carcinoma, Hepatocellular/enzymology , Renin-Angiotensin System/drug effects , Renin-Angiotensin System/physiology , Angiotensin I/metabolism , Animals , Peptidyl-Dipeptidase A/metabolism , Angiotensin-Converting Enzyme Inhibitors/therapeutic use , Angiotensin-Converting Enzyme Inhibitors/pharmacology , Peptide Fragments/metabolism , Angiotensin Receptor Antagonists/therapeutic use , Angiotensin Receptor Antagonists/pharmacology , Liver/pathology , Liver/drug effects , Liver/metabolism
7.
Molecules ; 29(9)2024 May 06.
Article En | MEDLINE | ID: mdl-38731652

Bovine milk is an essential supplement due to its rich energy- and nutrient-rich qualities. Caseins constitute the vast majority of the proteins in milk. Among these, ß-casein comprises around 37% of all caseins, and it is an important type of casein with several different variants. The A1 and A2 variants of ß-casein are the most researched genotypes due to the changes in their composition. It is accepted that the A2 variant is ancestral, while a point mutation in the 67th amino acid created the A1 variant. The digestion derived of both A1 and A2 milk is BCM-7. Digestion of A2 milk in the human intestine also forms BCM-9 peptide molecule. The opioid-like characteristics of BCM-7 are highlighted for their potential triggering effect on several diseases. Most research has been focused on gastrointestinal-related diseases; however other metabolic and nervous system-based diseases are also potentially triggered. By manipulating the mechanisms of these diseases, BCM-7 can induce certain situations, such as conformational changes, reduction in protein activity, and the creation of undesired activity in the biological system. Furthermore, the genotype of casein can also play a role in bone health, such as altering fracture rates, and calcium contents can change the characteristics of dietary products. The context between opioid molecules and BCM-7 points to a potential triggering mechanism for the central nervous system and other metabolic diseases discussed.


Caseins , Endorphins , Humans , Animals , Caseins/chemistry , Caseins/metabolism , Caseins/genetics , Endorphins/chemistry , Endorphins/metabolism , Milk/chemistry , Milk/metabolism , Peptide Fragments/chemistry , Peptide Fragments/metabolism , Peptide Fragments/genetics , Opioid Peptides/chemistry , Opioid Peptides/metabolism , Cattle
8.
Sci Rep ; 14(1): 12317, 2024 05 29.
Article En | MEDLINE | ID: mdl-38811619

COVID-19 infection is associated with a variety of vascular occlusive morbidities. However, a comprehensive understanding of how this virus can induce vascular complications remains lacking. Here, we show that a peptide fragment of SARS-CoV-2 spike protein, S192 (sequence 192-211), is capable of forming amyloid-like aggregates that can induce agglutination of red blood cells, which was not observed with low- and non-aggregated S192 peptide. We subsequently screened eight amyloid-binding molecules and identified BAM1-EG6, a benzothiazole amphiphile, as a promising candidate capable of binding to aggregated S192 and partially inhibiting its agglutination activity. These results provide new insight into a potential molecular mechanism for the capability of spike protein metabolites to contribute to COVID-19-related blood complications and suggest a new therapeutic approach for combating microvascular morbidities in COVID-19 patients.


Benzothiazoles , COVID-19 , Hemagglutination , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Spike Glycoprotein, Coronavirus/metabolism , Spike Glycoprotein, Coronavirus/chemistry , Humans , Benzothiazoles/chemistry , Benzothiazoles/pharmacology , SARS-CoV-2/drug effects , SARS-CoV-2/metabolism , COVID-19/virology , COVID-19/metabolism , Hemagglutination/drug effects , Amyloid/metabolism , Protein Binding , Erythrocytes/metabolism , Erythrocytes/drug effects , Erythrocytes/virology , Peptide Fragments/metabolism , Peptide Fragments/chemistry , Peptide Fragments/pharmacology
9.
Biomolecules ; 14(5)2024 May 15.
Article En | MEDLINE | ID: mdl-38785993

Despite the extensive research conducted on Alzheimer's disease (AD) over the years, no effective drug for AD treatment has been found. Therefore, the development of new drugs for the treatment of AD is of the utmost importance. We recently reported the proteolytic activities of JAL-TA9 (YKGSGFRMI) and ANA-TA9 (SKGQAYRMA), synthetic peptides of nine amino acids each, derived from the Box A region of Tob1 and ANA/BTG3 proteins, respectively. Furthermore, two components of ANA-TA9, ANA-YA4 (YRMI) at the C-terminus end and ANA-SA5 (SKGQA) at the N-terminus end of ANA-TA9, exhibited proteolytic activity against amyloid-ß (Aß) fragment peptides. In this study, we identified the active center of ANA-SA5 using AEBSF, a serine protease inhibitor, and a peptide in which the Ser residue of ANA-SA5 was replaced with Leu. In addition, we demonstrate the proteolytic activity of ANA-SA5 against the soluble form Aß42 (a-Aß42) and solid insoluble form s-Aß42. Furthermore, ANA-SA5 was not cytotoxic to A549 cells. These results indicate that ANA-SA5 is a promising Catalytide and a potential candidate for the development of new peptide drugs targeting Aß42 for AD treatment.


Amyloid beta-Peptides , Proteolysis , Amyloid beta-Peptides/metabolism , Amyloid beta-Peptides/chemistry , Humans , Proteolysis/drug effects , Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , Peptide Fragments/chemistry , Peptide Fragments/pharmacology , Peptide Fragments/metabolism , Peptides/chemistry , Peptides/pharmacology , Cell Line, Tumor
10.
Biochem Pharmacol ; 224: 116261, 2024 Jun.
Article En | MEDLINE | ID: mdl-38705534

Delayed neurocognitive recovery (dNCR) is a common complication in geriatric surgical patients. The impact of anesthesia and surgery on patients with neurodegenerative diseases, such as Parkinson's disease (PD) or prion disease, has not yet been reported. In this study, we aimed to determine the association between a pre-existing A53T genetic background, which involves a PD-related point mutation, and the development of postoperative dNCR. We observed that partial hepatectomy induced hippocampus-dependent cognitive deficits in 5-month-old A53T transgenic mice, a model of early-stage PD without cognitive deficits, unlike in age-matched wild-type (WT) mice. We respectively examined molecular changes at 6 h, 1 day, and 2 days after partial hepatectomy and observed that cognitive changes were accompanied by weakened angiotensin-(1-7)/Mas receptor [Ang-(1-7)/MasR] axis, increased alpha-synuclein (α-syn) expression and phosphorylation, decreased methylated protein phosphatase-2A (Me-PP2A), and prompted microglia M1 polarization and neuronal apoptosis in the hippocampus at 1 day after surgery. Nevertheless, no changes in blood-brain barrier (BBB) integrity or plasma α-syn levels in either A53T or WT mice. Furthermore, intranasal administration of selective MasR agonist AVE 0991, reversed the mentioned cognitive deficits in A53T mice, enhanced MasR expression, reduced α-syn accumulation and phosphorylation, and attenuated microglia activation and apoptotic response. Our findings suggest that individuals with the A53T genetic background may be more susceptible to developing postoperative dNCR. This susceptibility could be linked to central α-syn accumulation mediated by the weakened Ang-(1-7)/MasR/methyl-PP2A signaling pathway in the hippocampus following surgery, independent of plasma α-syn level and BBB.


Angiotensin I , Hippocampus , Mice, Transgenic , Peptide Fragments , Receptors, G-Protein-Coupled , alpha-Synuclein , Animals , Humans , Male , Mice , alpha-Synuclein/genetics , alpha-Synuclein/metabolism , Angiotensin I/metabolism , Hippocampus/metabolism , Hippocampus/drug effects , Mice, Inbred C57BL , Mutation , Peptide Fragments/metabolism , Postoperative Cognitive Complications/metabolism , Postoperative Cognitive Complications/genetics , Postoperative Complications/metabolism , Postoperative Complications/genetics , Proto-Oncogene Mas , Proto-Oncogene Proteins/genetics , Proto-Oncogene Proteins/metabolism , Receptors, G-Protein-Coupled/metabolism , Receptors, G-Protein-Coupled/genetics
11.
Ann Clin Lab Sci ; 54(2): 137-148, 2024 Mar.
Article En | MEDLINE | ID: mdl-38802154

OBJECTIVE: We have previously shown that the anti-cancer peptide PNC-27 kills cancer cells by co-localizing with membrane-expressed HDM-2, resulting in transmembrane pore formation causing extrusion of intracellular contents. We have also observed cancer cell mitochondrial disruption in PNC-27-treated cancer cells. Our objectives are to determine: 1. if PNC-27 binds to the p53 binding site of HDM-2 (residues 1-109) in the cancer cell membrane and 2. if this peptide causes selective disruption of cancer cell mitochondria. METHODS: For aim 1, we incubated MIA-PaCa-2 human pancreatic carcinoma cells with PNC-27 in the presence of a monoclonal antibody against the amino terminal p53 binding site of HDM-2 to determine if it, but not negative control immune serum, blocks PNC-27-induced tumor cell necrosis. For the second aim, we incubated these cells with PNC-27 in the presence of two specific dyes that highlight normal organelle function: mitotracker for mitochondria and lysotracker for lysosomes. We also performed immuno-electron microscopy (IEM) with gold-labeled anti-PNC-27 antibody on the mitochondria of these cells treated with PNC-27. RESULTS: Monoclonal antibody to the p53 binding site of HDM-2 blocks PNC-27-induced cancer cell necrosis, whereas negative control immune serum does not. The mitochondria of PNC-27-treated cancer cells fail to retain mitotracker dye while their lysosomes retain lysotracker dye. IEM of the mitochondria cancer cells reveals gold particles present on the mitochondrial membranes. CONCLUSIONS: PNC-27 binds to the p53 binding site of HDM-2 (residues 1-109) inducing transmembrane pore formation and cancer cell necrosis. Furthermore, this peptide enters cancer cells and binds to the membranes of mitochondria, resulting in their disruption.


Cell Membrane , Mitochondrial Membranes , Proto-Oncogene Proteins c-mdm2 , Humans , Cell Membrane/metabolism , Cell Membrane/drug effects , Mitochondrial Membranes/metabolism , Mitochondrial Membranes/drug effects , Proto-Oncogene Proteins c-mdm2/metabolism , Cell Line, Tumor , Tumor Suppressor Protein p53/metabolism , Antineoplastic Agents/pharmacology , Mitochondria/metabolism , Mitochondria/drug effects , Mitochondria/pathology , Peptide Fragments/metabolism , Peptide Fragments/pharmacology , Protein Binding/drug effects , Peptides/pharmacology , Peptides/metabolism , Necrosis
12.
Nat Commun ; 15(1): 4479, 2024 May 27.
Article En | MEDLINE | ID: mdl-38802343

Deposition of amyloid-ß (Aß) peptides in the brain is a hallmark of Alzheimer's disease. Aßs are generated through sequential proteolysis of the amyloid precursor protein by the γ-secretase complexes (GSECs). Aß peptide length, modulated by the Presenilin (PSEN) and APH-1 subunits of GSEC, is critical for Alzheimer's pathogenesis. Despite high relevance, mechanistic understanding of the proteolysis of Aß, and its modulation by APH-1, remain incomplete. Here, we report cryo-EM structures of human GSEC (PSEN1/APH-1B) reconstituted into lipid nanodiscs in apo form and in complex with the intermediate Aß46 substrate without cross-linking. We find that three non-conserved and structurally divergent APH-1 regions establish contacts with PSEN1, and that substrate-binding induces concerted rearrangements in one of the identified PSEN1/APH-1 interfaces, providing structural basis for APH-1 allosteric-like effects. In addition, the GSEC-Aß46 structure reveals an interaction between Aß46 and loop 1PSEN1, and identifies three other H-bonding interactions that, according to functional validation, are required for substrate recognition and efficient sequential catalysis.


Amyloid Precursor Protein Secretases , Amyloid beta-Peptides , Cryoelectron Microscopy , Membrane Proteins , Presenilin-1 , Humans , Amyloid Precursor Protein Secretases/metabolism , Amyloid Precursor Protein Secretases/chemistry , Presenilin-1/metabolism , Presenilin-1/chemistry , Presenilin-1/genetics , Amyloid beta-Peptides/metabolism , Amyloid beta-Peptides/chemistry , Membrane Proteins/metabolism , Membrane Proteins/chemistry , Endopeptidases/metabolism , Endopeptidases/chemistry , Amyloid beta-Protein Precursor/metabolism , Amyloid beta-Protein Precursor/chemistry , Protein Binding , Protein Isoforms/metabolism , Protein Isoforms/chemistry , Alzheimer Disease/metabolism , Peptide Fragments/metabolism , Peptide Fragments/chemistry , Peptide Hydrolases/metabolism , Peptide Hydrolases/chemistry , Models, Molecular , Proteolysis
13.
J Am Soc Mass Spectrom ; 35(6): 1310-1319, 2024 Jun 05.
Article En | MEDLINE | ID: mdl-38780475

The accumulation of amyloid beta (Aß1-42) results in neurotoxicity and is strongly related to neurodegenerative disorders, especially Alzheimer's disease (AD), but the underlying molecular mechanism is still poorly understood. Therefore, there is an urgent need for researchers to discover the proteins that interact with Aß1-42 to determine the molecular basis. Previously, we developed peptide-ligand-induced changes in the abundance of proTeinS (PACTS)-assisted thermal proteome profiling (TPP) to identify proteins that interact with peptide ligands. In the present study, we applied this technique to analyze clinical samples to identify Aß1-42-interacting proteins. We detected 115 proteins that interact with Aß1-42 in human frontal lobe tissue. Pathway enrichment analysis revealed that the differentially expressed proteins were involved mainly in neurodegenerative diseases. Further orthogonal validation revealed that Aß1-42 interacted with the AD-associated protein mitogen-activated protein kinase 3 (MAPK3), and knockdown of the Aß1-42 amyloid precursor protein (APP) inhibited the MAPK signaling pathway, suggesting potential functional roles for Aß1-42 in interacting with MAPK3. Overall, this study demonstrated the application of the PACTS-TPP in clinical samples and provided a valuable data source for research on neurodegenerative diseases.


Alzheimer Disease , Amyloid beta-Peptides , Peptide Fragments , Proteomics , Humans , Amyloid beta-Peptides/metabolism , Amyloid beta-Peptides/chemistry , Peptide Fragments/chemistry , Peptide Fragments/metabolism , Peptide Fragments/analysis , Proteomics/methods , Alzheimer Disease/metabolism , Proteome/analysis , Proteome/metabolism , Frontal Lobe/metabolism , Frontal Lobe/chemistry , Amyloid beta-Protein Precursor/metabolism , Amyloid beta-Protein Precursor/chemistry , Protein Binding
14.
Biochem Biophys Res Commun ; 719: 150081, 2024 Jul 30.
Article En | MEDLINE | ID: mdl-38744071

Renin-Angiotensin System (RAS) is a peptidergic system, canonically known for its role in blood pressure regulation. Furthermore, a non-canonical RAS regulates pathophysiological phenomena, such as inflammation since it consists of two main axes: the pro-inflammatory renin/(pro)renin receptor ((P)RR) axis, and the anti-inflammatory angiotensin-converting enzyme 2 (ACE2)/Angiotensin-(1-7) (Ang-(1-7))/Mas Receptor (MasR) axis. Few phytochemicals have shown to exert angiotensinergic and anti-inflammatory effects through some of these axes; nevertheless, anti-inflammatory drugs, such as phytocannabinoids have not been studied regarding this subject. Among phytocannabinoids, ß-Caryophyllene stands out as a dietary phytocannabinoid with antiphlogistic activity that possess a unique sesquiterpenoid structure. Although its cannabinergic effect has been studied, its angiotensinergic effect reminds underexplored. This study aims to explore the angiotensinergic effect of ß-Caryophyllene on inflammation and stress at a systemic level. After intranasal Lipopolysaccharide (LPS) installation and oral treatment with ß-Caryophyllene, the concentration and activity of key RAS elements in the serum, such as Renin, ACE2 and Ang-(1-7), along with the stress hormone corticosterone and pro/anti-inflammatory cytokines, were measured in mice serum. The results show that ß-Caryophyllene treatment modified RAS levels by increasing Renin and Ang-(1-7), alongside the reduction of pro-inflammatory cytokines and corticosterone levels. These results indicate that ß-Caryophyllene exhibits angiotensinergic activity in favor of anti-inflammation.


Angiotensin I , Inflammation , Lipopolysaccharides , Polycyclic Sesquiterpenes , Renin-Angiotensin System , Animals , Polycyclic Sesquiterpenes/pharmacology , Inflammation/metabolism , Inflammation/drug therapy , Male , Mice , Renin-Angiotensin System/drug effects , Angiotensin I/metabolism , Sesquiterpenes/pharmacology , Anti-Inflammatory Agents/pharmacology , Peptide Fragments/metabolism
15.
Int J Mol Sci ; 25(9)2024 May 02.
Article En | MEDLINE | ID: mdl-38732194

An imbalance between production and excretion of amyloid ß peptide (Aß) in the brain tissues of Alzheimer's disease (AD) patients leads to Aß accumulation and the formation of noxious Aß oligomers/plaques. A promising approach to AD prevention is the reduction of free Aß levels by directed enhancement of Aß binding to its natural depot, human serum albumin (HSA). We previously demonstrated the ability of specific low-molecular-weight ligands (LMWLs) in HSA to improve its affinity for Aß. Here we develop this approach through a bioinformatic search for the clinically approved AD-related LMWLs in HSA, followed by classification of the candidates according to the predicted location of their binding sites on the HSA surface, ranking of the candidates, and selective experimental validation of their impact on HSA affinity for Aß. The top 100 candidate LMWLs were classified into five clusters. The specific representatives of the different clusters exhibit dramatically different behavior, with 3- to 13-fold changes in equilibrium dissociation constants for the HSA-Aß40 interaction: prednisone favors HSA-Aß interaction, mefenamic acid shows the opposite effect, and levothyroxine exhibits bidirectional effects. Overall, the LMWLs in HSA chosen here provide a basis for drug repurposing for AD prevention, and for the search of medications promoting AD progression.


Alzheimer Disease , Amyloid beta-Peptides , Protein Binding , Serum Albumin, Human , Humans , Amyloid beta-Peptides/metabolism , Amyloid beta-Peptides/chemistry , Ligands , Serum Albumin, Human/metabolism , Serum Albumin, Human/chemistry , Alzheimer Disease/metabolism , Molecular Weight , Binding Sites , Peptide Fragments/metabolism , Peptide Fragments/chemistry
16.
Biomed Pharmacother ; 175: 116616, 2024 Jun.
Article En | MEDLINE | ID: mdl-38723516

Fluorescent probes are a powerful tool for imaging amyloid ß (Aß) plaques, the hallmark of Alzheimer's disease (AD). Herein, we report the synthesis and comprehensive characterization of 21 novel probes as well as their optical properties and binding affinities to Aß fibrils. One of these dyes, 1Ae, exhibited several improvements over FDDNP, an established biomarker for Aß- and Tau-aggregates. First, 1Ae had large Stokes shifts (138-213 nm) in various solvents, thereby reducing self-absorption. With a high quantum yield ratio (φ(dichloromethane/methanol) = 104), 1Ae also ensures minimal background emission in aqueous environments and high sensitivity. In addition, compound 1Ae exhibited low micromolar binding affinity to Aß fibrils in vitro (Kd = 1.603 µM), while increasing fluorescence emission (106-fold) compared to emission in buffer alone. Importantly, the selective binding of 1Ae to Aß1-42 fibrils was confirmed by an in cellulo assay, supported by ex vivo fluorescence microscopy of 1Ae on postmortem AD brain sections, allowing unequivocal identification of Aß plaques. The intermolecular interactions of fluorophores with Aß were elucidated by docking studies and molecular dynamics simulations. Density functional theory calculations revealed the unique photophysics of these rod-shaped fluorophores, with a twisted intramolecular charge transfer (TICT) excited state. These results provide valuable insights into the future application of such probes as potential diagnostic tools for AD in vitro and ex vivo such as determination of Aß1-42 in cerebrospinal fluid or blood.


Alzheimer Disease , Amyloid beta-Peptides , Fluorescent Dyes , Alzheimer Disease/metabolism , Alzheimer Disease/diagnosis , Alzheimer Disease/pathology , Amyloid beta-Peptides/metabolism , Humans , Fluorescent Dyes/chemistry , Peptide Fragments/metabolism , Peptide Fragments/cerebrospinal fluid , Brain/metabolism , Brain/pathology , Brain/diagnostic imaging , Molecular Docking Simulation , Molecular Dynamics Simulation , Plaque, Amyloid/metabolism , Plaque, Amyloid/pathology , Microscopy, Fluorescence/methods
17.
Inorg Chem ; 63(21): 10001-10010, 2024 May 27.
Article En | MEDLINE | ID: mdl-38742626

There is a growing interest in the search for metal-based therapeutics for protein misfolding disorders such as Alzheimer's disease (AD). A novel and largely unexplored class of metallodrugs is constituted by paddlewheel diruthenium complexes, which exhibit unusual water solubility and stability and unique coordination modes to proteins. Here, we investigate the ability of the complexes [Ru2Cl(DPhF)(O2CCH3)3]·H2O (1), [Ru2Cl(DPhF)2(O2CCH3)2]·H2O (2), and K2[Ru2(DPhF)(CO3)3]·3H2O (3) (DPhF- = N,N'-diphenylformamidinate) to interfere with the amyloid aggregation of the Aß1-42 peptide. These compounds differ in charge and steric hindrance due to the coordination of a different number of bulky ligands. The mechanisms of action of the three complexes were studied by employing a plethora of physicochemical and biophysical techniques as well as cellular assays. All these studies converge on different mechanisms of inhibition of amyloid fibrillation: complexes 1 and 2 show a clear inhibitory effect due to an exchange ligand process in the Ru2 unit aided by aromatic interactions. Complex 3 shows no inhibition of aggregation, probably due to its negative charge in solution. This study demonstrates that slight variations in the ligands surrounding the bimetallic core can modulate the amyloid aggregation inhibition and supports the use of paddlewheel diruthenium complexes as promising therapeutics for Alzheimer's disease.


Amyloid beta-Peptides , Coordination Complexes , Peptide Fragments , Ruthenium , Amyloid beta-Peptides/antagonists & inhibitors , Amyloid beta-Peptides/metabolism , Amyloid beta-Peptides/chemistry , Ruthenium/chemistry , Ruthenium/pharmacology , Coordination Complexes/chemistry , Coordination Complexes/pharmacology , Coordination Complexes/chemical synthesis , Peptide Fragments/chemistry , Peptide Fragments/antagonists & inhibitors , Peptide Fragments/metabolism , Humans , Protein Aggregates/drug effects , Molecular Structure , Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism
18.
Int J Mol Sci ; 25(9)2024 Apr 25.
Article En | MEDLINE | ID: mdl-38731878

ß-lactoglobulin (BLG) forms amyloid-like aggregates at high temperatures, low pH, and low ionic strengths. At a pH below 2, BLG undergoes hydrolysis into peptides, with N-terminal peptides 1-33 and 1-52 being prone to fibrillization, forming amyloid-like fibrils. Due to their good mechanical properties, BLG amyloids demonstrate great potential for diverse applications, including biosensors, nanocomposites, and catalysts. Consequently, further studies are essential to comprehensively understand the factors governing the formation of BLG amyloid-like morphologies. In this study, all-atom molecular dynamics simulations were employed to explore the aggregation of N-terminal 1-33 and 1-52 BLG peptides under conditions of pH 2 and at 10 mM NaCl concentration. The simulations revealed that the peptides spontaneously assembled into aggregates of varying sizes. The aggregation process was enabled by the low charge of peptides and the presence of hydrophobic residues within them. As the peptides associated into aggregates, there was a concurrent increase in ß-sheet structures and the establishment of hydrogen bonds, enhancing the stability of the aggregates. Notably, on average, 1-33 peptides formed larger aggregates compared to their 1-52 counterparts, while the latter exhibited a slightly higher content of ß-sheets and higher cluster orderliness. The applied approach facilitated insights into the early stages of amyloid-like aggregation and molecular-level insight into the formation of ß-sheets, which serve as nucleation points for further fibril growth.


Lactoglobulins , Molecular Dynamics Simulation , Protein Aggregates , Lactoglobulins/chemistry , Lactoglobulins/metabolism , Hydrophobic and Hydrophilic Interactions , Hydrogen Bonding , Amyloid/chemistry , Peptides/chemistry , Hydrogen-Ion Concentration , Peptide Fragments/chemistry , Peptide Fragments/metabolism
19.
Exp Eye Res ; 244: 109932, 2024 Jul.
Article En | MEDLINE | ID: mdl-38762008

Drugs that can treat one disease may either be detrimental or beneficial toward another due to possible cross-interactions. Therefore, care in choosing a suitable drug for patients with multiple diseases is crucial in successful patient management. This study explores several currently available ophthalmic drugs used to treat common ocular diseases to understand how they can affect the amyloidogenesis of a transforming growth factor ß-induced protein (TGFBIp) peptide fragment found in abundance in the corneal protein aggregation deposits of lattice corneal dystrophy (LCD) patients. Results from this study provided supporting evidence that some drugs intended to treat other diseases can enhance or inhibit fibrillar aggregation of TGFBIp peptide, which may have potential implication of affecting the disease progression of LCD by either worsening or ameliorating it. Comparisons of the different properties of ophthalmic compounds explored in this study may also provide some guidance for future design of drugs geared toward the treatment of LCD.


Corneal Dystrophies, Hereditary , Extracellular Matrix Proteins , Transforming Growth Factor beta , Humans , Extracellular Matrix Proteins/metabolism , Corneal Dystrophies, Hereditary/metabolism , Corneal Dystrophies, Hereditary/drug therapy , Transforming Growth Factor beta/metabolism , Peptide Fragments/pharmacology , Peptide Fragments/metabolism , Ophthalmic Solutions , Amyloid/metabolism
20.
J Phys Chem B ; 128(19): 4655-4669, 2024 May 16.
Article En | MEDLINE | ID: mdl-38700150

Protein misfolding, aggregation, and fibril formation play a central role in the development of severe neurological disorders, including Alzheimer's and Parkinson's diseases. The structural stability of mature fibrils in these diseases is of great importance, as organisms struggle to effectively eliminate amyloid plaques. To address this issue, it is crucial to investigate the early stages of fibril formation when monomers aggregate into small, toxic, and soluble oligomers. However, these structures are inherently disordered, making them challenging to study through experimental approaches. Recently, it has been shown experimentally that amyloid-ß 42 (Aß42) and α-synuclein (α-Syn) can coassemble. This has motivated us to investigate the interaction between their monomers as a first step toward exploring the possibility of forming heterodimeric complexes. In particular, our study involves the utilization of various Amber and CHARMM force-fields, employing both implicit and explicit solvent models in replica exchange and conventional simulation modes. This comprehensive approach allowed us to assess the strengths and weaknesses of these solvent models and force fields in comparison to experimental and theoretical findings, ensuring the highest level of robustness. Our investigations revealed that Aß42 and α-Syn monomers can indeed form stable heterodimers, and the resulting heterodimeric model exhibits stronger interactions compared to the Aß42 dimer. The binding of α-Syn to Aß42 reduces the propensity of Aß42 to adopt fibril-prone conformations and induces significant changes in its conformational properties. Notably, in AMBER-FB15 and CHARMM36m force fields with the use of explicit solvent, the presence of Aß42 significantly increases the ß-content of α-Syn, consistent with the experiments showing that Aß42 triggers α-Syn aggregation. Our analysis clearly shows that although the use of implicit solvent resulted in too large compactness of monomeric α-Syn, structural properties of monomeric Aß42 and the heterodimer were preserved in explicit-solvent simulations. We anticipate that our study sheds light on the interaction between α-Syn and Aß42 proteins, thus providing the atom-level model required to assess the initial stage of aggregation mechanisms related to Alzheimer's and Parkinson's diseases.


Amyloid beta-Peptides , Molecular Dynamics Simulation , Peptide Fragments , Solvents , alpha-Synuclein , Amyloid beta-Peptides/chemistry , Amyloid beta-Peptides/metabolism , alpha-Synuclein/chemistry , alpha-Synuclein/metabolism , Solvents/chemistry , Peptide Fragments/chemistry , Peptide Fragments/metabolism , Protein Multimerization , Humans
...