Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 34.351
Filter
1.
Viruses ; 16(6)2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38932275

ABSTRACT

Viral tropism is most commonly linked to receptor use, but host cell protease use can be a notable factor in susceptibility to infection. Here we review the use of host cell proteases by human viruses, focusing on those with primarily respiratory tropism, particularly SARS-CoV-2. We first describe the various classes of proteases present in the respiratory tract, as well as elsewhere in the body, and incorporate the targeting of these proteases as therapeutic drugs for use in humans. Host cell proteases are also linked to the systemic spread of viruses and play important roles outside of the respiratory tract; therefore, we address how proteases affect viruses across the spectrum of infections that can occur in humans, intending to understand the extrapulmonary spread of SARS-CoV-2.


Subject(s)
Peptide Hydrolases , Respiratory Tract Infections , SARS-CoV-2 , Humans , Respiratory Tract Infections/virology , Respiratory Tract Infections/drug therapy , SARS-CoV-2/drug effects , SARS-CoV-2/physiology , SARS-CoV-2/enzymology , Peptide Hydrolases/metabolism , Viral Tropism , COVID-19/virology , Virus Diseases/drug therapy , Virus Diseases/virology , Antiviral Agents/pharmacology , Host-Pathogen Interactions , Protease Inhibitors/pharmacology
2.
J Oleo Sci ; 73(7): 963-976, 2024.
Article in English | MEDLINE | ID: mdl-38945925

ABSTRACT

The objective of this research was to evaluate the efficiency of aqueous enzymatic extraction (AEE) to obtain oil from hemp seeds (Cannabis sativa L.) grown in northern Morocco. Optimisation of AEE extraction parameters, including pH, enzyme concentration (hemicellulase, protease and pectinase), temperature and incubation time, to maximize oil yield was achieved using response surface methodology with a central composite design. For comparison, the solvent extraction (Soxhlet) (SE) method was also used. Optimized hydrolysis conditions involved incubation for 4 hours at 60°C with a pH of 6.5, using a multi-enzyme preparation comprising protease, hemicellulase and pectinase at concentrations of 55, 202.5 and 234 U/mg, respectively. Referring to the conventional Soxhlet extraction (SE), Aqueous Enzymatic Extraction (AEE) achieved a 30.65% oil recovery rate under the optimized parameters mentioned above. The use of enzymes produced an oil that was more stable against oxidation than the solvent-extracted oil, with a peroxide value (PV) of 19.54 and 47.87 meq O 2 /kg, respectively. Furthermore, HPLC-DAD analysis of tocopherol content indicated a higher total tocopherol content (547.2 mg/kg) in Aqueous Enzymatic Extraction (AEE) compared to Soxhlet Extraction (SE) (513.51 mg/kg), with γ-tocopherol being the predominant form. No significant differences in fatty acid composition were observed between the two extraction methods with linoleic acid and alpha-linolenic acid being the predominant constituents.


Subject(s)
Cannabis , Glycoside Hydrolases , Peptide Hydrolases , Plant Oils , Polygalacturonase , Seeds , Cannabis/chemistry , Polygalacturonase/metabolism , Plant Oils/chemistry , Plant Oils/isolation & purification , Glycoside Hydrolases/metabolism , Seeds/chemistry , Peptide Hydrolases/metabolism , Hydrolysis , Liquid-Liquid Extraction/methods , Food Quality , Water , Tocopherols/analysis , Tocopherols/isolation & purification , Hydrogen-Ion Concentration , Temperature , Solvents/chemistry , Green Chemistry Technology/methods
3.
Curr Microbiol ; 81(8): 227, 2024 Jun 16.
Article in English | MEDLINE | ID: mdl-38879855

ABSTRACT

Microbial degradation of keratin is characterized by its inherent safety, remarkable efficiency, and the production of copious degradation products. All these attributes contribute to the effective management of waste materials at high value-added and in a sustainable manner. Microbial degradation of keratin materials remains unclear, however, with variations observed in the degradation genes and pathways among different microorganisms. In this study, we sequenced the transcriptome of Purpureocillium lilacinum GZAC18-2JMP mycelia on control medium and the medium containing 1% feather powder, analyzed the differentially expressed genes, and revealed the degradation mechanism of chicken feathers by P. lilacinum GZAC18-2JMP. The results showed that the chicken feather degradation rate of P. lilacinum GZAC18-2JMP reached 64% after 216 h of incubation in the fermentation medium, reaching a peak value of 148.9 µg·mL-1 at 192 h, and the keratinase enzyme activity reached a peak value of 211 U·mL-1 at 168 h, which revealed that P. lilacinum GZAC18-2JMP had a better keratin degradation effect. A total of 1001 differentially expressed genes (DEGs) were identified from the transcriptome database, including 475 upregulated genes and 577 downregulated genes. Kyoto encyclopedia of genes and genomes (KEGG) enrichment analysis of the DEGs revealed that the metabolic pathways related to keratin degradation were mainly sulfur metabolism, ABC transporters, and amino acid metabolism. Therefore, the results of this study provide an opportunity to gain further insight into keratin degradation and promote the biotransformation of feather wastes.


Subject(s)
Feathers , Hypocreales , Keratins , Transcriptome , Keratins/metabolism , Hypocreales/genetics , Hypocreales/metabolism , Animals , Feathers/metabolism , Chickens , Gene Expression Profiling , Fungal Proteins/genetics , Fungal Proteins/metabolism , Peptide Hydrolases/metabolism , Peptide Hydrolases/genetics , Mycelium/genetics , Mycelium/metabolism , Mycelium/growth & development , Fermentation , Biodegradation, Environmental
4.
Int J Mol Sci ; 25(11)2024 May 24.
Article in English | MEDLINE | ID: mdl-38891925

ABSTRACT

Stress exposure worsens allergic inflammatory diseases substantially. Mast cells (MCs) play a key role in peripheral immune responses to neuroendocrine stress mediators such as nerve growth factor (NGF) and substance P (SP). Mast cell proteases (MCPs) and cholinergic factors (Chrna7, SLURP1) were recently described to modulate MC stress response. We studied MCPs and Chrna7/SLURP1 and their interplay in a mouse model for noise induced stress (NiS) and atopic dermatitis-like allergic inflammation (AlD) and in cultured MC lacking Chrna7. We found that the cholinergic stress axis interacts with neuroendocrine stress mediators and stress-mediator cleaving enzymes in AlD. SP-cleaving mMCP4+ MC were upregulated in AlD and further upregulated by stress in NiS+AlD. Anti-NGF neutralizing antibody treatment blocked the stress-induced upregulation in vivo, and mMCP4+ MCs correlated with measures of AlD disease activity. Finally, high mMCP4 production in response to SP depended on Chrna7/SLURP1 in cultured MCs. In conclusion, mMCP4 and its upstream regulation by Chrna7/SLURP1 are interesting novel targets for the treatment of allergic inflammation and its aggravation by stress.


Subject(s)
Dermatitis, Atopic , Disease Models, Animal , Mast Cells , Skin , alpha7 Nicotinic Acetylcholine Receptor , Animals , Mast Cells/metabolism , Mast Cells/immunology , Dermatitis, Atopic/metabolism , Dermatitis, Atopic/pathology , Dermatitis, Atopic/immunology , Mice , Skin/metabolism , Skin/pathology , alpha7 Nicotinic Acetylcholine Receptor/metabolism , Inflammation/metabolism , Inflammation/pathology , Peptide Hydrolases/metabolism , Urokinase-Type Plasminogen Activator/metabolism , Substance P/metabolism , Stress, Physiological , Mice, Inbred C57BL , Nerve Growth Factor/metabolism
5.
Food Res Int ; 188: 114463, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38823831

ABSTRACT

To investigate the prevalence of Pseudomonas in the pasteurized milk production process and its effect on milk quality, 106 strains of Pseudomonas were isolated from the pasteurized milk production process of a milk production plant in Shaanxi Province, China. The protease, lipase and biofilm-producing capacities of the 106 Pseudomonas strains were evaluated, and the spoilage enzyme activities of their metabolites were assessed by simulating temperature incubation in the refrigerated (7 °C) and transport environment (25 °C) segments and thermal treatments of pasteurization (75 °C, 5 min) and ultra-high temperature sterilization (121 °C, 15 s). A phylogenetic tree was drawn based on 16S rDNA gene sequencing and the top 5 strains were selected as representative strains to identify their in situ spoilage potential by examining their growth potential and ability to hydrolyze proteins and lipids in milk using growth curves, pH, whiteness, Zeta-potential, lipid oxidation, SDS-PAGE and volatile flavor compounds. The results showed that half and more of the isolated Pseudomonas had spoilage enzyme production and biofilm capacity, and the spoilage enzyme activity of metabolites was affected by the culture temperature and sterilization method, but ultra-high temperature sterilization could not completely eliminate the enzyme activity. The growth of Pseudomonas lundensis and Pseudomonas qingdaonensis was less affected by temperature and time, and the hydrolytic capacity of extracellular protease and lipase secreted by Pseudomonas lurida was the strongest, which had the greatest effect on milk quality. Therefore, it is crucial to identify the key contamination links of Pseudomonas, the main bacteria responsible for milk spoilage, and the influence of environmental factors on its deterioration.


Subject(s)
Biofilms , Food Microbiology , Lipase , Milk , Pasteurization , Pseudomonas , Pseudomonas/metabolism , Pseudomonas/genetics , Pseudomonas/isolation & purification , Pseudomonas/growth & development , Milk/microbiology , Animals , Biofilms/growth & development , Lipase/metabolism , China , Phylogeny , Peptide Hydrolases/metabolism , RNA, Ribosomal, 16S/genetics , Food Contamination/analysis , Temperature
6.
Food Res Int ; 188: 114513, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38823886

ABSTRACT

This study reports the effect of thermal pretreatment and the use of different commercial proteolytic enzymes (Protamex, Flavourzyme, Protana prime, and Alcalase) on the free amino acid content (FAA), peptide profile, and antioxidant, antidiabetic, antihypertensive, and anti-inflammatory potential (DPPH, FRAP, and ABTS assay, DPP-IV, ACE-I, and NEP inhibitory activities) of dry-cured ham bone hydrolyzates. The effect of in vitro digestion was also determined. Thermal pretreatment significantly increased the degree of hydrolysis, the FAA, and the DPP-IV and ACE-I inhibitory activities. The type of peptidase used was the most significant factor influencing antioxidant activity and neprilysin inhibitory activity. Protana prime hydrolyzates failed to inhibit DPP-IV and neprilysin enzymes and had low values of ACE-I inhibitory activity. After in vitro digestion, bioactivities kept constant in most cases or even increased in ACE-I inhibitory activity. Therefore, hydrolyzates from dry-cured ham bones could serve as a potential source of functional food ingredients for health benefits.


Subject(s)
Antioxidants , Digestion , Animals , Hydrolysis , Antioxidants/metabolism , Antioxidants/analysis , Bone and Bones/metabolism , Swine , Angiotensin-Converting Enzyme Inhibitors/pharmacology , Angiotensin-Converting Enzyme Inhibitors/metabolism , Food Handling/methods , Hot Temperature , Amino Acids/metabolism , Amino Acids/analysis , Meat Products/analysis , Hypoglycemic Agents/pharmacology , Antihypertensive Agents/pharmacology , Anti-Inflammatory Agents/pharmacology , Peptide Hydrolases/metabolism , Dipeptidyl-Peptidase IV Inhibitors , Neprilysin/metabolism , Neprilysin/antagonists & inhibitors , Endopeptidases
7.
Mol Biol (Mosk) ; 58(1): 171-177, 2024.
Article in Russian | MEDLINE | ID: mdl-38943589

ABSTRACT

Many viruses, including SARS-CoV-2, the coronavirus responsible for the COVID-19 pandemic, enter host cells through a process of cell-viral membrane fusion that is activated by proteolytic enzymes. Typically, these enzymes are host cell proteases. Identifying the proteases that activate the virus is not a simple task but is important for the development of new antiviral drugs. In this study, we developed a bioinformatics method for identifying proteases that can cleave viral envelope glycoproteins. The proposed approach involves the use of predictive models for the substrate specificity of human proteases and the application of a structural analysis method for predicting the vulnerability of protein regions to proteolysis based on their 3D structures. Specificity models were constructed for 169 human proteases using information on their known substrates. A previously developed method for structural analysis of potential proteolysis sites was applied in parallel with specificity models. Validation of the proposed approach was performed on the SARS-CoV-2 spike protein, whose proteolysis sites have been well studied.


Subject(s)
Computational Biology , Peptide Hydrolases , Proteolysis , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Spike Glycoprotein, Coronavirus/metabolism , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/chemistry , Humans , SARS-CoV-2/enzymology , SARS-CoV-2/genetics , SARS-CoV-2/metabolism , Computational Biology/methods , Substrate Specificity , Peptide Hydrolases/metabolism , Peptide Hydrolases/chemistry , Peptide Hydrolases/genetics , COVID-19/virology , COVID-19/metabolism , Pandemics , Models, Molecular , Betacoronavirus/enzymology , Betacoronavirus/genetics
8.
Curr Microbiol ; 81(7): 217, 2024 Jun 09.
Article in English | MEDLINE | ID: mdl-38852107

ABSTRACT

The application of enzymes in agricultural fields has been little explored. One potential application of fungal lytic enzymes (chitinases, lipases, and proteases) is as an additive to current biopesticides to increase their efficacy and reduce the time of mortality. For this, a screening of lytic overproducer fungi under submerged fermentation with a chemical-defined medium was performed. Then, the enzymatic crude extract (ECE) was concentrated and partially characterized. This characterization consisted of measuring the enzymatic activity (lipase, protease and, chitinase) and determining the enzyme stability after storage at temperatures of - 80, - 20 and, 4 °C. And lastly, the application of these concentrated enzymatic crude extracts (C-ECE) as an enhancer of spores-based fungal biopesticide was proven. Beauveria were not as good producers of lytic enzymes as the strains from Trichoderma and Metarhizium. The isolate M. robertsii Mt015 was selected for the co-production of chitinases and proteases; and the isolate T. harzianum Th180 for co-production of chitinases, lipases, and proteases. The C-ECE of Mt015 had a protease activity of 18.6 ± 1.1 U ml-1, chitinase activity of 0.28 ± 0.01 U ml-1, and no lipase activity. Meanwhile, the C-ECE of Th180 reached a chitinase activity of 0.75 U ml-1, lipase activity of 0.32 U ml-1, and protease activity of 0.24 U ml-1. Finally, an enhancing effect of the enzymatic extracts of M. robertsii (66.7%) and T. harzianum (43.5%) on the efficacy of B. bassiana Bv064 against Diatraea saccharalis larvae was observed. This work demonstrates the non-species-specific enhancing effect of enzymatic extracts on the insecticidal activity of conidial-based biopesticides, which constitutes a contribution to the improvement of biological control agents' performance.


Subject(s)
Chitinases , Fermentation , Peptide Hydrolases , Chitinases/metabolism , Peptide Hydrolases/metabolism , Animals , Lipase/metabolism , Fungal Proteins/metabolism , Fungal Proteins/genetics , Biological Control Agents/pharmacology , Biological Control Agents/metabolism , Fungi/metabolism , Pest Control, Biological/methods , Beauveria/enzymology , Beauveria/metabolism , Enzyme Stability
9.
Cell Biol Toxicol ; 40(1): 45, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38864940

ABSTRACT

MALT1 has been implicated as an upstream regulator of NF-κB signaling in immune cells and tumors. This study determined the regulatory mechanisms and biological functions of MALT1 in non-small cell lung cancer (NSCLC). In cell culture and orthotopic xenograft models, MALT1 suppression via gene expression interference or protein activity inhibition significantly impaired malignant phenotypes and enhanced radiation sensitivity of NSCLC cells. CSN5, the core subunit of COP9 signalosome, was firstly verified to stabilize MALT1 via disturbing the interaction with E3 ligase FBXO3. Loss of FBXO3 in NSCLC cells reduced MALT1 ubiquitination and promoted its accumulation, which was reversed by CSN5 interference. An association between CSN5/FBXO3/MALT1 regulatory axis and poor prognosis in NSCLC patients was identified. Our findings revealed the detail mechanism of continuous MALT1 activation in NF-κB signaling, highlighting its significance as predictor and potential therapeutic target in NSCLC.


Subject(s)
COP9 Signalosome Complex , Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Mucosa-Associated Lymphoid Tissue Lymphoma Translocation 1 Protein , NF-kappa B , Signal Transduction , Mucosa-Associated Lymphoid Tissue Lymphoma Translocation 1 Protein/metabolism , Mucosa-Associated Lymphoid Tissue Lymphoma Translocation 1 Protein/genetics , Carcinoma, Non-Small-Cell Lung/metabolism , Carcinoma, Non-Small-Cell Lung/pathology , Carcinoma, Non-Small-Cell Lung/genetics , Humans , COP9 Signalosome Complex/metabolism , COP9 Signalosome Complex/genetics , NF-kappa B/metabolism , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , Lung Neoplasms/genetics , Animals , Cell Line, Tumor , Mice , Mice, Nude , Ubiquitination , Peptide Hydrolases/metabolism , Peptide Hydrolases/genetics , Disease Progression , Mice, Inbred BALB C , Female , F-Box Proteins/metabolism , F-Box Proteins/genetics , Intracellular Signaling Peptides and Proteins
10.
Mol Biol Rep ; 51(1): 713, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38824247

ABSTRACT

BACKGROUND: Protease S (PrtS) from Photorhabdus laumondii belongs to the group of protealysin-like proteases (PLPs), which are understudied factors thought to play a role in the interaction of bacteria with other organisms. Since P. laumondii is an insect pathogen and a nematode symbiont, the analysis of the biological functions of PLPs using the PrtS model provides novel data on diverse types of interactions between bacteria and hosts. METHODS AND RESULTS: Recombinant PrtS was produced in Escherichia coli. Efficient inhibition of PrtS activity by photorin, a recently discovered emfourin-like protein inhibitor from P. laumondii, was demonstrated. The Galleria mellonella was utilized to examine the insect toxicity of PrtS and the impact of PrtS on hemolymph proteins in vitro. The insect toxicity of PrtS is reduced compared to protease homologues from non-pathogenic bacteria and is likely not essential for the infection process. However, using proteomic analysis, potential PrtS targets have been identified in the hemolymph. CONCLUSIONS: The spectrum of identified proteins indicates that the function of PrtS is to modulate the insect immune response. Further studies of PLPs' biological role in the PrtS and P. laumondii model must clarify the details of PrtS interaction with the insect immune system during bacterial infection.


Subject(s)
Moths , Peptide Hydrolases , Photorhabdus , Animals , Moths/microbiology , Peptide Hydrolases/metabolism , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Hemolymph/metabolism , Proteomics/methods , Recombinant Proteins/metabolism , Recombinant Proteins/genetics , Escherichia coli/genetics , Escherichia coli/metabolism
11.
Environ Microbiol Rep ; 16(3): e13282, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38923398

ABSTRACT

The global landscape of Candida infections has seen a significant shift. Previously, Candida albicans was the predominant species. However, there has been an emergence of non-albicans Candida species, which are often less susceptible to antifungal treatment. Candida kefyr, in particular, has been increasingly associated with infections. This study aimed to investigate the profiles of enzymatic activity and biofilm formation in both clinical and non-clinical isolates of C. kefyr. A total of 66 C. kefyr isolates were analysed. The activities of proteinase and phospholipase were assessed using bovine serum albumin and egg yolk agar, respectively. Haemolysin, caseinolytic and esterase activities were evaluated using specific methods. Biofilm formation was investigated using crystal violet staining. The findings indicated that biofilm and proteinase activity were detected in 81.8% and 93.9% of all the isolates, respectively. Haemolysin activity was observed with the highest occurrence (95.5%) among normal microbiota isolates. Esterase activity was predominantly identified in dairy samples and was absent in hospital samples. Caseinase production was found with the highest occurrence (18.2%) in normal microbiota and hospital samples. Phospholipase activity was limited, found in only 3% of all the isolates. These findings reveal variations in enzyme activity between clinical and non-clinical C. kefyr isolates. This sheds light on their pathogenic potential and has implications for therapeutic strategies.


Subject(s)
Biofilms , Candida , Candidiasis , Phospholipases , Biofilms/growth & development , Candida/isolation & purification , Candida/enzymology , Candida/physiology , Candida/classification , Humans , Candidiasis/microbiology , Phospholipases/metabolism , Esterases/metabolism , Hemolysin Proteins/metabolism , Peptide Hydrolases/metabolism , Environmental Microbiology
12.
Arch Microbiol ; 206(6): 273, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38772954

ABSTRACT

Acid protease is widely used in industries such as food processing and feed additives. In the study, low frequency magnetic field (LF-MF) as an aid enhances acid protease production by Aspergillus niger (A. niger). The study assessed mycelial biomass, the enzymic activity of the acidic protease and underlying mechanism. At low intensities, alternating magnetic field (AMF) is more effective than static magnetic fields (SMF). Under optimal magnetic field conditions, acid protease activity and biomass increased by 91.44% and 16.31%, as compared with the control, respectively. Maximum 19.87% increase in enzyme activity after magnetic field treatment of crude enzyme solution in control group. Transcriptomics analyses showed that low frequency alternating magnetic field (LF-AMF) treatment significantly upregulated genes related to hydrolases and cell growth. Our results showed that low-frequency magnetic fields can enhance the acid protease production ability of A. niger, and the effect of AMF is better at low intensities. The results revealed that the effect of magnetic field on the metabolic mechanism of A. niger and provided a reference for magnetic field-assisted fermentation of A. niger.


Subject(s)
Aspergillus niger , Magnetic Fields , Peptide Hydrolases , Aspergillus niger/enzymology , Aspergillus niger/genetics , Peptide Hydrolases/metabolism , Peptide Hydrolases/genetics , Fermentation , Fungal Proteins/genetics , Fungal Proteins/metabolism , Biomass , Mycelium/enzymology , Mycelium/growth & development , Mycelium/genetics
13.
Biochim Biophys Acta Biomembr ; 1866(6): 184336, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38763273

ABSTRACT

Short systemic half- life of Antimicrobial Peptides (AMP) is one of the major bottlenecks that limits their successful commercialization as therapeutics. In this work, we have designed analogs of the natural AMP Jelleine, obtained from royal jelly of apis mellifera. Among the designed peptides, J3 and J4 were the most potent with broad spectrum activities against a varied class of ESKAPE pathogens and fungus C. albicans. All the developed peptides were more effective against Gram-negative bacteria in comparison to the Gram-positive pathogens, and were especially effective against P. aeruginosa and C. albicans.J3 and J4 were completely trypsin resistant and serum stable, while retaining the non-cytotoxicity of the parent Jelleine, Jc. The designed peptides were membranolytic in their mode of action. CD and MD simulations in the presence of bilayers, established that J3 and J4 were non-structured even upon membrane binding and suggested that biological properties of the AMPs were innocent of any specific secondary structural requirements. Enhancement of charge to increase the antimicrobial potency, controlling the hydrophobic-hydrophilic balance to maintain non-cytotoxicity and induction of unnatural amino acid residues to impart protease resistance, remains some of the fundamental principles in the design of more effective antimicrobial therapeutics of the future, which may help combat the quickly rising menace of antimicrobial resistance in the microbes.


Subject(s)
Antimicrobial Cationic Peptides , Candida albicans , Microbial Sensitivity Tests , Antimicrobial Cationic Peptides/pharmacology , Antimicrobial Cationic Peptides/chemistry , Antimicrobial Cationic Peptides/chemical synthesis , Candida albicans/drug effects , Animals , Anti-Infective Agents/pharmacology , Anti-Infective Agents/chemistry , Gram-Negative Bacteria/drug effects , Peptide Hydrolases/chemistry , Peptide Hydrolases/metabolism , Humans , Bees , Antimicrobial Peptides/pharmacology , Antimicrobial Peptides/chemistry , Molecular Dynamics Simulation , Oligopeptides
14.
N Biotechnol ; 82: 25-32, 2024 Sep 25.
Article in English | MEDLINE | ID: mdl-38697469

ABSTRACT

Aspergillus vadensis CBS 113365, a close relative of A. niger, has been suggested as a more favourable alternative for recombinant protein production as it does not acidify the culture medium and produces very low levels of extracellular proteases. The aim of this study was to investigate the underlying cause of the non-amylolytic and non-proteolytic phenotype of A. vadensis CBS 113365. Our results demonstrate that the non-functionality of the amylolytic transcription factor AmyR in A. vadensis CBS 113365 is primarily attributed to the lack of functionality of its gene's promoter sequence. In contrast, a different mechanism is likely causing the lack of PrtT activity, which is the main transcriptional regulator of protease production. The findings presented here not only expand our understanding of the genetic basis behind the distinct characteristics of A. vadensis CBS 113365, but also underscore its potential as a favourable alternative for recombinant protein production.


Subject(s)
Aspergillus , Fungal Proteins , Aspergillus/genetics , Aspergillus/metabolism , Aspergillus/enzymology , Fungal Proteins/genetics , Fungal Proteins/metabolism , Promoter Regions, Genetic , Recombinant Proteins/metabolism , Recombinant Proteins/biosynthesis , Recombinant Proteins/genetics , Proteolysis , Peptide Hydrolases/metabolism , Peptide Hydrolases/genetics , Transcription Factors/metabolism , Transcription Factors/genetics , Trans-Activators
15.
Nat Commun ; 15(1): 4479, 2024 May 27.
Article in English | MEDLINE | ID: mdl-38802343

ABSTRACT

Deposition of amyloid-ß (Aß) peptides in the brain is a hallmark of Alzheimer's disease. Aßs are generated through sequential proteolysis of the amyloid precursor protein by the γ-secretase complexes (GSECs). Aß peptide length, modulated by the Presenilin (PSEN) and APH-1 subunits of GSEC, is critical for Alzheimer's pathogenesis. Despite high relevance, mechanistic understanding of the proteolysis of Aß, and its modulation by APH-1, remain incomplete. Here, we report cryo-EM structures of human GSEC (PSEN1/APH-1B) reconstituted into lipid nanodiscs in apo form and in complex with the intermediate Aß46 substrate without cross-linking. We find that three non-conserved and structurally divergent APH-1 regions establish contacts with PSEN1, and that substrate-binding induces concerted rearrangements in one of the identified PSEN1/APH-1 interfaces, providing structural basis for APH-1 allosteric-like effects. In addition, the GSEC-Aß46 structure reveals an interaction between Aß46 and loop 1PSEN1, and identifies three other H-bonding interactions that, according to functional validation, are required for substrate recognition and efficient sequential catalysis.


Subject(s)
Amyloid Precursor Protein Secretases , Amyloid beta-Peptides , Cryoelectron Microscopy , Membrane Proteins , Presenilin-1 , Humans , Amyloid Precursor Protein Secretases/metabolism , Amyloid Precursor Protein Secretases/chemistry , Presenilin-1/metabolism , Presenilin-1/chemistry , Presenilin-1/genetics , Amyloid beta-Peptides/metabolism , Amyloid beta-Peptides/chemistry , Membrane Proteins/metabolism , Membrane Proteins/chemistry , Endopeptidases/metabolism , Endopeptidases/chemistry , Amyloid beta-Protein Precursor/metabolism , Amyloid beta-Protein Precursor/chemistry , Protein Binding , Protein Isoforms/metabolism , Protein Isoforms/chemistry , Alzheimer Disease/metabolism , Peptide Fragments/metabolism , Peptide Fragments/chemistry , Peptide Hydrolases/metabolism , Peptide Hydrolases/chemistry , Models, Molecular , Proteolysis
16.
Mem Inst Oswaldo Cruz ; 119: e230243, 2024.
Article in English | MEDLINE | ID: mdl-38775551

ABSTRACT

BACKGROUND: Leishmania tarentolae is a non-pathogenic species found in lizards representing an important model for Leishmania biology. However, several aspects of this Sauroleishmania remain unknown to explain its low level of virulence. OBJECTIVES: We reported several aspects of L. tarentolae biology including glycoconjugates, proteolytic activities and metabolome composition in comparison to pathogenic species (Leishmania amazonensis, Leishmania braziliensis, Leishmania infantum and Leishmania major). METHODS: Parasites were cultured for extraction and purification of lipophosphoglycan (LPG), immunofluorescence probing with anti-gp63 and resistance against complement. Parasite extracts were also tested for proteases activity and metabolome composition. FINDINGS: Leishmania tarentolae does not express LPG on its surface. It expresses gp63 at lower levels compared to pathogenic species and, is highly sensitive to complement-mediated lysis. This species also lacks intracellular/extracellular activities of proteolytic enzymes. It has metabolic differences with pathogenic species, exhibiting a lower abundance of metabolites including ABC transporters, biosynthesis of unsaturated fatty acids and steroids, TCA cycle, glycine/serine/threonine metabolism, glyoxylate/dicarboxylate metabolism and pentose-phosphate pathways. MAIN CONCLUSIONS: The non-pathogenic phenotype of L. tarentolae is associated with alterations in several biochemical and molecular features. This reinforces the need of comparative studies between pathogenic and non-pathogenic species to elucidate the molecular mechanisms of virulence during host-parasite interactions.


Subject(s)
Glycoconjugates , Leishmania , Metabolome , Peptide Hydrolases , Leishmania/enzymology , Peptide Hydrolases/metabolism , Animals , Glycosphingolipids/metabolism , Complement System Proteins
17.
Parasit Vectors ; 17(1): 242, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38812022

ABSTRACT

BACKGROUND: Proteases produced by Acanthamoeba spp. play an important role in their virulence and may be the key to understanding Acanthamoeba pathogenesis; thus, increasing attention has been directed towards these proteins. The present study aimed to investigate the lytic factors produced by Acanthamoeba castellanii during the first hours of in vitro co-culture with human corneal epithelial cells (HCECs). METHODS: We used one old and one recent Acanthamoeba isolate, both from patients with severe keratitis, and subsets of these strains with enhanced pathogenic potential induced by sequential passaging over HCEC monolayers. The proteolytic profiles of all strains and substrains were examined using 1D in-gel zymography. RESULTS: We observed the activity of additional proteases (ranging from 33 to 50 kDa) during the early interaction phase between amoebae and HCECs, which were only expressed for a short time. Based on their susceptibilities to protease inhibitors, these proteases were characterized as serine proteases. Protease activities showed a sharp decline after 4 h of co-incubation. Interestingly, the expression of Acanthamoeba mannose-binding protein did not differ between amoebae in monoculture and those in co-culture. Moreover, we observed the activation of matrix metalloproteinases in HCECs after contact with Acanthamoeba. CONCLUSIONS: This study revealed the involvement of two novel serine proteases in Acanthamoeba pathogenesis and suggests a pivotal role of serine proteases during Acanthamoeba-host cell interaction, contributing to cell adhesion and lysis.


Subject(s)
Acanthamoeba castellanii , Coculture Techniques , Epithelial Cells , Epithelium, Corneal , Peptide Hydrolases , Humans , Acanthamoeba castellanii/enzymology , Acanthamoeba castellanii/genetics , Epithelial Cells/parasitology , Epithelium, Corneal/parasitology , Epithelium, Corneal/enzymology , Peptide Hydrolases/metabolism , Peptide Hydrolases/genetics , Acanthamoeba Keratitis/parasitology , Serine Proteases/metabolism , Serine Proteases/genetics , Protozoan Proteins/metabolism , Protozoan Proteins/genetics , Virulence
18.
FEBS J ; 291(9): 1958-1973, 2024 May.
Article in English | MEDLINE | ID: mdl-38700222

ABSTRACT

Serratia marcescens is an emerging health-threatening, gram-negative opportunistic pathogen associated with a wide variety of localized and life-threatening systemic infections. One of the most crucial virulence factors produced by S. marcescens is serratiopeptidase, a 50.2-kDa repeats-in-toxin (RTX) family broad-specificity zinc metalloprotease. RTX family proteins are functionally diverse exoproteins of gram-negative bacteria that exhibit calcium-dependent structural dynamicity and are secreted through a common type-1 secretion system (T1SS) machinery. To evaluate the impact of various divalent ligands on the folding and maturation of serratiopeptidase zymogen, the protein was purified and a series of structural and functional investigations were undertaken. The results indicate that calcium binding to the C-terminal RTX domain acts as a folding switch, triggering a disordered-to-ordered transition in the enzyme's conformation. Further, the auto-processing of the 16-amino acid N-terminal pro-peptide results in the maturation of the enzyme. The binding of calcium ions to serratiopeptidase causes a highly cooperative conformational transition in its structure, which is essential for the enzyme's activation and maturation. This conformational change is accompanied by an increase in solubility and enzymatic activity. For efficient secretion and to minimize intracellular toxicity, the enzyme needs to be in an unfolded extended form. The calcium-rich extracellular environment favors the folding and processing of zymogen into mature serratiopeptidase, i.e., the holo-form required by S. marcescens to establish infections and survive in different environmental niches.


Subject(s)
Calcium , Enzyme Precursors , Peptide Hydrolases , Protein Folding , Serratia marcescens , Calcium/metabolism , Serratia marcescens/enzymology , Serratia marcescens/genetics , Enzyme Precursors/metabolism , Enzyme Precursors/chemistry , Enzyme Precursors/genetics , Metalloendopeptidases/chemistry , Metalloendopeptidases/metabolism , Metalloendopeptidases/genetics , Models, Molecular , Protein Conformation , Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Protein Binding
19.
BMC Biotechnol ; 24(1): 30, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38720310

ABSTRACT

BACKGROUND: Venous thromboembolism (VTE), is a noteworthy complication in individuals with gastric cancer, but the current diagnosis and treatment methods lack accuracy. In this study, we developed a t-PAIC chemiluminescence kit and employed chemiluminescence to detect the tissue plasminogen activator inhibitor complex (t-PAIC), thrombin-antithrombin III complex (TAT), plasmin-α2-plasmin inhibitor complex (PIC) and thrombomodulin (TM), combined with D-dimer and fibrin degradation products (FDP), to investigate their diagnostic potential for venous thrombosis in gastric cancer patients. The study assessed variations in six indicators among gastric cancer patients at different stages. RESULTS: The t-PAIC reagent showed LOD is 1.2 ng/mL and a linear factor R greater than 0.99. The reagents demonstrated accurate results, with all accuracy deviations being within 5%. The intra-batch and inter-batch CVs for the t-PAIC reagent were both within 8%. The correlation coefficient R between this method and Sysmex was 0.979. Gastric cancer patients exhibited elevated levels of TAT, PIC, TM, D-D, FDP compared to the healthy population, while no significant difference was observed in t-PAIC. In the staging of gastric cancer, patients in III-IV stages exhibit higher levels of the six markers compared to those in I-II stages. The ROC curve indicates an enhancement in sensitivity and specificity of the combined diagnosis of four or six indicators. CONCLUSION: Our chemiluminescence assay performs comparably to Sysmex's method and at a reduced cost. The use of multiple markers, including t-PAIC, TM, TAT, PIC, D-D, and FDP, is superior to the use of single markers for diagnosing VTE in patients with malignant tumors. Gastric cancer patients should be screened for the six markers to facilitate proactive prophylaxis, determine the most appropriate treatment timing, ameliorate their prognosis, decrease the occurrence of venous thrombosis and mortality, and extend their survival.


Subject(s)
Luminescent Measurements , Stomach Neoplasms , Humans , Stomach Neoplasms/diagnosis , Male , Middle Aged , Luminescent Measurements/methods , Female , Aged , Antithrombin III/metabolism , Antithrombin III/analysis , Thrombomodulin/blood , Fibrin Fibrinogen Degradation Products/analysis , Fibrin Fibrinogen Degradation Products/metabolism , alpha-2-Antiplasmin/metabolism , alpha-2-Antiplasmin/analysis , Adult , Fibrinolysin/metabolism , Fibrinolysin/analysis , Venous Thromboembolism/diagnosis , Venous Thromboembolism/blood , Peptide Hydrolases
20.
Carbohydr Polym ; 337: 122165, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38710577

ABSTRACT

This research intended to remove residual protein from chitin with proteases in deep eutectic solvents (DESs). The activities of some proteases in several DESs, including choline chloride/p-toluenesulfonic acid, betaine/glycerol (Bet/G), choline chloride/malic acid, choline chloride/lactic acid, and choline chloride/urea, which are capable of dissolving chitin, were tested, and only in Bet/G some proteases were found to be active, with subtilisin A, ficin, and bromelain showing higher activity than other proteases. However, the latter two proteases caused degradation of chitin molecules. Further investigation revealed that subtilisin A in Bet/G did not exhibit "pH memory", which is a universal characteristic displayed by enzymes dispersed in organic phases, and the catalytic characteristics of subtilisin A in Bet/G differed significantly from those in aqueous phase. The conditions for protein removal from chitin by subtilisin A in Bet/G were determined: Chitin dissolved in Bet/G with 0.5 % subtilisin A (442.0 U/mg, based on the mass of chitin) was hydrolyzed at 45 °C for 30 min. The residual protein content in chitin decreased from 5.75 % ± 0.10 % to 1.01 % ± 0.12 %, improving protein removal by 57.20 % compared with protein removal obtained by Bet/G alone. The crystallinity and deacetylation degrees of chitin remained unchanged after the treatment.


Subject(s)
Betaine , Chitin , Deep Eutectic Solvents , Glycerol , Chitin/chemistry , Betaine/chemistry , Glycerol/chemistry , Deep Eutectic Solvents/chemistry , Hydrolysis , Subtilisin/metabolism , Subtilisin/chemistry , Hydrogen-Ion Concentration , Peptide Hydrolases/metabolism , Peptide Hydrolases/chemistry , Choline/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...