Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 4.025
Filter
1.
Nat Commun ; 15(1): 6630, 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-39103337

ABSTRACT

Unfavourable conditions, such as prolonged drought and high salinity, pose a threat to the survival and agricultural yield of plants. The phytohormone ABA plays a key role in the regulation of plant stress adaptation and is often maintained at high levels for extended periods. While much is known about ABA signal perception and activation in the early signalling stage, the molecular mechanism underlying desensitization of ABA signalling remains largely unknown. Here we demonstrate that in the endoplasmic reticulum (ER)-Golgi network, the key regulators of ABA signalling, SnRK2.2/2.3, undergo N-glycosylation, which promotes their redistribution from the nucleus to the peroxisomes in Arabidopsis roots and influences the transcriptional response in the nucleus during prolonged ABA signalling. On the peroxisomal membrane, SnRK2s can interact with glucose-6-phosphate (G6P)/phosphate translocator 1 (GPT1) to maintain NADPH homeostasis through increased activity of the peroxisomal oxidative pentose phosphate pathway (OPPP). The resulting maintenance of NADPH is essential for the modulation of hydrogen peroxide (H2O2) accumulation, thereby relieving ABA-induced root growth inhibition. The subcellular dynamics of SnRK2s, mediated by N-glycosylation suggest that ABA responses transition from transcriptional regulation in the nucleus to metabolic processes in the peroxisomes, aiding plants in adapting to long-term environmental stress.


Subject(s)
Abscisic Acid , Arabidopsis Proteins , Arabidopsis , Gene Expression Regulation, Plant , NADP , Peroxisomes , Protein Serine-Threonine Kinases , Signal Transduction , Arabidopsis/metabolism , Arabidopsis/genetics , Peroxisomes/metabolism , Arabidopsis Proteins/metabolism , Arabidopsis Proteins/genetics , Protein Serine-Threonine Kinases/metabolism , Protein Serine-Threonine Kinases/genetics , Glycosylation , Abscisic Acid/metabolism , NADP/metabolism , Hydrogen Peroxide/metabolism , Endoplasmic Reticulum/metabolism , Plant Roots/metabolism , Plant Roots/growth & development , Cell Nucleus/metabolism , Golgi Apparatus/metabolism , Pentose Phosphate Pathway , Plant Growth Regulators/metabolism
2.
Methods Mol Biol ; 2845: 141-150, 2024.
Article in English | MEDLINE | ID: mdl-39115663

ABSTRACT

We outline our approach for studying the selective autophagy of peroxisomes (pexophagy), using fluorescence microscopy in tissue cell culture models. Ratiometric reporters, which specifically localize to peroxisomes, allow a quantitative assessment of pexophagy in fixed and live cells, as well as whole organisms. We discuss chemical and physiological inducers of pexophagy and any overlap with the induction of mitophagy.


Subject(s)
Microscopy, Fluorescence , Peroxisomes , Peroxisomes/metabolism , Microscopy, Fluorescence/methods , Humans , Animals , Autophagy/physiology , Mitophagy
3.
Cell Mol Life Sci ; 81(1): 367, 2024 Aug 22.
Article in English | MEDLINE | ID: mdl-39174697

ABSTRACT

Hydroxylated fatty acids are important intermediates in lipid metabolism and signaling. Surprisingly, the metabolism of 4-hydroxy fatty acids remains largely unexplored. We found that both ACAD10 and ACAD11 unite two enzymatic activities to introduce these metabolites into mitochondrial and peroxisomal ß-oxidation, respectively. First, they phosphorylate 4-hydroxyacyl-CoAs via a kinase domain, followed by an elimination of the phosphate to form enoyl-CoAs catalyzed by an acyl-CoA dehydrogenase (ACAD) domain. Studies in knockout cell lines revealed that ACAD10 preferentially metabolizes shorter chain 4-hydroxy fatty acids than ACAD11 (i.e. 6 carbons versus 10 carbons). Yet, recombinant proteins showed comparable activity on the corresponding 4-hydroxyacyl-CoAs. This suggests that the localization of ACAD10 and ACAD11 to mitochondria and peroxisomes, respectively, might influence their physiological substrate spectrum. Interestingly, we observed that ACAD10 is cleaved internally during its maturation generating a C-terminal part consisting of the ACAD domain, and an N-terminal part comprising the kinase domain and a haloacid dehalogenase (HAD) domain. HAD domains often exhibit phosphatase activity, but negligible activity was observed in the case of ACAD10. Yet, inactivation of a presumptive key residue in this domain significantly increased the kinase activity, suggesting that this domain might have acquired a regulatory function to prevent accumulation of the phospho-hydroxyacyl-CoA intermediate. Taken together, our work reveals that 4-hydroxy fatty acids enter mitochondrial and peroxisomal fatty acid ß-oxidation via two enzymes with an overlapping substrate repertoire.


Subject(s)
Fatty Acids , Oxidation-Reduction , Peroxisomes , Fatty Acids/metabolism , Humans , Peroxisomes/metabolism , Mitochondria/metabolism , Acyl-CoA Dehydrogenases/metabolism , Acyl-CoA Dehydrogenases/genetics , Animals , HEK293 Cells
4.
Int J Mol Sci ; 25(16)2024 Aug 15.
Article in English | MEDLINE | ID: mdl-39201563

ABSTRACT

Nitric oxide (NO) has been firmly established as a key signaling molecule in plants, playing a significant role in regulating growth, development and stress responses. Given the imperative of sustainable agriculture and the urgent need to meet the escalating global demand for food, it is imperative to safeguard crop plants from the effects of climate fluctuations. Plants respond to environmental challenges by producing redox molecules, including reactive oxygen species (ROS) and reactive nitrogen species (RNS), which regulate cellular, physiological, and molecular processes. Nitric oxide (NO) plays a crucial role in plant stress tolerance, acting as a signaling molecule or free radical. NO is involved in various developmental processes in plants through diverse mechanisms. Exogenous NO supplementation can alleviate the toxicity of abiotic stresses and enhance plant resistance. In this review we summarize the studies regarding the production of NO in peroxisomes, and how its molecule and its derived products, (ONOO-) and S-nitrosoglutathione (GSNO) affect ROS metabolism in peroxisomes. Peroxisomal antioxidant enzymes including catalase (CAT), are key targets of NO-mediated post-translational modification (PTM) highlighting the dynamic metabolism of ROS and RNS in peroxisomes.


Subject(s)
Nitric Oxide , Peroxisomes , Protein Processing, Post-Translational , Reactive Nitrogen Species , Reactive Oxygen Species , Peroxisomes/metabolism , Reactive Oxygen Species/metabolism , Nitric Oxide/metabolism , Reactive Nitrogen Species/metabolism , Plants/metabolism
5.
Anat Histol Embryol ; 53(5): e13103, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39155839

ABSTRACT

Dromedary camels can survive and reproduce in desert areas. The unique anatomical structure of the kidney enables the camel to prevent water loss. The present study aimed to investigate the ultrastructure of the peroxisomes in the normal kidney of the adult dromedary camel. Tissue samples were taken from the cortex and outer medulla of the kidney of eight camels. The samples were then processed for histological and ultrastructural investigations. The epithelial cells of the proximal tubules displayed peroxisomes with varying sizes and shapes. The peroxisomes were observed in either dispersed or clustered arrangement. Each peroxisome exhibited a homogenous matrix enveloped by a single membrane. Several peroxisomes exhibited one or more dark marginal plates that were always strongly associated with the smooth endoplasmic reticulum. The intensity of the peroxisomal matrix differed significantly, either within the same cell or across different cells. The intensity was light or dark, with a few peroxisomes presenting a similar intensity to that of the mitochondria. Some peroxisomes contained nucleoids within their matrix. The peroxisomes in the first and second sections of proximal convoluted tubules were scattered and primarily located in the region between the microvilli and the underlying mitochondria. The peroxisomes in the third region were abundant and frequently aggregated in clusters throughout the cytoplasm. In the fourth region, the number of peroxisomes was low. The proximal straight tubule had a limited quantity of peroxisomes. In conclusion, peroxisomes in the proximal tubule in kidney of normal dromedary camel were similar in shape and size to other mammals; however, heterogeneity exists as a result of differences in species-specific peroxisomal proteins. Peroxisomes are suggested to be a major source of metabolic energy and act as hydrogen peroxide (H2O2) scavengers, resulting in the release of water and oxygen.


Subject(s)
Camelus , Kidney , Peroxisomes , Animals , Camelus/anatomy & histology , Camelus/physiology , Peroxisomes/ultrastructure , Peroxisomes/metabolism , Kidney/ultrastructure , Kidney/anatomy & histology , Microscopy, Electron, Transmission/veterinary , Male , Kidney Tubules, Proximal/ultrastructure , Kidney Tubules, Proximal/anatomy & histology
6.
FEMS Yeast Res ; 242024 Jan 09.
Article in English | MEDLINE | ID: mdl-39025789

ABSTRACT

Pexophagy is a type of autophagy that selectively degrades peroxisomes and can be classified as either macropexophagy or micropexophagy. During macropexophagy, individual peroxisomes are sequestered by pexophagosomes and transported to the vacuole for degradation, while in micropexophagy, peroxisomes are directly engulfed by the septated vacuole. To date, some autophagy-related genes (ATGs) required for pexophagy have been identified through plate-based assays performed primarily under micropexophagy-induced conditions. Here, we developed a novel high-throughput screening system using fluorescence-activated cell sorting (FACS) to identify genes required for macropexophagy. Using this system, we discovered KpATG14, a gene that could not be identified previously in the methylotrophic yeast Komagataella phaffii due to technical limitations. Microscopic and immunoblot analyses found that KpAtg14 was required for both macropexophagy and micropexophagy. We also revealed that KpAtg14 was necessary for recruitment of the downstream factor KpAtg5 at the preautophagosomal structure (PAS), and consequently, for bulk autophagy. We anticipate our assay to be used to identify novel genes that are exclusively required for macropexophagy, leading to better understanding of the physiological significance of the existing two types of autophagic degradation pathways for peroxisomes.


Subject(s)
Flow Cytometry , Peroxisomes , Saccharomycetales , Peroxisomes/metabolism , Peroxisomes/genetics , Saccharomycetales/genetics , Saccharomycetales/metabolism , High-Throughput Screening Assays , Autophagy , Vacuoles/metabolism , Autophagy-Related Proteins/genetics , Autophagy-Related Proteins/metabolism , Fungal Proteins/genetics , Fungal Proteins/metabolism , Macroautophagy/genetics
7.
Cell Death Dis ; 15(7): 536, 2024 Jul 28.
Article in English | MEDLINE | ID: mdl-39069546

ABSTRACT

Intestinal epithelial cells line the luminal surface to establish the intestinal barrier, where the cells play essential roles in the digestion of food, absorption of nutrients and water, protection from microbial infections, and maintaining symbiotic interactions with the commensal microbial populations. Maintaining and coordinating all these functions requires tight regulatory signaling, which is essential for intestinal homeostasis and organismal health. Dysfunction of intestinal epithelial cells, indeed, is linked to gastrointestinal disorders such as irritable bowel syndrome, inflammatory bowel disease, and gluten-related enteropathies. Emerging evidence suggests that peroxisome metabolic functions are crucial in maintaining intestinal epithelial cell functions and intestinal epithelium regeneration and, therefore, homeostasis. Here, we investigated the molecular mechanisms by which peroxisome metabolism impacts enteric health using the fruit fly Drosophila melanogaster and murine model organisms and clinical samples. We show that peroxisomes control cellular cholesterol, which in turn regulates the conserved yes-associated protein-signaling and contributes to intestinal epithelial structure and epithelial barrier function. Moreover, analysis of intestinal organoid cultures derived from biopsies of patients affected by Crohn's Disease revealed that the dysregulation of peroxisome number, excessive cellular cholesterol, and inhibition of Yap-signaling are markers of disease and could be novel diagnostic and/or therapeutic targets for treating Crohn's Disease. Our studies provided mechanistic insights on peroxisomal signaling in intestinal epithelial cell functions and identified cholesterol as a novel metabolic regulator of yes-associated protein-signaling in tissue homeostasis.


Subject(s)
Cholesterol , Crohn Disease , Drosophila melanogaster , Intestinal Mucosa , Peroxisomes , Signal Transduction , YAP-Signaling Proteins , Crohn Disease/metabolism , Crohn Disease/pathology , Animals , Humans , Intestinal Mucosa/metabolism , Intestinal Mucosa/pathology , Drosophila melanogaster/metabolism , Cholesterol/metabolism , Mice , Peroxisomes/metabolism , YAP-Signaling Proteins/metabolism , Adaptor Proteins, Signal Transducing/metabolism , Epithelial Cells/metabolism , Epithelial Cells/pathology , Transcription Factors/metabolism
9.
Biosensors (Basel) ; 14(7)2024 Jul 22.
Article in English | MEDLINE | ID: mdl-39056633

ABSTRACT

A coenzyme A (CoA-SH)-responsive dual electrochemical and fluorescence-based sensor was designed utilizing an MnO2-immobilized-polymer-dot (MnO2@D-PD)-coated electrode for the sensitive detection of osteoarthritis (OA) in a peroxisomal ß-oxidation knockout model. The CoA-SH-responsive MnO2@D-PD-coated electrode interacted sensitively with CoA-SH in OA chondrocytes, triggering electroconductivity and fluorescence changes due to cleavage of the MnO2 nanosheet on the electrode. The MnO2@D-PD-coated electrode can detect CoA-SH in immature articular chondrocyte primary cells, as indicated by the significant increase in resistance in the control medium (R24h = 2.17 MΩ). This sensor also sensitively monitored the increase in resistance in chondrocyte cells in the presence of acetyl-CoA inducers, such as phytol (Phy) and sodium acetate (SA), in the medium (R24h = 2.67, 3.08 MΩ, respectively), compared to that in the control medium, demonstrating the detection efficiency of the sensor towards the increase in the CoA-SH concentration. Furthermore, fluorescence recovery was observed owing to MnO2 cleavage, particularly in the Phy- and SA-supplemented media. The transcription levels of OA-related anabolic (Acan) and catabolic factors (Adamts5) in chondrocytes also confirmed the interaction between CoA-SH and the MnO2@D-PD-coated electrode. Additionally, electrode integration with a wireless sensing system provides inline monitoring via a smartphone, which can potentially be used for rapid and sensitive OA diagnosis.


Subject(s)
Biosensing Techniques , Electrodes , Manganese Compounds , Osteoarthritis , Polymers , Manganese Compounds/chemistry , Polymers/chemistry , Oxides/chemistry , Electrochemical Techniques , Oxidation-Reduction , Chondrocytes , Humans , Fluorescence , Peroxisomes/metabolism , Animals
10.
J Cell Biol ; 223(10)2024 10 07.
Article in English | MEDLINE | ID: mdl-39007804

ABSTRACT

To breach the basement membrane, cells in development and cancer use large, transient, specialized lipid-rich membrane protrusions. Using live imaging, endogenous protein tagging, and cell-specific RNAi during Caenorhabditis elegans anchor cell (AC) invasion, we demonstrate that the lipogenic SREBP transcription factor SBP-1 drives the expression of the fatty acid synthesis enzymes POD-2 and FASN-1 prior to invasion. We show that phospholipid-producing LPIN-1 and sphingomyelin synthase SMS-1, which use fatty acids as substrates, produce lysosome stores that build the AC's invasive protrusion, and that SMS-1 also promotes protrusion localization of the lipid raft partitioning ZMP-1 matrix metalloproteinase. Finally, we discover that HMG-CoA reductase HMGR-1, which generates isoprenoids for prenylation, localizes to the ER and enriches in peroxisomes at the AC invasive front, and that the final transmembrane prenylation enzyme, ICMT-1, localizes to endoplasmic reticulum exit sites that dynamically polarize to deliver prenylated GTPases for protrusion formation. Together, these results reveal a collaboration between lipogenesis and a polarized lipid prenylation system that drives invasive protrusion formation.


Subject(s)
Basement Membrane , Caenorhabditis elegans Proteins , Caenorhabditis elegans , Endoplasmic Reticulum , Lipogenesis , Animals , Caenorhabditis elegans/metabolism , Caenorhabditis elegans/genetics , Basement Membrane/metabolism , Caenorhabditis elegans Proteins/metabolism , Caenorhabditis elegans Proteins/genetics , Endoplasmic Reticulum/metabolism , Lipogenesis/genetics , Prenylation , Peroxisomes/metabolism , Cell Movement , Lysosomes/metabolism
11.
J Cell Biol ; 223(10)2024 Oct 07.
Article in English | MEDLINE | ID: mdl-38967608

ABSTRACT

Peroxisomes are membrane-bound organelles harboring metabolic enzymes. In humans, peroxisomes are required for normal development, yet the genes regulating peroxisome function remain unclear. We performed a genome-wide CRISPRi screen to identify novel factors involved in peroxisomal homeostasis. We found that inhibition of RNF146, an E3 ligase activated by poly(ADP-ribose), reduced the import of proteins into peroxisomes. RNF146-mediated loss of peroxisome import depended on the stabilization and activity of the poly(ADP-ribose) polymerases TNKS and TNKS2, which bind the peroxisomal membrane protein PEX14. We propose that RNF146 and TNKS/2 regulate peroxisome import efficiency by PARsylation of proteins at the peroxisome membrane. Interestingly, we found that the loss of peroxisomes increased TNKS/2 and RNF146-dependent degradation of non-peroxisomal substrates, including the ß-catenin destruction complex component AXIN1, which was sufficient to alter the amplitude of ß-catenin transcription. Together, these observations not only suggest previously undescribed roles for RNF146 in peroxisomal regulation but also a novel role in bridging peroxisome function with Wnt/ß-catenin signaling during development.


Subject(s)
Axin Protein , Peroxisomes , Ubiquitin-Protein Ligases , Wnt Signaling Pathway , Peroxisomes/metabolism , Peroxisomes/genetics , Ubiquitin-Protein Ligases/metabolism , Ubiquitin-Protein Ligases/genetics , Humans , Axin Protein/metabolism , Axin Protein/genetics , Membrane Proteins/metabolism , Membrane Proteins/genetics , beta Catenin/metabolism , beta Catenin/genetics , HEK293 Cells , Protein Transport , CRISPR-Cas Systems
12.
Cell Commun Signal ; 22(1): 362, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39010102

ABSTRACT

Dihydroorotase (DHOase) is the third enzyme in the six enzymatic reaction steps of the endogenous pyrimidine nucleotide de novo biosynthesis pathway, which is a metabolic pathway conserved in both bacteria and eukaryotes. However, research on the biological function of DHOase in plant pathogenic fungi is very limited. In this study, we identified and named MoPyr4, a homologous protein of Saccharomyces cerevisiae DHOase Ura4, in the rice blast fungus Magnaporthe oryzae and investigated its ability to regulate fungal growth, pathogenicity, and autophagy. Deletion of MoPYR4 led to defects in growth, conidiation, appressorium formation, the transfer and degradation of glycogen and lipid droplets, appressorium turgor accumulation, and invasive hypha expansion in M. oryzae, which eventually resulted in weakened fungal pathogenicity. Long-term replenishment of exogenous uridine-5'-phosphate (UMP) can effectively restore the phenotype and virulence of the ΔMopyr4 mutant. Further study revealed that MoPyr4 also participated in the regulation of the Pmk1-MAPK signaling pathway, co-localized with peroxisomes for the oxidative stress response, and was involved in the regulation of the Osm1-MAPK signaling pathway in response to hyperosmotic stress. In addition, MoPyr4 interacted with MoAtg5, the core protein involved in autophagy, and positively regulated autophagic degradation. Taken together, our results suggested that MoPyr4 for UMP biosynthesis was crucial for the development and pathogenicity of M. oryzae. We also revealed that MoPyr4 played an essential role in the external stress response and pathogenic mechanism through participation in the Pmk1-MAPK signaling pathway, peroxisome-related oxidative stress response mechanism, the Osm1-MAPK signaling pathway and the autophagy pathway.


Subject(s)
Autophagy , Fungal Proteins , Oryza , Fungal Proteins/metabolism , Fungal Proteins/genetics , Oryza/microbiology , Virulence/genetics , Peroxisomes/metabolism , Plant Diseases/microbiology , Ascomycota/pathogenicity , Ascomycota/genetics , Ascomycota/enzymology , MAP Kinase Signaling System , Oxidative Stress
13.
Biochim Biophys Acta Mol Basis Dis ; 1870(7): 167446, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39079605

ABSTRACT

Carbon monoxide (CO) is a ubiquitously produced endogenous gas in mammalian cells and is involved in stress response being considered as a cytoprotective and homeostatic factor. In the present review, the underlying mechanisms of CO are discussed, in particular CO's impact on cellular metabolism affecting cell fate and function. One of the principal signaling molecules of CO is reactive oxygen species (ROS), particularly hydrogen peroxide, which is mainly generated at the mitochondrial level. Likewise, CO acts on mitochondria modulating oxidative phosphorylation and mitochondria quality control, namely mitochondrial biogenesis (mitobiogenesis) and mitophagy. Other metabolic pathways are also involved in CO's mode of action such as glycolysis and pentose phosphate pathway. The review ends with some new perspectives on CO Biology research. Carboxyhemoglobin (COHb) formation can also be implicated in the CO mode of action, as well as its potential biological role. Finally, other organelles such as peroxisomes hold the potential to be targeted and modulated by CO.


Subject(s)
Carbon Monoxide , Mitochondria , Reactive Oxygen Species , Humans , Carbon Monoxide/metabolism , Mitochondria/metabolism , Animals , Reactive Oxygen Species/metabolism , Mitophagy , Energy Metabolism , Oxidative Phosphorylation , Carboxyhemoglobin/metabolism , Peroxisomes/metabolism
14.
J Hazard Mater ; 477: 135164, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-39032180

ABSTRACT

Cadmium (Cd) is one of the most toxic heavy metals for plants and humans. Reactive oxygen species (ROS) are some of the primary signaling molecules produced after Cd treatment in plants but the contribution of different organelles and specific cell types, together with the impact of light is unknown. We used Arabidopsis lines expressing GRX1-roGFP2 (glutaredoxin1-roGFP) targeted to different cell compartments and analysed changes in redox state over 24 h light/dark cycle in Cd-treated leaf discs. We imaged redox state changes in peroxisomes and chloroplasts in leaf tissue. Chloroplasts and peroxisomes were the most affected organelles in the dark and blocking the photosynthetic electron transport chain (pETC) by DCMU (3-(3,4-dichlorophenyl)-1,1-dimethylurea) promotes higher Cd-dependent oxidation in all organelles. Peroxisomes underwent the most rapid changes in redox state in response to Cd and DCMU and silencing chloroplastic NTRC (NADPH thioredoxin reductase C) considerably increases peroxisome oxidation. Total NAD(P)H and cytosolic NADH decreased during exposure to Cd, while Ca+2 content in chloroplasts and cytosol increased in the dark period. Our results demonstrate a Cd-, time- and light-dependent increase of oxidation of all organelles analysed, that could be in part triggered by disturbances in pETC and photorespiration, the decrease of NAD(P)H availability, and differential antioxidants expression at subcellular level.


Subject(s)
Arabidopsis , Cadmium , Chloroplasts , Oxidation-Reduction , Peroxisomes , Arabidopsis/drug effects , Arabidopsis/metabolism , Arabidopsis/radiation effects , Cadmium/toxicity , Chloroplasts/metabolism , Chloroplasts/drug effects , Chloroplasts/radiation effects , Peroxisomes/metabolism , Peroxisomes/drug effects , Light , Plant Leaves/drug effects , Plant Leaves/metabolism , Plant Leaves/radiation effects , Calcium/metabolism , Diuron/toxicity , Diuron/pharmacology
15.
Nat Cell Biol ; 26(8): 1261-1273, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38969763

ABSTRACT

Eukaryotic cells contain several membrane-separated organelles to compartmentalize distinct metabolic reactions. However, it has remained unclear how these organelle systems are coordinated when cells adapt metabolic pathways to support their development, survival or effector functions. Here we present OrgaPlexing, a multi-spectral organelle imaging approach for the comprehensive mapping of six key metabolic organelles and their interactions. We use this analysis on macrophages, immune cells that undergo rapid metabolic switches upon sensing bacterial and inflammatory stimuli. Our results identify lipid droplets (LDs) as primary inflammatory responder organelle, which forms three- and four-way interactions with other organelles. While clusters with endoplasmic reticulum (ER) and mitochondria (mitochondria-ER-LD unit) help supply fatty acids for LD growth, the additional recruitment of peroxisomes (mitochondria-ER-peroxisome-LD unit) supports fatty acid efflux from LDs. Interference with individual components of these units has direct functional consequences for inflammatory lipid mediator synthesis. Together, we show that macrophages form functional multi-organellar units to support metabolic adaptation and provide an experimental strategy to identify organelle-metabolic signalling hubs.


Subject(s)
Endoplasmic Reticulum , Fatty Acids , Inflammation , Lipid Droplets , Lipid Metabolism , Macrophages , Mitochondria , Macrophages/metabolism , Animals , Endoplasmic Reticulum/metabolism , Lipid Droplets/metabolism , Mitochondria/metabolism , Inflammation/metabolism , Inflammation/pathology , Fatty Acids/metabolism , Peroxisomes/metabolism , Mice , Mice, Inbred C57BL , Signal Transduction , Organelles/metabolism
16.
Methods Mol Biol ; 2792: 265-275, 2024.
Article in English | MEDLINE | ID: mdl-38861094

ABSTRACT

Eukaryotic cells are compartmentalized by membrane-bounded organelles to ensure that specific biochemical reactions and cellular functions occur in a spatially restricted manner. The subcellular localization of proteins is largely determined by their intrinsic targeting signals, which are mainly constituted by short peptides. A complete organelle targeting signal may contain a core signal (CoreS) as well as auxiliary signals (AuxiS). However, the AuxiS is often not as well characterized as the CoreS. Peroxisomes house many key steps in photorespiration, besides other crucial functions in plants. Peroxisome targeting signal type 1 (PTS1), which is carried by most peroxisome matrix proteins, was initially recognized as a C-terminal tripeptide with a "canonical" consensus of [S/A]-[K/R]-[L/M]. Many studies have shown the existence of auxiliary targeting signals upstream of PTS1, but systematic characterizations are lacking. Here, we designed an analytical strategy to characterize the auxiliary targeting signals for plant peroxisomes using large datasets and statistics followed by experimental validations. This method may also be applied to deciphering the auxiliary targeting signals for other organelles, whose organellar targeting depends on a core peptide with assistance from a nearby auxiliary signal.


Subject(s)
Computational Biology , Peroxisomes , Peroxisomes/metabolism , Computational Biology/methods , Protein Transport , Peroxisomal Targeting Signals , Protein Sorting Signals , Plant Proteins/metabolism , Plant Proteins/genetics , Databases, Protein , Amino Acid Sequence
17.
New Phytol ; 243(4): 1472-1489, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38877698

ABSTRACT

Phytophthora parasitica causes diseases on a broad range of host plants. It secretes numerous effectors to suppress plant immunity. However, only a few virulence effectors in P. parasitica have been characterized. Here, we highlight that PpE18, a conserved RXLR effector in P. parasitica, was a virulence factor and suppresses Nicotiana benthamiana immunity. Utilizing luciferase complementation, co-immunoprecipitation, and GST pull-down assays, we determined that PpE18 targeted NbAPX3-1, a peroxisome membrane-associated ascorbate peroxidase with reactive oxygen species (ROS)-scavenging activity and positively regulates plant immunity in N. benthamiana. We show that the ROS-scavenging activity of NbAPX3-1 was critical for its immune function and was hindered by the binding of PpE18. The interaction between PpE18 and NbAPX3-1 resulted in an elevation of ROS levels in the peroxisome. Moreover, we discovered that the ankyrin repeat-containing protein NbANKr2 acted as a positive immune regulator, interacting with both NbAPX3-1 and PpE18. NbANKr2 was required for NbAPX3-1-mediated disease resistance. PpE18 competitively interfered with the interaction between NbAPX3-1 and NbANKr2, thereby weakening plant resistance. Our results reveal an effective counter-defense mechanism by which P. parasitica employed effector PpE18 to suppress host cellular defense, by suppressing biochemical activity and disturbing immune function of NbAPX3-1 during infection.


Subject(s)
Ascorbate Peroxidases , Nicotiana , Peroxisomes , Phytophthora , Plant Immunity , Reactive Oxygen Species , Virulence Factors , Phytophthora/pathogenicity , Phytophthora/physiology , Nicotiana/microbiology , Reactive Oxygen Species/metabolism , Ascorbate Peroxidases/metabolism , Virulence Factors/metabolism , Peroxisomes/metabolism , Plant Diseases/microbiology , Plant Diseases/immunology , Protein Binding , Disease Resistance , Ankyrin Repeat
18.
Metab Eng ; 84: 169-179, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38936763

ABSTRACT

7-Dehydrocholesterol (7-DHC) is widely present in various organisms and is an important precursor of vitamin D3. Despite significant improvements in the biosynthesis of 7-DHC, it remains insufficient to meet the industrial demands. In this study, we reported high-level production of 7-DHC in an industrial Saccharomyces cerevisiae leveraging subcellular organelles. Initially, the copy numbers of DHCR24 were increased in combination with sterol transcriptional factor engineering and rebalanced the redox power of the strain. Subsequently, the effects of compartmentalizing the post-squalene pathway in peroxisomes were validated by assembling various pathway modules in this organelle. Furthermore, several peroxisomes engineering was conducted to enhance the production of 7-DHC. Utilizing the peroxisome as a vessel for partial post-squalene pathways, the potential of yeast for 7-dehydrocholesterol production was demonstrated by achieving a 26-fold increase over the initial production level. 7-DHC titer reached 640.77 mg/L in shake flasks and 4.28 g/L in a 10 L bench-top fermentor, the highest titer ever reported. The present work lays solid foundation for large-scale and cost-effective production of 7-DHC for practical applications.


Subject(s)
Dehydrocholesterols , Metabolic Engineering , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Dehydrocholesterols/metabolism , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , Peroxisomes/metabolism , Peroxisomes/genetics , Diploidy
19.
Cell Mol Biol Lett ; 29(1): 85, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38834954

ABSTRACT

The molecular basis for bulk autophagy activation due to a deficiency in essential nutrients such as carbohydrates, amino acids, and nitrogen is well understood. Given autophagy functions to reduce surplus to compensate for scarcity, it theoretically possesses the capability to selectively degrade specific substrates to meet distinct metabolic demands. However, direct evidence is still lacking that substantiates the idea that autophagy selectively targets specific substrates (known as selective autophagy) to address particular nutritional needs. Recently, Gross et al. found that during phosphate starvation (P-S), rather than nitrogen starvation (N-S), yeasts selectively eliminate peroxisomes by dynamically altering the composition of the Atg1/ULK kinase complex (AKC) to adapt to P-S. This study elucidates how the metabolite sensor Pho81 flexibly interacts with AKC and guides selective autophagic clearance of peroxisomes during P-S, providing novel insights into the metabolic contribution of autophagy to special nutritional needs.


Subject(s)
Autophagy , Phosphates , Saccharomyces cerevisiae Proteins , Phosphates/metabolism , Phosphates/deficiency , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae Proteins/genetics , Peroxisomes/metabolism , Saccharomyces cerevisiae/metabolism , Autophagy-Related Protein-1 Homolog/metabolism , Autophagy-Related Protein-1 Homolog/genetics , Autophagy-Related Proteins/metabolism , Autophagy-Related Proteins/genetics , Protein Serine-Threonine Kinases/metabolism , Protein Serine-Threonine Kinases/genetics , Protein Kinases
20.
ACS Synth Biol ; 13(8): 2545-2554, 2024 Aug 16.
Article in English | MEDLINE | ID: mdl-38860733

ABSTRACT

Rhodotorula toruloides is a potential workhorse for production of various value-added chemicals including terpenoids, oleo-chemicals, and enzymes from low-cost feedstocks. However, the limited genetic toolbox is hindering its metabolic engineering. In the present study, four type I and one novel type II peroxisomal targeting signal (PTS1/PTS2) were characterized and employed for limonene production for the first time in R. toruloides. The implant of the biosynthesis pathway into the peroxisome led to 111.5 mg/L limonene in a shake flask culture. The limonene titer was further boosted to 1.05 g/L upon dual-metabolic regulation in the cytoplasm and peroxisome, which included employing the acetoacetyl-CoA synthase NphT7, adding an additional copy of native ATP-dependent citrate lyase, etc. The final yield was 0.053 g/g glucose, which was the highest ever reported. The newly characterized PTSs should contribute to the expansion of genetic toolboxes forR. toruloides. The results demonstrated that R. toruloides could be explored for efficient production of terpenoids.


Subject(s)
Cytoplasm , Limonene , Metabolic Engineering , Peroxisomes , Rhodotorula , Limonene/metabolism , Rhodotorula/metabolism , Rhodotorula/genetics , Metabolic Engineering/methods , Peroxisomes/metabolism , Peroxisomes/genetics , Cytoplasm/metabolism , Terpenes/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL