Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.605
Filter
1.
Int J Mol Sci ; 25(14)2024 Jul 17.
Article in English | MEDLINE | ID: mdl-39063063

ABSTRACT

Mining of organophosphorous (OPs)-degrading bacterial enzymes in collections of known bacterial strains and in natural biotopes are important research fields that lead to the isolation of novel OP-degrading enzymes. Then, implementation of strategies and methods of protein engineering and nanobiotechnology allow large-scale production of enzymes, displaying improved catalytic properties for medical uses and protection of the environment. For medical applications, the enzyme formulations must be stable in the bloodstream and upon storage and not susceptible to induce iatrogenic effects. This, in particular, includes the nanoencapsulation of bioscavengers of bacterial origin. In the application field of bioremediation, these enzymes play a crucial role in environmental cleanup by initiating the degradation of OPs, such as pesticides, in contaminated environments. In microbial cell configuration, these enzymes can break down chemical bonds of OPs and usually convert them into less toxic metabolites through a biotransformation process or contribute to their complete mineralization. In their purified state, they exhibit higher pollutant degradation efficiencies and the ability to operate under different environmental conditions. Thus, this review provides a clear overview of the current knowledge about applications of OP-reacting enzymes. It presents research works focusing on the use of these enzymes in various bioremediation strategies to mitigate environmental pollution and in medicine as alternative therapeutic means against OP poisoning.


Subject(s)
Biodegradation, Environmental , Organophosphorus Compounds , Organophosphorus Compounds/metabolism , Humans , Environmental Restoration and Remediation/methods , Bacteria/enzymology , Organophosphate Poisoning/drug therapy , Pesticides/metabolism , Pesticides/chemistry , Pesticides/toxicity
2.
Molecules ; 29(14)2024 Jul 21.
Article in English | MEDLINE | ID: mdl-39065001

ABSTRACT

A deep eutectic solvent (DES) with the ability to change from hydrophilic to hydrophobic was designed and synthesized and applied to the determination of organophosphorus (OPP) pesticides in honeysuckle dew samples. Choline chloride, phenol, and tetrahydrofuran (THF) were used as the hydrogen bond acceptor, hydrogen bond donor, and demulsifier, respectively. Eight OPP pesticides were extracted by DES coupled with ultrasonic-assisted extraction (UA) and then chromatographed by GC-MS. DES used as an extract solvent has the advantages of high extraction efficiency, low cost, and environmental protection. Furthermore, DES is compatible with GC-MS. The single factor experiment design and Box-Behnken design (BBD) were applied to the optimization of experimental factors, including the type and composition of extraction solvent, type of demulsifier solvent, the volume of DES and THF, pH of sample solution, and ultrasonic time. Under the optimum experimental conditions, the high degree of linearity from 0.1 to 20.0 ng mL-1 (R2 ≥ 0.9989), the limits of detection from 0.014 to 0.051 ng mL-1 (S/N = 3), and the recoveries of analytes from 81.4 to 104.4% with relative standard deviation below 8.6%. In addition, the adsorption mechanism of OPPs on DES was explored by adsorption kinetic studies. These results have demonstrated that the present method has offered an effective, accurate, and sensitive methodology for OPP pesticides in honeysuckle dew samples, and this method provides a reference for the detection of pesticide residues in traditional Chinese medicine.


Subject(s)
Deep Eutectic Solvents , Liquid Phase Microextraction , Organophosphorus Compounds , Pesticides , Liquid Phase Microextraction/methods , Pesticides/analysis , Pesticides/isolation & purification , Pesticides/chemistry , Organophosphorus Compounds/analysis , Organophosphorus Compounds/chemistry , Deep Eutectic Solvents/chemistry , Gas Chromatography-Mass Spectrometry/methods , Lonicera/chemistry , Solvents/chemistry , Ultrasonic Waves , Limit of Detection
3.
J Chromatogr A ; 1730: 465113, 2024 Aug 16.
Article in English | MEDLINE | ID: mdl-38959656

ABSTRACT

Ionic covalent organic frameworks with both crystallinity and charged sites have attracted significant attention from the scientific community. The versatile textural structures, precisely defined channels, and abundant charged sites of ionic COFs offer immense potential in various areas such as separation, sample pretreatment, ion conduction mechanisms, sensing applications, catalytic reactions, and energy storage systems. This review presents a comprehensive overview of facile preparation methods for ionic covalent organic frameworks (iCOFs), along with their applications in food sample pretreatment techniques such as solid-phase extraction (SPE), magnetic solid-phase extraction (MSPE), and dispersive solid-phase extraction (DSPE). Furthermore, it highlights the extensive utilization of iCOFs in detecting various food contaminants including pesticides, contaminants from food packaging, veterinary drugs, perfluoroalkyl substances, and poly-fluoroalkyl substances. Specifically, this review critically discusses the limitations, challenges, and future prospects associated with employing iCOF materials to ensure food safety.


Subject(s)
Food Analysis , Food Contamination , Metal-Organic Frameworks , Solid Phase Extraction , Metal-Organic Frameworks/chemistry , Food Analysis/methods , Food Contamination/analysis , Solid Phase Extraction/methods , Pesticides/analysis , Pesticides/chemistry , Food Packaging
4.
Environ Geochem Health ; 46(9): 317, 2024 Jul 13.
Article in English | MEDLINE | ID: mdl-39002095

ABSTRACT

Chiral pesticides account for about 40% of the total pesticides. In the process of using pesticides, it will inevitably flow into the surface water and even penetrate into the groundwater through surface runoff and other means, as a consequence, it affects the water environment. Although the enantiomers of chiral pesticides have the same physical and chemical properties, their distribution, ratio, metabolism, toxicity, etc. in the organism are often different, and sometimes even show completely opposite biological activities. In this article, the selective fate of different types of chiral pesticides such as organochlorine, organophosphorus, triazole, pyrethroid and other chiral pesticides in natural water bodies and sediments, acute toxicity to aquatic organisms, chronic toxicity and other aspects are summarized to further reflect the risks between the enantiomers of chiral pesticides to non-target organisms in the water environment. In this review, we hope to further explore its harm to human society through the study of the toxicity of chiral pesticide enantiomers, so as to provide data support and theoretical basis for the development and production of biochemical pesticides.


Subject(s)
Pesticides , Water Pollutants, Chemical , Pesticides/toxicity , Pesticides/chemistry , Water Pollutants, Chemical/toxicity , Water Pollutants, Chemical/chemistry , Stereoisomerism , Aquatic Organisms/drug effects , Animals , Humans
5.
J Phys Condens Matter ; 36(41)2024 Jul 18.
Article in English | MEDLINE | ID: mdl-38968934

ABSTRACT

Titanium dioxide (TiO2) based photocatalysts have been widely used as a photocatalyst for the degradation of various persistent organic compounds in water and air. The degradation mechanism involves the generation of highly reactive oxygen species, such as hydroxyl radicals, which react with organic compounds to break down their chemical bonds and ultimately mineralize them into harmless products. In the case of pharmaceutical and pesticide molecules, TiO2and modified TiO2photocatalysis effectively degrade a wide range of compounds, including antibiotics, pesticides, and herbicides. The main downside is the production of dangerous intermediate products, which are not frequently addressed in the literature that is currently available. The degradation rate of these compounds by TiO2photocatalysis depends on factors such as the chemical structure of the compounds, the concentration of the TiO2catalyst, the intensity, the light source, and the presence of other organic or inorganic species in the solution. The comprehension of the degradation mechanism is explored to gain insights into the intermediates. Additionally, the utilization of response surface methodology is addressed, offering a potential avenue for enhancing the scalability of the reactors. Overall, TiO2photocatalysis is a promising technology for the treatment of pharmaceutical and agrochemical wastewater, but further research is needed to optimize the process conditions and to understand the fate and toxicity of the degradation products.


Subject(s)
Pesticides , Photochemical Processes , Titanium , Titanium/chemistry , Catalysis , Pesticides/chemistry , Pharmaceutical Preparations/chemistry , Light
6.
Article in English | MEDLINE | ID: mdl-38959705

ABSTRACT

This study established a method to prepare and detect OPs adducts on butyrylcholinesterase (BChE) and human serum albumin (HSA). OPs (methyl paraoxon, ethyl paraoxon, methyl parathion, parathion) were incubated with BChE or HSA in vitro, and the adducts of OPs-BChE or OPs-HSA were prepared and qualitatively analyzed by ultra-performance liquid chromatography data-dependent high-resolution tandem mass spectrometry (UPLC-ddHRMS/MS). The amounts of BChE and HSA in the incubating systems were varied and the resulting amounts of the adducts were determined using linear regression. OPs-BChE in the blood were isolated by immunomagnetic separation (IMS), and then digested into the OPs-nonapeptide adduct by pepsin. The proteins in the remaining blood plasma were precipitated and digested by pronase to OPs-tyrosines(OPs-Tyr), which were quantified by UPLC-ddHRMS/MS. 4 OPs-nonapeptides and 4 OPs-Tyr adducts were obtained through the process above. The relative mass deviation of incubated adducts between the actual and theoretical exact masses was less than 10 ppm, and further confirmed by fragmentation mass spectra analysis. Calibration curves were linear for all adducts with a coefficient of determination value (R2) ≥0.995. The limits of detection (LOD) and limits of quantification (LOQ) for adducts detected by MS ranged from 0.05 to 1.0 ng/mL, and from 0.1 to 2.0 ng/mL, respectively. The recovery percentages for adducts ranged from 76.1 % to 107.1 %, matrix effects ranged from 83.4 % to 102.1 %. The inter-day and intra-day precision were 6.1-10.1 % and 6.9-12.9 % for adducts. This study provides a new reference method for the detection of organophosphorus pesticide poisoning. In addition, two blood samples with organophosphorus poisoning were tested by the designed method, and the corresponding adducts were detected in both samples.


Subject(s)
Butyrylcholinesterase , Organophosphorus Compounds , Tandem Mass Spectrometry , Humans , Butyrylcholinesterase/blood , Butyrylcholinesterase/chemistry , Butyrylcholinesterase/metabolism , Organophosphorus Compounds/chemistry , Organophosphorus Compounds/blood , Organophosphorus Compounds/analysis , Tandem Mass Spectrometry/methods , Linear Models , Chromatography, High Pressure Liquid/methods , Pesticides/blood , Pesticides/analysis , Pesticides/chemistry , Limit of Detection , Serum Albumin, Human/chemistry , Serum Albumin, Human/analysis , Reproducibility of Results
7.
Chem Biol Interact ; 398: 111095, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38844256

ABSTRACT

It is established that organophosphorus pesticide (OPP) toxicity results from modification of amino acids in active sites of target proteins. OPPs can also modify unrelated target proteins such as histones and such covalent histone modifications can alter DNA-binding properties and lead to aberrant gene expression. In the present study, we report on non-enzymatic covalent modifications of calf thymus histones adducted to selected OPPs and organophosphate flame retardants (OPFRs) in vitro using a bottom-up proteomics method approach. Histones were not found to form detectable adducts with the two tested OPFRs but were avidly modified by a few of the seven OPPs that were tested in vitro. Dimethyl phosphate (or diethyl phosphate) adducts were identified on Tyr, Lys and Ser residues. Most of the dialkyl phosphate adducts were identified on Tyr residues. Methyl and ethyl modified histones were also detected. Eleven amino residues in histones showed non-enzymatic covalent methylation by exposure of dichlorvos and malathion. Our bottom-up proteomics approach showing histone-OPP adduct formation warrants future studies on the underlying mechanism of chronic illness from exposure to OPPs.


Subject(s)
Histones , Organophosphorus Compounds , Pesticides , Histones/metabolism , Histones/chemistry , Organophosphorus Compounds/chemistry , Organophosphorus Compounds/metabolism , Organophosphorus Compounds/toxicity , Animals , Pesticides/chemistry , Pesticides/metabolism , Pesticides/toxicity , Cattle , Methylation , Malathion/chemistry , Malathion/metabolism , Malathion/toxicity , Proteomics , Flame Retardants/toxicity , Flame Retardants/metabolism , Amino Acid Sequence , Dichlorvos/chemistry , Dichlorvos/toxicity
8.
Arch Insect Biochem Physiol ; 116(2): e22124, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38860794

ABSTRACT

Pesticides are widely used for pest control to promote sustained and stable growth of agricultural production. However, indiscriminate pesticide usage poses a great threat to environmental and human health. In recent years, nanotechnology has shown the ability to increase the performance of conventional pesticides and has great potential for improving adhesion to crop foliage, solubility, stability, targeted delivery, and so forth. This review discusses two types of nanopesticides, namely, carrier-free nanopesticides and carrier-based nanopesticides, that can precisely release necessary and sufficient amounts of active ingredients. At first, the basic characterization and preparation methods of these two distinct types of nanopesticides are briefly summarized. Subsequently, current applications and future perspectives on scientific examples and strategies for promoting the usage efficacy and reducing the environmental risks of these nanopesticides were also described. Overall, nanopesticides can promote higher crop yields and lay the foundation for sustainable agriculture and global food security.


Subject(s)
Pest Control , Pesticides , Pesticides/chemistry , Pest Control/methods , Animals , Nanotechnology/methods , Nanoparticles/chemistry , Insect Control/methods , Crops, Agricultural
9.
J Nanobiotechnology ; 22(1): 349, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38902761

ABSTRACT

Repeated and widespread use of single chemical pesticides raises concerns about efficiency and safety, developing multi-component synergistic pesticides provides a new route for efficient control of diseases. Most commercial compound formulations are open systems with non-adjustable released rates, resulting in a high frequency of applications. Meanwhile, although nano pesticide delivery systems constructed with different carrier materials have been extensively studied, realizing their actual scale-up production still has important practical significance due to the large-scale field application. In this study, a boscalid and pyraclostrobin dual-loaded nano pesticide system (BPDN) was constructed with industrial-grade carrier materials to facilitate the realization of large-scale production. The optimal industrial-scale preparation mechanism of BPDN was studied with surfactants as key factors. When agricultural emulsifier No.600 and polycarboxylate are used as the ratio of 1:2 in the preparation process, the BPDN has a spherical structure with an average size of 270 nm and exhibits superior physical stability. Compared with commercial formulation, BPDN maintains rate-stabilized release up to 5 times longer, exhibits better dispersion and spreading performance on foliar, has more than 20% higher deposition amounts, and reduces loss. A single application of BPDN could efficiently control tomato gray mold during the growing period of tomatoes due to extended duration and combinatory effectiveness, reducing two application times and labor costs. Toxicology tests on various objects systematically demonstrated that BPDN has improved safety for HepG2 cells, and nontarget organism earthworms. This research provides insight into creating safe, efficient, and environmentally friendly pesticide production to reduce manual operation times and labor costs. Accompanied by production strategies that can be easily scaled up industrially, this contributes to the efficient use of resources for sustainable agriculture.


Subject(s)
Pesticides , Strobilurins , Pesticides/chemistry , Humans , Drug Carriers/chemistry , Animals , Carbamates/chemistry , Surface-Active Agents/chemistry , Nanoparticles/chemistry , Particle Size , Solanum lycopersicum , Biphenyl Compounds , Niacinamide/analogs & derivatives
10.
Int J Biol Macromol ; 273(Pt 2): 132945, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38851614

ABSTRACT

The extensive utilization of non-biodegradable plastic agricultural mulch in the past few decades has resulted in severe environmental pollution and a decline in soil fertility. The present study involves the fabrication of environmentally friendly paper-based mulch with dual functionality, incorporating agrochemicals and heavy metal ligands, through a sustainable papermaking/coating technique. The functional paper-based mulch consists of a cellulose fiber web incorporated with Emamectin Benzoate (EB)@ Aminated sodium lignosulfonate (ASL). The spherical microcapsules loaded with the pesticide EB exhibited an optimal core-shell structure for enhanced protection and controlled release of the photosensitizer EB (Sustained release >75 % in 50 h). Meanwhile, the ASL, enriched with metal chelating groups (-COOH, -OH, and -NH2, etc.), served as a stabilizing agent for heavy metal ions, enhancing soil remediation efficiency. The performance of paper-based mulch was enhanced by the application of a hydrophobic layer composed of natural chitosan/carnauba wax, resulting in exceptional characteristics such as superior tensile strength, hydrophobicity, heat insulation, moisture retention, as well as compostability and biodegradability (biodegradation >80 % after 70 days). This study developed a revolutionary lignocellulosic eco-friendly mulch that enables controlled agrochemical release and soil heavy metal remediation, leading to a superior substitute to conventional and non-biodegradable plastic mulch used in agriculture.


Subject(s)
Lignin , Metals, Heavy , Pesticides , Metals, Heavy/chemistry , Lignin/chemistry , Lignin/analogs & derivatives , Pesticides/chemistry , Delayed-Action Preparations , Plastics/chemistry , Soil Pollutants/chemistry , Agriculture/methods , Chitosan/chemistry , Photosensitizing Agents/chemistry , Biodegradation, Environmental , Soil/chemistry
11.
Int J Biol Macromol ; 273(Pt 2): 132944, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38851616

ABSTRACT

Lignin-based microcapsules are extremely attractive for their biodegradability and photolysis resistance. However, the water-soluble all-lignin shells were unsatisfactory in terms of rainfall and foliar retention, and lacked the test of agricultural production practices. Herein, a novel microcapsule based on a flexible skeleton formed by interfacial polymerization and absorbed with lignin particles (LPMCs) was prepared in this study. Further analysis demonstrated that the shell was formed by cross-linking the two materials in layers and showed excellent flexibility and photolysis resistance. The pesticide loaded LPMCs showed about 98.68 % and 73.00 % improvement in scour resistance and photolysis resistance, respectively, as compared to the bare active ingredient. The foliar retention performance of LPMCs was tested in peanut plantations during the rainy season. LPMCs loaded with pyraclostrobin (Pyr) and tebuconazole (Teb) exhibited the best foliar disease control and optimum plant architecture, resulting in an increase in yield of about 5.36 %. LPMCs have a promising application prospect in the efficient pesticide utilization, by controlling its deformation, adhesion and release, an effective strategy for controlling diseases and managing plant growth was developed.


Subject(s)
Capsules , Lignin , Plant Leaves , Lignin/chemistry , Plant Leaves/chemistry , Strobilurins/chemistry , Ultraviolet Rays , Triazoles/chemistry , Photolysis , Arachis/chemistry , Pesticides/chemistry
12.
Int J Biol Macromol ; 273(Pt 2): 132971, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38880442

ABSTRACT

The salt-responsiveness of Pickering emulsions has significantly influenced their applications due to the large amount of salt on the surface of plant leaves. The present study provided a maleic anhydride-functionalized cellulose nanocrystal-stabilized high internal phase Pickering emulsion (MACNCs-HIPPEs) that was stable to high-concentration salt and used for pesticide delivery. The stability of MACNCs-HIPPEs was investigated by adjusting the oil-phase volume fraction (φ), the MACNCs concentration, NaCl dosages, and the rheological properties. The high internal phase Pickering emulsion was obtained at φ of 0.8 and MACNCs concentration of 2wt% and showed excellent salt stability (NaCl, 1200 mM) and significant storage stability (60 days). The sustained release of imidacloprid (IMI) from imidacloprid-loaded MACNCs-HIPPEs (IMI@MACNCs-HIPPEs) showed a positive correlation to the temperature (15°C, 25°C, 35°C), indicating clear thermo-responsiveness of the prepared pesticide formulation. The test of spread and retention of IMI@MACNCs-HIPPEs on the leaf surface showed a significant advantage compared with the commercial IMI water dispersible granules (CG). All the advantages mentioned above showed the excellent potential of the MACNCs-HIPPEs in delivering lipophilic pesticides.


Subject(s)
Cellulose , Emulsions , Maleic Anhydrides , Nanoparticles , Neonicotinoids , Pesticides , Cellulose/chemistry , Nanoparticles/chemistry , Maleic Anhydrides/chemistry , Emulsions/chemistry , Pesticides/chemistry , Neonicotinoids/chemistry , Nitro Compounds/chemistry , Temperature , Drug Liberation
13.
Environ Geochem Health ; 46(7): 229, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38849639

ABSTRACT

Pesticide micropollutants like 4-chlorophenol (4CP) and E. coli bacteria represent a substantial hazard, impacting both the environment and human health. This study delves into the effectiveness of Ag-doped TiO2 (Ag@TiO2) in removing both 4CP and E. coli. Ag@TiO2 has demonstrated remarkable effectiveness in removing 4CP under both solar and visible light conditions, earning degradation efficiencies of 91.3% and 72.8%, respectively. Additionally, it demonstrates outstanding photodegradation efficiency for 4CP (98.8%) at an initial concentration of 1 mg L-1. Moreover, Ag@TiO2 exhibited substantially higher removal performance for 4CP (81.6%) compared to TiO2 (27.6%) in wastewater. Analysis of the radicals present during the photodegradation process revealed that ·O2- primarily drives the decomposition of 4CP, with h+ and ·OH also playing significant roles in the oxidation reactions of the pollutant. Interestingly, even under dark conditions, Ag@TiO2 exhibited the capability to eliminate approximately 20% of E. coli, a percentage that increased to over 96% under solar light. In addition, the prospects for environmental and health impacts of utilizing Ag@TiO2 for pesticide micropollutant removal and bacteria were discussed.


Subject(s)
Chlorophenols , Escherichia coli , Pesticides , Silver , Sunlight , Titanium , Water Pollutants, Chemical , Titanium/chemistry , Pesticides/chemistry , Silver/chemistry , Chlorophenols/chemistry , Water Pollutants, Chemical/chemistry , Photolysis , Wastewater/chemistry
14.
Int J Mol Sci ; 25(11)2024 May 26.
Article in English | MEDLINE | ID: mdl-38891976

ABSTRACT

In recent years, the awareness that pesticides can have other effects apart from generic toxicity is growing. In particular, several pieces of evidence highlight their influence on human fertility. In this study, we investigated, by a virtual screening approach, the binding between pesticides and proteins present in human gametes or associated with reproduction, in order to identify new interactions that could affect human fertility. To this aim, we prepared ligand (pesticides) and receptor (proteins) 3D structure datasets from online structural databases (such as PubChem and RCSB), and performed a virtual screening analysis using Autodock Vina. In the comparison of the predicted interactions, we found that famoxadone was predicted to bind Cellular Retinol Binding Protein-III in the retinol-binding site with a better minimum energy value of -10.4 Kcal/mol and an RMSD of 3.77 with respect to retinol (-7.1 Kcal/mol). In addition to a similar network of interactions, famoxadone binding is more stabilized by additional hydrophobic patches including L20, V29, A33, F57, L117, and L118 amino acid residues and hydrogen bonds with Y19 and K40. These results support a possible competitive effect of famoxadone on retinol binding with impacts on the ability of developing the cardiac tissue, in accordance with the literature data on zebrafish embryos. Moreover, famoxadone binds, with a minimum energy value between -8.3 and -8.0 Kcal/mol, to the IZUMO Sperm-Egg Fusion Protein, interacting with a network of polar and hydrophobic amino acid residues in the cavity between the 4HB and Ig-like domains. This binding is more stabilized by a predicted hydrogen bond with the N185 residue of the protein. A hindrance in this position can probably affect the conformational change for JUNO binding, avoiding the gamete membrane fusion to form the zygote. This work opens new interesting perspectives of study on the effects of pesticides on fertility, extending the knowledge to other typologies of interaction which can affect different steps of the reproductive process.


Subject(s)
Membrane Proteins , Pesticides , Retinol-Binding Proteins, Cellular , Strobilurins , Animals , Humans , Binding Sites , Hydrogen Bonding , Ligands , Molecular Docking Simulation , Pesticides/metabolism , Pesticides/chemistry , Protein Binding , Reproduction/drug effects , Retinol-Binding Proteins, Cellular/metabolism , Retinol-Binding Proteins, Cellular/chemistry , Strobilurins/chemistry , Strobilurins/metabolism , Membrane Proteins/chemistry , Membrane Proteins/metabolism
15.
Ultrason Sonochem ; 108: 106937, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38896895

ABSTRACT

This study explores the reduction of carbamates (CAs) and pyrethroids (PYs) - commonly used pesticides - in lettuce using various immersion solutions and ultrasonic processing. It also examines the role of machine learning and molecular docking in understanding the mechanisms of pesticide reduction. The results revealed that the highest reduction of both CAs and PYs exceeded 80 % on lettuce leaves. In most samples, the reduction increased with the power of ultrasonic processing and processing time. The results of machine learning models (XGBoost and SHAP) showed that during the immersion cleaning of CAs and PYs, as well as during both immersion cleaning and ultrasonic processing of CAs + PYs, the reduction was most influenced by the initial pesticide levels and immersion time. Gas Chromatography-Mass Spectrometry (GC-MS) analysis of lettuce's wax layer identified 24 compounds, including fatty alcohols, fatty acids, fatty acid esters, and triterpenoids. Despite the absence of active sites, the lipophilic nature of long-chain aliphatic compounds aids in pesticide binding, while triterpenoids form strong hydrogen bonds with pesticides, indicating a robust adsorption on the lettuce surface. This study aims to offer insights into the efficient removal of chemical pesticide residues from fruits and vegetables, addressing critical concerns for food safety and human health.


Subject(s)
Lactuca , Lactuca/chemistry , Molecular Docking Simulation , Pesticides/chemistry , Solutions , Sonication , Ultrasonic Waves , Machine Learning , Carbamates/chemistry , Pyrethrins/chemistry , Pyrethrins/isolation & purification , Food Contamination/analysis
16.
Analyst ; 149(15): 3951-3960, 2024 Jul 22.
Article in English | MEDLINE | ID: mdl-38940008

ABSTRACT

Safety problems caused by organophosphorus pesticide (OP) residues are constantly occurring, so the development of new methods for the degradation and detection of OPs is of great scientific significance. In the present study, ß-sheet peptides and ß-hairpin peptides for catalyzing the hydrolysis of OPs were designed and synthesized. The peptide sequences with the highest hydrolytic activity (EHSGGVTVDPPLTVEHSAG) were screened by investigating the effect of the location of the active sites of the peptide and the peptide's structure on the degradation of OPs. In addition, the relationship between the peptides' conformation and hydrolytic activity was further analyzed based on density functional theory calculations. The noncovalent interactions of the peptides with the OPs and the electrostatic potential on the molecular surface and molecular docking properties were also investigated. It was found that peptides with approximate active amino acids consisting of the catalytic triad and with the hairpin structure had enhanced hydrolytic activity toward the hydrolysis of OPs. To develop an electrochemical sensor technique to detect OPs, the conductive MXene (Ti3C2) material was first immobilized with a caffeic acid monolayer via enediol-metal complex chemistry and then bound with the ß-hairpin peptide (EHSGGVTVDPPLTVEHSAG) via carboxy-amine condensation chemistry between the -COOH of caffeic acid and the -NH2 of the peptide to prepare a MXene-peptide composite. Then, the prepared composite was modified on the surface of a glassy carbon electrode to construct an electrochemical sensor for the detection of OPs. The developed technique could be used to monitor OPs within 15 min with a two orders of linear working range and with a detection limit of 0.15 µM. Meanwhile, the sensor showed good reliability for the detection of OPs in real vegetables.


Subject(s)
Organophosphorus Compounds , Pesticides , Pesticides/analysis , Pesticides/chemistry , Organophosphorus Compounds/chemistry , Organophosphorus Compounds/analysis , Hydrolysis , Molecular Docking Simulation , Peptides/chemistry , Limit of Detection , Electrochemical Techniques/methods , Amino Acid Sequence , Caffeic Acids
17.
J Agric Food Chem ; 72(27): 15133-15141, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38944760

ABSTRACT

The post-harvest fumigant, sulfuryl fluoride (SO2F2), is a >1000-fold more potent greenhouse gas than carbon dioxide and methane. Pilot studies have shown that SO2F2 fumes vented from fumigation chambers can be captured and hydrolyzed by hydroxide (OH-) and hydrogen peroxide (H2O2) at pH ∼ 12 in a scrubber, producing SO42- and F- as waste salts. To reduce the costs and challenges associated with purchasing and mixing these reagents onsite, this study evaluates the electrochemical generation of OH- and H2O2 within spent scrubbing solution, taking advantage of the waste SO42- and F- as free sources of electrolyte. The study used a gas diffusion electrode constructed from carbon paper coated with carbon black as a catalyst selective for the reduction of O2 to H2O2. Under galvanostatic conditions, the study evaluated the effect of electrochemical conditions, including applied cathodic current density and electrolyte strength. Within an electrolyte containing 200 mM SO42- and 400 mM F-, comparable to the waste salts generated by a SO2F2 scrubbing event, the system produced 250 mM H2O2 at pH 12.6 within 4 h with a Faradaic efficiency of 98.8% for O2 reduction to H2O2. In a scrubbing-water sample from lab-scale fumigation, the system generated ∼200 mM H2O2 at pH 13.5 within 4 h with a Faradaic efficiency of 75.6%. A comparison of the costs to purchase NaOH and H2O2 against the electricity costs for electrochemical treatment indicated that the electrochemical approach could be 38-71% lower, depending on the local cost of electricity.


Subject(s)
Fumigation , Hydrogen Peroxide , Hydroxides , Sulfinic Acids , Hydrogen Peroxide/chemistry , Hydrolysis , Sulfinic Acids/chemistry , Hydroxides/chemistry , Electrochemical Techniques/methods , Pesticides/chemistry
18.
Water Res ; 260: 121978, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38924808

ABSTRACT

Sewage sludge adsorbs a large amount of harmful organic pollutants, particularly the persistent and hydrophobic polyhalogenated compounds (PHCs). PHCs have been subjected to biological and chemical oxidation treatments during wastewater treatment processes; however, the species and concentrations of their transformation products (TPs) in sludge remain unknown, and the transformation pathways are unclear. In this study, 234 TPs of PHCs, including 77 TPs of chlorinated paraffins (CPs-TPs), 102 TPs of organochlorine pesticides (OCPs-TPs), 45 TPs of dechlorane plus (DPs-TPs), and 10 TPs of brominated flame retardants (BFRs-TPs), were identified in sludge through Ph4PCl-enhanced ionization coupled with ultra-performance liquid chromatography-Orbitrap-mass spectrometry. Based on the chemical structures of the identified TPs, we identified three major transformation pathways: dehalogenation-hydroxylation, carbon chain decomposition, and desulfurization. Approximately 97 TPs were newly discovered through the pathways. Carbon chain decomposition products of OCPs and DPs were detected for the first time at relatively high abundances. More hydroxylation products of DPs and hexabromocyclododecane (HBCD) and multi-dehalogenation products of heptachlor, toxaphene, DPs and HBCDs were detected at relative intensities higher than those of the known TPs. The oxidation treatment of sludge achieved up to 13 %-94 % of PHCs to be removed, with dehalogenation-hydroxylation as the main transformation pathway. Advanced treatment technologies are needed for degradation of both PHCs and their TPs.


Subject(s)
Sewage , Sewage/chemistry , Water Pollutants, Chemical/chemistry , Hydrocarbons, Chlorinated/chemistry , Flame Retardants , Pesticides/chemistry
19.
J Chromatogr A ; 1730: 465061, 2024 Aug 16.
Article in English | MEDLINE | ID: mdl-38909520

ABSTRACT

In this research, electrospun nanofibers based on copper-based metal organic framework (MOF)/polyurethane (PU) were prepared in order to achieve an applicable and superior extractive phase. The incorporation of MOF, in the synthesized nanocomposite contributed to the enhanced sorption efficiency. The prepared sorbent was implemented for the thin film microextraction (TFME) of target compounds with subsequent quantification using gas chromatography-mass spectrometry (GC-MS). To obtain the maximum efficiency of the synthesized sorbent, the influential parameters on extraction and desorption steps, including the MOF percentage in nanocomposite, desorption solvent type and its volume, desorption time, solution ionic strength and extraction time were optimized. After method development, the linear dynamic range (0.02-700 µg L-1), limits of detection (LODs) (0.005-0.1 µg L-1) and limits of quantification (LOQs))0.02-0.33 µg L-1(were calculated. The relative standard deviations values for intra-day and inter-day analysis were found to be in the range of 4.3-5.3 % and 6.2-8.1 %, respectively. The developed method was validated for the TFME of model organochlorine (OC) pesticide residues in fish, soil and water samples. the recovery values for the spiked samples at two concentration levels of 5 and 100 µg l-1 were found in the range of 72-110 %.


Subject(s)
Copper , Gas Chromatography-Mass Spectrometry , Limit of Detection , Metal-Organic Frameworks , Nanocomposites , Polyurethanes , Solid Phase Microextraction , Water Pollutants, Chemical , Polyurethanes/chemistry , Metal-Organic Frameworks/chemistry , Nanocomposites/chemistry , Copper/chemistry , Gas Chromatography-Mass Spectrometry/methods , Solid Phase Microextraction/methods , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/isolation & purification , Water Pollutants, Chemical/chemistry , Pesticides/analysis , Pesticides/isolation & purification , Pesticides/chemistry , Adsorption , Hydrocarbons, Chlorinated/isolation & purification , Hydrocarbons, Chlorinated/analysis , Hydrocarbons, Chlorinated/chemistry
20.
Colloids Surf B Biointerfaces ; 241: 114061, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38941651

ABSTRACT

Responsive release systems have received extensive attention to enhance pesticide utilization efficiency and reduce environmental pollution. In this study, pH/GSH dual responsive release system based on brush-like silica (bSiO2) carriers was constructed to enhance the utilization of pesticides. The bSiO2 carriers present core-shell structure, length of 550 nm, diameter of 350 nm and shell thickness of 100 nm. The carrier had a high pesticide loading (20.0 %, w/w) for dinotefuran (Din). After loading Din, zein was covalently linked with cysteine-bridge to seal the loaded pesticides (namely Din@bSiO2@Zein). The Din@bSiO2@Zein exhibited superior foliar affinity, retention and photostability, and retention rate still remain above 95 % with 220 min UV irradiation. Din@bSiO2@Zein displayed pH/GSH responsive release and the cumulative release within 92 h was up to 81 % under pH=9/CGSH=6 mM, mimicking the microenvironment of lepidopteran. The Din@bSiO2@Zein possessed good control efficacy against Plutella xylostella. Appreciably, Din@bSiO2@Zein could be transported bi-directionally to various regions of tobacco plants within 24 h, which had potential to promote pesticide efficacy. This work offers a strategy to minimize the pesticide dosage and encourage sustainable agricultural development.


Subject(s)
Pesticides , Silicon Dioxide , Zein , Zein/chemistry , Silicon Dioxide/chemistry , Pesticides/chemistry , Pesticides/metabolism , Pesticides/pharmacology , Animals , Nanoparticles/chemistry , Drug Carriers/chemistry , Hydrogen-Ion Concentration , Particle Size , Drug Liberation , Plant Leaves/chemistry , Plant Leaves/metabolism , Surface Properties
SELECTION OF CITATIONS
SEARCH DETAIL