Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 4.119
Filter
1.
Biophys Chem ; 314: 107318, 2024 Nov.
Article in English | MEDLINE | ID: mdl-39226875

ABSTRACT

The Ebola delta peptide is an amphipathic, 40-residue peptide encoded by the Ebola virus, referred to as E40. The membrane-permeabilising activity of the E40 delta peptide has been demonstrated in cells and lipid vesicles suggesting the E40 delta peptide likely acts as a viroporin. The lytic activity of the peptide increases in the presence of anionic lipids and a disulphide bond in the C-terminal part of the peptide. Previous in silico work predicts the peptide to show a partially helical structure, but there is no experimental information on the structure of E40. Here, we use circular dichroism spectroscopy to report the secondary structure propensities of the reduced and oxidised forms of the E40 peptide in water, detergent micelles, and lipid vesicles composed of neutral and anionic lipids (POPC and POPG, respectively). Results indicate that the peptide is predominately a random coil in solution, and the disulphide bond has a small but measurable effect on peptide conformation. Secondary structure analysis shows large uncertainties and dependence on the reference data set and, in our system, cannot be used to accurately determine the secondary structure motifs of the peptide in membrane environments. Nevertheless, the spectra can be used to assess the relative changes in secondary structure propensities of the peptide depending on the solvent environment and disulphide bond. In POPC-POPG vesicles, the peptide transitions from a random coil towards a more structured conformation, which is even more pronounced in negatively charged SDS micelles. In vesicles, the effect depends on the peptide-lipid ratio, likely resulting from vesicle surface saturation. Further experiments with zwitterionic POPC vesicles and DPC micelles show that both curvature and negatively charged lipids can induce a change in conformation, with the two effects being cumulative. Electrostatic screening from Na+ ions reduced this effect. The oxidised form of the peptide shows a slightly lower propensity for secondary structure and retains a more random coil conformation even in the presence of PG-PC vesicles.


Subject(s)
Circular Dichroism , Ebolavirus , Micelles , Protein Structure, Secondary , Ebolavirus/chemistry , Phosphatidylcholines/chemistry , Solutions , Phosphatidylglycerols/chemistry , Peptides/chemistry , Water/chemistry , Viral Proteins/chemistry , Amino Acid Sequence
2.
Sci Adv ; 10(39): eadn8117, 2024 Sep 27.
Article in English | MEDLINE | ID: mdl-39321303

ABSTRACT

The rapid emergence and spread of multidrug-resistant bacterial pathogens require the development of antibacterial agents that are robustly effective while inducing no toxicity or resistance development. In this context, we designed and synthesized amphiphilic dendrimers as antibacterial candidates. We report the promising potent antibacterial activity shown by the amphiphilic dendrimer AD1b, composed of a long hydrophobic alkyl chain and a tertiary amine-terminated poly(amidoamine) dendron, against a panel of Gram-negative bacteria, including multidrug-resistant Escherichia coli and Acinetobacter baumannii. AD1b exhibited effective activity against drug-resistant bacterial infections in vivo. Mechanistic studies revealed that AD1b targeted the membrane phospholipids phosphatidylglycerol (PG) and cardiolipin (CL), leading to the disruption of the bacterial membrane and proton motive force, metabolic disturbance, leakage of cellular components, and, ultimately, cell death. Together, AD1b that specifically interacts with PG/CL in bacterial membranes supports the use of small amphiphilic dendrimers as a promising strategy to target drug-resistant bacterial pathogens and addresses the global antibiotic crisis.


Subject(s)
Anti-Bacterial Agents , Dendrimers , Phosphatidylglycerols , Dendrimers/chemistry , Dendrimers/pharmacology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Phosphatidylglycerols/chemistry , Microbial Sensitivity Tests , Escherichia coli/drug effects , Animals , Acinetobacter baumannii/drug effects , Cell Membrane/drug effects , Cell Membrane/metabolism
3.
Molecules ; 29(17)2024 Aug 24.
Article in English | MEDLINE | ID: mdl-39274849

ABSTRACT

Stimulus-responsive materials hold significant promise for antitumor applications due to their variable structures and physical properties. In this paper, a series of peptides with a responsive viologen derivative, Pep-CnV (n = 1, 2, 3) were designed and synthesized. The process and mechanism of the interaction were studied and discussed. An ultraviolet-visible (UV) spectrophotometer and fluorescence spectrophotometer were used to study their redox responsiveness. Additionally, their secondary structures were measured by Circular Dichroism (CD) in the presence or absence of the reductant, Na2SO3. DPPC and DPPG liposomes were prepared to mimic normal and tumor cell membranes. The interaction between Pep-CnV and biomembranes was investigated by the measurements of surface tension and cargo leakage. Results proved Pep-CnV was more likely to interact with the DPPG liposome and destroy its biomembrane under the stimulus of the reductant. And the destruction increased with the length of the hydrophobic tail chain. Pep-CnV showed its potential as an intelligent antitumor agent.


Subject(s)
Hydrophobic and Hydrophilic Interactions , Liposomes , Liposomes/chemistry , Reducing Agents/chemistry , Oxidation-Reduction , Peptides/chemistry , Cell Membrane/chemistry , Cell Membrane/metabolism , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Phosphatidylglycerols/chemistry , Circular Dichroism
4.
Colloids Surf B Biointerfaces ; 243: 114158, 2024 Nov.
Article in English | MEDLINE | ID: mdl-39137531

ABSTRACT

The rise of the populations of antibiotic resistant bacteria represents an increasing threat to human health. In addition to the synthesis of new antibiotics, which is an extremely expensive and time-consuming process, one of the ways to combat bacterial infections is the use of gold nanoparticles (Au NPs) as the vehicles for targeted delivery of therapeutic drugs. Since such a strategy requires the investigation of the effect of Au NPs (with and without drugs) on both bacterial and human cells, we investigated how the presence of coating-free Au NPs affects the physicochemical properties of lipid membranes that model prokaryotic (PRO) and eukaryotic (EU) cells. PRO/EU systems prepared as multilamellar liposomes (MLVs) and hybrid structures (HSs) from 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) and 1,2-dipalmitoyl-sn-glycero-3-phosphatidylglycerol (DPPG)/1,2-dipalmitoyl-sn-glycero-3-phosphoserine (DPPS) in the absence (MLVs)/presence (HSs) of differently distributed Au NPs (sizes ∼20 nm) reported stabilization of the gel phase of PRO systems in comparison with EU one (DSC data of PRO/EU were Tm(MLVs) ≈ 41.8 °C/42.0 °C, Tm¯ (HSs) ≈ 43.1 °C/42.4 °C, whereas UV-Vis response Tm(MLVs) ≈ 41.5 °C/42.0 °C, Tm¯ (HSs) ≈ 42.9 °C/41.1 °C). Vibrational spectroscopic data unraveled a substantial impact of Au NPs on the non-polar part of lipid bilayers, emphasizing the increase of kink and gauche conformers of the hydrocarbon chain. By interpreting the latter as Au NPs-induced defects, which exert the greatest effect when Au NPs are found exclusively outside the lipid membrane, these findings suggested that Au NPs reduced the compactness of EU-based lipid bilayers much more than in analogous PRO systems. Since the uncoated Au NPs manifested adverse effects when applied as antimicrobials, the results obtained in this work contribute towards recognizing AuNP functionalization as a strategy in tuning and reversing this effect.


Subject(s)
Gold , Metal Nanoparticles , Prokaryotic Cells , Gold/chemistry , Metal Nanoparticles/chemistry , Prokaryotic Cells/chemistry , Eukaryotic Cells/drug effects , Liposomes/chemistry , Humans , Lipid Bilayers/chemistry , Membrane Lipids/chemistry , 1,2-Dipalmitoylphosphatidylcholine/chemistry , Phosphatidylglycerols/chemistry , Particle Size
5.
Sci Adv ; 10(35): eadn9435, 2024 Aug 30.
Article in English | MEDLINE | ID: mdl-39213359

ABSTRACT

The fundamental differences in phospholipids between bacterial and mammalian cell membranes present remarkable opportunities for antimicrobial design. However, it is challenging to distinguish bacterial anionic phospholipid phosphatidylglycerol (PG) from mammalian anionic phosphatidylserine (PS) with the same net charge. Here, we report a class of radially amphiphilic α helix antimicrobial peptides (RAPs) that can selectively discriminate PG from PS, relying on the helix structure. The representative RAP, L10-MMBen, can direct the rearrangement of PG vesicles into a lamellar structure with its helix axis parallel to the PG membrane surface. The helical structure imparts both the thermodynamic and kinetic advantages of L10-MMBen/PG assembly, and the hiding of hydrophobic regions in RAPs is crucial for PG recognition. L10-MMBen exhibits high selectivity against bacteria depending on PG recognition, showing low in vivo toxicity and significant treatment efficacy in mice infection models. Our study introduces a helicity-direct bacterial phospholipid recognition paradigm for designing highly selective antimicrobial peptides.


Subject(s)
Antimicrobial Peptides , Phospholipids , Animals , Antimicrobial Peptides/chemistry , Antimicrobial Peptides/pharmacology , Mice , Phospholipids/chemistry , Phospholipids/metabolism , Phosphatidylglycerols/chemistry , Bacteria/drug effects , Microbial Sensitivity Tests , Hydrophobic and Hydrophilic Interactions , Antimicrobial Cationic Peptides/chemistry , Antimicrobial Cationic Peptides/pharmacology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry
6.
Phys Chem Chem Phys ; 26(27): 18943-18952, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38952218

ABSTRACT

The hallmark of amyloidosis, such as Alzheimer's disease and Parkinson's disease, is the deposition of amyloid fibrils in various internal organs. The onset of the disease is related to the strength of cytotoxicity caused by toxic amyloid species. Furthermore, amyloid fibrils show polymorphism, where some types of fibrils are cytotoxic while others are not. It is thus essential to understand the molecular mechanism of cytotoxicity, part of which is caused by the interaction between amyloid polymorphic fibrils and cell membranes. Here, using amyloid polymorphs of hen egg white lysozyme, which is associated with hereditary systemic amyloidosis, showing different levels of cytotoxicity and liposomes of DMPC and DMPG, changes in the secondary structure of the polymorphs and the structural state of phospholipid membranes caused by the interaction were investigated using vacuum-ultraviolet circular dichroism (VUVCD) and Laurdan fluorescence measurements, respectively. Analysis has shown that the more cytotoxic polymorph increases the antiparallel ß-sheet content and causes more disorder in the membrane structure while the other less cytotoxic polymorph shows the opposite structural changes and causes less structural disorder in the membrane. These results suggest a close correlation between the structural properties of amyloid fibrils and the degree of structural disorder of phospholipid membranes, both of which are involved in the fundamental process leading to amyloid cytotoxicity.


Subject(s)
Amyloid , Circular Dichroism , Muramidase , Phospholipids , Muramidase/chemistry , Muramidase/metabolism , Amyloid/chemistry , Phospholipids/chemistry , Animals , Protein Structure, Secondary , Dimyristoylphosphatidylcholine/chemistry , Phosphatidylglycerols/chemistry , Liposomes/chemistry , Chickens , Vacuum
7.
J Colloid Interface Sci ; 675: 825-835, 2024 Dec.
Article in English | MEDLINE | ID: mdl-39002233

ABSTRACT

Docosahexaenoic acid monoacylglycerol represents a promising lipid constituent in the development of drug nanocarriers owing to its amphiphilicity and the beneficial health effects of this docosahexaenoic acid precursor in various disorders including cancer and inflammatory diseases. Here, we describe the formation and characterization of simple-by-design and stabilizer-free lamellar and non-lamellar crystalline nanoparticles (vesicles and cubosomes, respectively) from binary mixtures of docosahexaenoic acid monoacylglycerol and phosphatidylglycerol, which is a ubiquitous amphiphilic component present in biological systems. At the physiological temperature of 37 °C, these single amphiphilic components tend to exhibit inverse hexagonal and lamellar liquid crystalline phases, respectively, on exposure to excess water. They can also be combined and dispersed in excess water by employing a high-energy emulsification method (by means of ultrasonication) to produce through an electrostatic stabilization mechanism colloidally stable nanodispersions. A colloidal transformation from vesicles to cubosomes was detected with increasing MAG-DHA content. Through use of synchrotron small-angle X-ray scattering, cryo-transmission electron microscopy, and nanoparticle tracking analysis, we report on the structural and morphological features, and size characteristics of these nanodispersions. Depending on the lipid composition, their internal liquid crystalline architectures were spanning from a lamellar (Lα) phase to biphasic features of coexisting inverse bicontinuous (Q2) cubic Pn3m and Im3m phases. Thus, a direct colloidal vesicle-cubosome transformation was detected by augmenting the concentration of docosahexaenoic acid monoacylglycerol. The produced cubosomes were thermally stable within the investigated temperature range of 5-60 °C. Collectively, our findings contribute to understanding of the imperative steps for production of stabilizer-free cubosomes from biocompatible lipids through a simple-by-design approach. We also discuss the potential therapeutic use and future implications for development of next-generation of multifunctional vesicles and cubosomes for co-delivery of docosahexaenoic acid and drugs in treatment of diseases.


Subject(s)
Docosahexaenoic Acids , Monoglycerides , Nanoparticles , Particle Size , Phosphatidylglycerols , Docosahexaenoic Acids/chemistry , Phosphatidylglycerols/chemistry , Monoglycerides/chemistry , Nanoparticles/chemistry , Liquid Crystals/chemistry , Surface Properties , Drug Carriers/chemistry
8.
Chem Phys Lipids ; 263: 105421, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39067642

ABSTRACT

This study explores the impact of the antimicrobial peptide magainin 2 (Mag2) on lipid bilayers with varying compositions. We employed high-resolution atomic force microscopy (AFM) to reveal a dynamic spectrum of structural changes induced by Mag2. Our AFM imaging unveiled distinct structural alterations in zwitterionic POPC bilayers upon Mag2 exposure, notably the formation of nanoscale depressions within the bilayer surface, which we term as "surface pores" to differentiate them from transmembrane pores. These surface pores are characterized by a limited depth that does not appear to fully traverse the bilayer and reach the opposing leaflet. Additionally, our AFM-based force spectroscopy investigation on POPC bilayers revealed a reduction in bilayer puncture force (FP) and Young's modulus (E) upon Mag2 interaction, indicating a weakening of bilayer stability and increased flexibility, which may facilitate peptide insertion. The inclusion of anionic POPG into POPC bilayers elucidated its modulatory effects on Mag2 activity, highlighting the role of lipid composition in peptide-bilayer interactions. In contrast to surface pores, Mag2 treatment of E. coli total lipid extract bilayers resulted in increased surface roughness, which we describe as a fluctuation-like morphology. We speculate that the weaker cohesive interactions between heterogeneous lipids in E. coli bilayers may render them more susceptible to Mag2-induced perturbations. This could lead to widespread disruptions manifested as surface fluctuations throughout the bilayer, rather than the formation of well-defined pores. Together, our findings of nanoscale bilayer perturbations provide useful insights into the molecular mechanisms governing Mag2-membrane interactions.


Subject(s)
Lipid Bilayers , Magainins , Microscopy, Atomic Force , Phosphatidylcholines , Lipid Bilayers/chemistry , Magainins/chemistry , Phosphatidylcholines/chemistry , Phosphatidylglycerols/chemistry , Spectrum Analysis
9.
J Mater Chem B ; 12(27): 6570-6576, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38899544

ABSTRACT

Here, we report the characterization of cholesterol levels on membrane fluidity with a twisted intramolecular charge transfer (TICT) membrane dye, namely DI-8-ANEPPS, using fluorescence lifetime techniques such as time-correlated single photon counting (TCSPC) and fluorescence lifetime imaging microscopy (FLIM). The characterized liposomes comprised a 3 : 1 ratio of POPC and POPG, respectively, 1% DI-8-ANEPPS, and increasing cholesterol levels from 0% to 50%. Fluorescence lifetime characterization revealed that increasing the cholesterol levels from 0% to 50% increases the fluorescence lifetime of DI-8-ANEPPS from 2.36 ns to 3.65 ns, a 55% increment. Such lengthening in the fluorescence lifetime is concomitant with reduced Stokes shifts and higher quantum yield, revealing that localized excitation (LE) dominates over TICT states with increased cholesterol levels. Fluorescence anisotropy measurements revealed a less isotropic environment in the membrane upon increasing cholesterol levels, suggesting a shift from liquid-disorder (Lα) to liquid-order (LO) upon adding cholesterol. Local electrostatic and dipole characterization experiments revealed that changes in the zeta-potential (ζ-potential) and transmembrane dipole potential (Ψd) induced by changes in cholesterol levels or the POPC : POPG ratio play a minimal role in the fluorescence lifetime outcome of DI-8-ANEPPS. Instead, these results indicate that the cholesterol's effect in restricting the degree of movement of DI-8-ANEPPS dominates its photophysics over the cholesterol effect on the local dipole strength. We envision that time-resolved spectroscopy and microscopy, coupled with TICT dyes, could be a convenient tool in exploring the complex interplay between membrane lipids, sterols, and proteins and provide novel insights into membrane fluidity, organization, and function.


Subject(s)
Cholesterol , Microscopy, Fluorescence , Spectrometry, Fluorescence , Cholesterol/chemistry , Fluorescent Dyes/chemistry , Phosphatidylcholines/chemistry , Liposomes/chemistry , Pyridinium Compounds/chemistry , Membrane Fluidity , Phosphatidylglycerols/chemistry
10.
J Colloid Interface Sci ; 669: 537-551, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38729002

ABSTRACT

Infectious diseases, particularly those associated with biofilms, are challenging to treat due to an increased tolerance to commonly used antibiotics. This underscores the urgent need for innovative antimicrobial strategies. Here, we present an alternative simple-by-design approach focusing on the development of biocompatible and antibiotic-free nanocarriers from docosahexaenoic acid (DHA) that has the potential to combat microbial infections and phosphatidylglycerol (DOPG), which is attractive for use as a biocompatible prominent amphiphilic component of Gram-positive bacterial cell membranes. We assessed the anti-bacterial and anti-biofilm activities of these nanoformulations (hexosomes and vesicles) against S. aureus and S. epidermidis, which are the most common causes of infections on catheters and medical devices by different methods (including resazurin assay, time-kill assay, and confocal laser scanning microscopy on an in vitro catheter biofilm model). In a DHA-concentration-dependent manner, these nano-self-assemblies demonstrated strong anti-bacterial and anti-biofilm activities, particularly against S. aureus. A five-fold reduction of the planktonic and a four-fold reduction of biofilm populations of S. aureus were observed after treatment with hexosomes. The nanoparticles had a bacteriostatic effect against S. epidermidis planktonic cells but no anti-biofilm activity was detected. We discuss the findings in terms of nanoparticle-bacterial cell interactions, plausible alterations in the phospholipid membrane composition, and potential penetration of DHA into these membranes, leading to changes in their structural and biophysical properties. The implications for the future development of biocompatible nanocarriers for the delivery of DHA alone or in combination with other anti-bacterial agents are discussed, as novel treatment strategies of Gram-positive infections, including biofilm-associated infections.


Subject(s)
Anti-Bacterial Agents , Biofilms , Docosahexaenoic Acids , Microbial Sensitivity Tests , Nanoparticles , Phosphatidylglycerols , Staphylococcus aureus , Staphylococcus epidermidis , Biofilms/drug effects , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Phosphatidylglycerols/chemistry , Phosphatidylglycerols/pharmacology , Staphylococcus aureus/drug effects , Nanoparticles/chemistry , Docosahexaenoic Acids/chemistry , Docosahexaenoic Acids/pharmacology , Staphylococcus epidermidis/drug effects , Liquid Crystals/chemistry , Particle Size
11.
Biochim Biophys Acta Biomembr ; 1866(6): 184338, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38763269

ABSTRACT

The molecular structures of the various intrinsic lipids in membranes regulate lipid-protein interactions. These different lipid structures with unique volumes produce different lipid molecular packing stresses/lateral stresses in lipid membranes. Most studies examining lipid packing effects have used phosphatidylcholine and phosphatidylethanolamine (PE), which are the main phospholipids of eukaryotic cell membranes. In contrast, Gram-negative or Gram-positive bacterial membranes are composed primarily of phosphatidylglycerol (PG) and PE, and the physical and thermodynamic properties of each acyl chain in PG at the molecular level remain unresolved. In this study, we used 1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-(1'-rac-glycerol) (POPG, 16:0-18:1 PG) and 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phospho-(1'-rac-glycerol) (PAPG, 16:0-20:4 PG) to prepare lipid bilayers (liposome) with the rod-type fluorescence probe DPH. We measured the lipid packing conditions by determining the rotational freedom of DPH in POPG or PAPG bilayers. Furthermore, we investigated the effect of different monoacyl chains on a K+ channel (KcsA) structure when embedded in POPG or PAPG membranes. The results revealed that differences in the number of double bonds and carbon chain length in the monoacyl chain at sn-2 affected the physicochemical properties of the membrane and the structure and orientation of KcsA.


Subject(s)
Bacterial Proteins , Lipid Bilayers , Phosphatidylglycerols , Potassium Channels , Lipid Bilayers/chemistry , Potassium Channels/chemistry , Potassium Channels/metabolism , Phosphatidylglycerols/chemistry , Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Phosphatidylethanolamines/chemistry , Membrane Lipids/chemistry , Membrane Lipids/metabolism , Cell Membrane/chemistry , Thermodynamics , Liposomes/chemistry , Phosphatidylcholines/chemistry
12.
J Phys Chem B ; 128(22): 5407-5418, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38795045

ABSTRACT

In this work, we explored how the amount of cholesterol in the lipid membrane composed of phosphatidylcholine (POPC) or phosphatidylglycerol (POPG) affects the interaction with 1-dodecyl-3-methylimidazolium bromide ([C12MIM]+Br-) ionic liquids using various biophysical techniques. On interacting with the membrane, [C12MIM]+Br- leads to enhanced membrane permeability and induces membrane fusion, leading to an increase in vesicle size. The 2H-based solid-state NMR investigations of cholesterol-containing lipid membranes reveal that [C12MIM]+Br- decreases the lipid chain order parameters and counteracts the lipid condensation effect of cholesterol to some extent. Therefore, as the amount of cholesterol in the membrane increases, the membrane effect of [C12MIM]+Br- decreases. The effect of [C12MIM]+Br- on the membrane properties is more pronounced for POPC compared to that of POPG membranes. This suggests a dependence of these effects on the electrostatic interactions, indicating that the influence of [C12MIM]+Br- varies based on the lipid composition. The findings suggest that the presence of cholesterol can modulate the effect of [C12MIM]+Br- on membrane properties, with variations observed between POPC and POPG membranes, highlighting the importance of lipid composition. In short, this study provides insights into the intricate interplay between cholesterol, the lipid membrane, and the ionic liquid [C12MIM]+Br-.


Subject(s)
Cholesterol , Imidazoles , Ionic Liquids , Phosphatidylcholines , Phosphatidylglycerols , Ionic Liquids/chemistry , Cholesterol/chemistry , Cholesterol/metabolism , Phosphatidylglycerols/chemistry , Phosphatidylcholines/chemistry , Imidazoles/chemistry , Permeability , Lipid Bilayers/chemistry , Lipid Bilayers/metabolism
13.
mSphere ; 9(6): e0011524, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38752757

ABSTRACT

Daptomycin is a membrane-targeting last-resort antimicrobial therapeutic for the treatment of infections caused by methicillin- and/or vancomycin-resistant Staphylococcus aureus. In the rare event of failed daptomycin therapy, the source of resistance is often attributable to mutations directly within the membrane phospholipid biosynthetic pathway of S. aureus or in the regulatory systems that control cell envelope response and membrane homeostasis. Here we describe the structural changes to the cell envelope in a daptomycin-resistant isolate of S. aureus strain N315 that has acquired mutations in the genes most commonly reported associated with daptomycin resistance: mprF, yycG, and pgsA. In addition to the decreased phosphatidylglycerol (PG) levels that are the hallmark of daptomycin resistance, the mutant with high-level daptomycin resistance had increased branched-chain fatty acids (BCFAs) in its membrane lipids, increased membrane fluidity, and increased cell wall thickness. However, the successful utilization of isotope-labeled straight-chain fatty acids (SCFAs) in lipid synthesis suggested that the aberrant BCFA:SCFA ratio arose from upstream alteration in fatty acid synthesis rather than a structural preference in PgsA. Transcriptomics studies revealed that expression of pyruvate dehydrogenase (pdhB) was suppressed in the daptomycin-resistant isolate, which is known to increase BCFA levels. While complementation with an additional copy of pdhB had no effect, complementation of the pgsA mutation resulted in increased PG formation, reduction in cell wall thickness, restoration of normal BCFA levels, and increased daptomycin susceptibility. Collectively, these results demonstrate that pgsA contributes to daptomycin resistance through its influence on membrane fluidity and cell wall thickness, in addition to phosphatidylglycerol levels. IMPORTANCE: The cationic lipopeptide antimicrobial daptomycin has become an essential tool for combating infections with Staphylococcus aureus that display reduced susceptibility to ß-lactams or vancomycin. Since daptomycin's activity is based on interaction with the negatively charged membrane of S. aureus, routes to daptomycin-resistance occur through mutations in the lipid biosynthetic pathway surrounding phosphatidylglycerols and the regulatory systems that control cell envelope homeostasis. Therefore, there are many avenues to achieve daptomycin resistance and several different, and sometimes contradictory, phenotypes of daptomycin-resistant S. aureus, including both increased and decreased cell wall thickness and membrane fluidity. This study is significant because it demonstrates the unexpected influence of a lipid biosynthesis gene, pgsA, on membrane fluidity and cell wall thickness in S. aureus with high-level daptomycin resistance.


Subject(s)
Anti-Bacterial Agents , Cell Wall , Daptomycin , Drug Resistance, Bacterial , Membrane Fluidity , Microbial Sensitivity Tests , Staphylococcus aureus , Daptomycin/pharmacology , Cell Wall/drug effects , Cell Wall/metabolism , Membrane Fluidity/drug effects , Anti-Bacterial Agents/pharmacology , Drug Resistance, Bacterial/genetics , Staphylococcus aureus/drug effects , Staphylococcus aureus/genetics , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Cell Membrane/drug effects , Cell Membrane/metabolism , Mutation , Phosphatidylglycerols/metabolism
14.
J Phys Chem B ; 128(18): 4414-4427, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38690887

ABSTRACT

This study elucidated the mechanism of formation of a tripartite complex containing daptomycin (Dap), lipid II, and phospholipid phosphatidylglycerol in the bacterial septum membrane, which was previously reported as the cause of the antibacterial action of Dap against gram-positive bacteria via molecular dynamics and enhanced sampling methods. Others have suggested that this transient complex ushers in the inhibition of cell wall synthesis by obstructing the downstream polymerization and cross-linking processes involving lipid II, which is absent in the presence of cardiolipin lipid in the membrane. In this work, we observed that the complex was stabilized by Ca2+-mediated electrostatic interactions between Dap and lipid head groups, hydrophobic interaction, hydrogen bonds, and salt bridges between the lipopeptide and lipids and was associated with Dap concentration-dependent membrane depolarization, thinning of the bilayer, and increased lipid tail disorder. Residues Orn6 and Kyn13, along with the DXDG motif, made simultaneous contact with constituent lipids, hence playing a crucial role in the formation of the complex. Incorporating cardiolipin into the membrane model led to its competitively displacing lipid II away from the Dap, reducing the lifetime of the complex and the nonexistence of lipid tail disorder and membrane depolarization. No evidence of water permeation inside the membrane hydrophobic interior was noted in all of the systems studied. Additionally, it was shown that using hydrophobic contacts between Dap and lipids as collective variables for enhanced sampling gave rise to a free energy barrier for the translocation of the lipopeptide. A better understanding of Dap's antibacterial mechanism, as studied through this work, will help develop lipopeptide-based antibiotics for rising Dap-resistant bacteria.


Subject(s)
Anti-Bacterial Agents , Daptomycin , Molecular Dynamics Simulation , Phospholipids , Daptomycin/pharmacology , Daptomycin/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Phospholipids/chemistry , Phospholipids/metabolism , Uridine Diphosphate N-Acetylmuramic Acid/analogs & derivatives , Uridine Diphosphate N-Acetylmuramic Acid/metabolism , Uridine Diphosphate N-Acetylmuramic Acid/chemistry , Cell Membrane/drug effects , Cell Membrane/metabolism , Phosphatidylglycerols/chemistry , Hydrophobic and Hydrophilic Interactions , Cardiolipins/chemistry , Cardiolipins/metabolism
15.
Langmuir ; 40(15): 8126-8132, 2024 04 16.
Article in English | MEDLINE | ID: mdl-38568020

ABSTRACT

The apolipoprotein E (ApoE) signal peptide is a short stretch of N-terminal amino acids that direct the ApoE protein to the endoplasmic reticulum after synthesis. Previous studies have shown that this peptide can bind to lipid membranes in a cholesterol-dependent manner; however, the mechanism of this interaction is yet to be clarified. In this study, we aimed to investigate how the composition of neighboring lipids affects the membrane-binding of the ApoE signal peptide. We found that a negatively charged lipid, such as phosphatidylglycerol, can act as a switch that reduces the binding efficiency of the peptide to cholesterol-rich membranes. Interestingly, phosphatidylethanolamine does not activate the cholesterol-dependent binding of the ApoE signal peptide yet acts synergistically to enhance the cholesterol sensitivity in phosphatidylglycerol-containing membranes. To the best of our knowledge, this is the first report of modulation of the affinity of a peptide for a membrane by a neighboring lipid rather than by the lipid-binding domain of the peptide. Our findings revealed a novel role of lipid diversity in modulating the membrane binding of the ApoE signal peptide and its potential implications in the unidirectional trafficking of a newly synthesized protein from the ribosomes to the endoplasmic reticulum.


Subject(s)
Phosphatidylglycerols , Protein Sorting Signals , Apolipoproteins E/chemistry , Apolipoproteins E/metabolism , Cholesterol/chemistry , Peptides
16.
J Phys Chem Lett ; 15(16): 4408-4415, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38625684

ABSTRACT

Probing protein-membrane interactions is vital for understanding biological functionality for various applications such as drug development, targeted drug delivery, and creation of functional biomaterials for medical and industrial purposes. In this study, we have investigated interaction of Human Serum Albumin (HSA) with two different lipids, dipalmitoylphosphatidylglycerol (dDPPG) and dipalmitoylphosphatidylcholine (dDPPC), using Vibrational Sum Frequency Generation spectroscopy at different membrane fluidity values. In the liquid-expanded (LE) state of the lipid, HSA (at pH 3.5) deeply intercalated lipid chains through a combination of electrostatic and hydrophobic interactions, which resulted in more ordering of the lipid chains. However, in the liquid-condensed (LC) state, protein intercalation is decreased due to tighter lipid packing. Moreover, our findings revealed distinct differences in HSA's interaction with dDPPG and dDPPC lipids. The interaction with dDPPC remained relatively weak compared to dDPPG. These results shed light on the significance of protein mediated changes in lipid characteristics, which hold considerable implications for understanding membrane protein behavior, lipid-mediated cellular processes, and lipid-based biomaterial design.


Subject(s)
1,2-Dipalmitoylphosphatidylcholine , Membrane Fluidity , Phosphatidylglycerols , Humans , Phosphatidylglycerols/chemistry , Phosphatidylglycerols/metabolism , 1,2-Dipalmitoylphosphatidylcholine/chemistry , Hydrophobic and Hydrophilic Interactions , Serum Albumin, Human/chemistry , Serum Albumin, Human/metabolism , Static Electricity
17.
Article in English | MEDLINE | ID: mdl-38634861

ABSTRACT

Three Gram-stain-negative, aerobic, non-motile and coccobacilli-shaped bacterial strains, designated as NPKOSM-4T, NPKOSM-8 and MO-31T, were isolated from rice paddy soil. They had 96.5-100 % 16S rRNA gene sequence similarity to each other, and strains NPKOSM-4T and NPKOSM-8 showed 100 % 16S rRNA gene sequence similarity, confirming that they were the same species. Comparative analysis of 16S rRNA genes with closely related type strains showed that three isolates were most closely related to Falsiroseomonas terricola EM0302T (96.1-97.8 %), Falsiroseomonas wooponensis WW53T (95.51-96.3 %) and Falsiroseomonas bella CQN31T (96.0-96.5 %), respectively. The genomes of strains NPKOSM-4T and MO-31T consisted of 4 632 875 and 6 455 771 bps, respectively, with 72.0 and 72.1 mol% G+C content. The average nucleotide identity (ANI), average amino acid identity (AAI) and digital DNA-DNA hybridization (dDDH) values between strains NPKOSM-4T and MO-31T and type strains of Falsiroseomonas species were lower than the cut-offs (≥95 % for ANI, ≥95-96 % for AAI and ≥ 70 % for dDDH) required to define a bacterial species. The major fatty acids of strains NPKOSM-4T, NPKOSM-8 and MO-31T were C18 : 1 ω7c and C18 : 1 2-OH (<10 %) and the predominant quinone was Q-10. The polar lipids of strain NPKOSM-4T were identified as diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, phosphatidylcholine, one unidentified aminophospholipid and three unidentified aminolipids. The polar lipid profiles of strain MO-31T contained diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, phosphatidylcholine, one unidentified aminolipid and three unidentified lipids. Based on their distinctive phenotypic, phylogenetic, and chemotaxonomic characteristics, strains NPKOSM-4T, NPKOSM-8 and MO-31T are considered to represent two novel species of the genus Falsiroseomonas, for which the names Falsiroseomonas oryziterrae sp. nov. [to accommodate strains NPKOSM-4T (= KACC 22135T=JCM 34745T), NPKOSM-8 (=KACC 22134=JCM 34746)] and Falsiroseomonas oryzae sp. nov. [to accommodate strain MO-31T (= KACC 22465T=JCM 35532T)] are proposed.


Subject(s)
Oryza , Base Composition , Cardiolipins , Fatty Acids/chemistry , Phosphatidylethanolamines , Phylogeny , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , DNA, Bacterial/genetics , Bacterial Typing Techniques , Amino Acids , Nucleotides , Phosphatidylcholines , Phosphatidylglycerols , Soil
18.
Article in English | MEDLINE | ID: mdl-38512754

ABSTRACT

Eight colonies of live microbes were isolated from an extensively surface-sterilized halite sample which had been retrieved from a depth of 2000 m from a salt mine in the Qianjiang Depression, Hubei Province, PR China. The eight colonies, obtained after 4 weeks of incubation, were named JI20-1T-JI20-8 and JI20-1T was selected as the type strain. The strains have been previously described, including a genomic analysis based on the complete genome for strain JI20-1T and draft genomes for the other strains. In that study, the name Halobacterium hubeiense was suggested, based on the location of the drilling site. Previous phylogenomic analysis showed that strain JI20-1T is most closely related to the Permian isolate Halobacterium noricense from Alpine rock salt. The orthologous average nucleotide identity (orthoANI) and digital DNA-DNA hybridization (dDDH) percentages between the eight strains are 100-99.6 % and 99.8-96.4 %, respectively. The orthoANI and dDDH values of these strains with respect to the type strains of species of the genus Halobacterium are 89.9-78.2 % and 37.3-21.6 %, respectively, supporting their placement in a novel extremely halophilic archaeal species. The phylogenomic tree based on the comparison of sequences of 632 core-orthologous proteins confirmed the novel species status for these haloarchaea. The polar lipid profile includes phosphatidylglycerol, phosphatidylglycerol phosphate methyl ester, phosphatidylglycerol sulfate, and sulfated galactosyl mannosyl galactosyl glucosyl diether, a profile compatible with that of Halobacterium noricense. Based on genomic, phenotypic, and chemotaxonomic characterization, we propose strain JI20-1T (=DSM 114402T = HAMBI 3616T) as the type strain of a novel species in the genus Halobacterium, with the name Halobacterium hubeiense sp. nov.


Subject(s)
Halobacteriaceae , Halobacterium , Sequence Analysis, DNA , Phylogeny , RNA, Ribosomal, 16S/genetics , Base Composition , Bacterial Typing Techniques , DNA, Bacterial/genetics , Fatty Acids/chemistry , Sodium Chloride , China , Phosphatidylglycerols , DNA, Archaeal/genetics
19.
J Bacteriol ; 206(3): e0036823, 2024 03 21.
Article in English | MEDLINE | ID: mdl-38376203

ABSTRACT

Daptomycin is a cyclic lipopeptide antibiotic used to treat infections caused by some Gram-positive bacteria. Daptomycin disrupts synthesis of the peptidoglycan (PG) cell wall by inserting into the cytoplasmic membrane and binding multiple forms of the undecaprenyl carrier lipid required for PG synthesis. Membrane insertion requires phosphatidylglycerol, so studies of daptomycin can provide insight into assembly and maintenance of the cytoplasmic membrane. Here, we studied the effects of daptomycin on Clostridioides difficile, the leading cause of healthcare-associated diarrhea. We observed that growth of C. difficile strain R20291 in the presence of sub-MIC levels of daptomycin resulted in a chaining phenotype, minicell formation, and lysis-phenotypes broadly consistent with perturbation of membranes and PG synthesis. We also selected for and characterized eight mutants with elevated daptomycin resistance. The mutations in these mutants were mapped to four genes: cdsA (cdr20291_2041), ftsH2 (cdr20291_3396), esrR (cdr20291_1187), and draS (cdr20291_2456). Of these four genes, only draS has been characterized previously. Follow-up studies indicate these mutations confer daptomycin resistance by two general mechanisms: reducing the amount of phosphatidylglycerol in the cytoplasmic membrane (cdsA) or altering the regulation of membrane processes (ftsH2, esrR, and draS). Thus, the mutants described here provide insights into phospholipid synthesis and identify signal transduction systems involved in cell envelope biogenesis and stress response in C. difficile. IMPORTANCE: C. difficile is the leading cause of healthcare-associated diarrhea and is a threat to public health due to the risk of recurrent infections. Understanding biosynthesis of the atypical cell envelope of C. difficile may provide insight into novel drug targets to selectively inhibit C. difficile. Here, we identified mutations that increased daptomycin resistance and allowed us to better understand phospholipid synthesis, cell envelope biogenesis, and stress response in C. difficile.


Subject(s)
Clostridioides difficile , Daptomycin , Humans , Daptomycin/pharmacology , Daptomycin/chemistry , Clostridioides difficile/genetics , Clostridioides difficile/metabolism , Drug Resistance, Bacterial/genetics , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Phosphatidylglycerols , Diarrhea
20.
BMC Cancer ; 24(1): 27, 2024 Jan 02.
Article in English | MEDLINE | ID: mdl-38166693

ABSTRACT

OBJECTIVE: (1) This study aims to identify distinct serum metabolites in gastric cancer patients compared to healthy individuals, providing valuable insights into postoperative efficacy evaluation and monitoring of gastric cancer recurrence; (2) Methods: Serum samples were collected from 15 healthy individuals, 16 gastric cancer patients before surgery, 3 months after surgery, 6 months after surgery, and 15 gastric cancer recurrence patients. T-test and analysis of variance (ANOVA) were performed to screen 489 differential metabolites between the preoperative group and the healthy control group. Based on the level of the above metabolites in the recurrence, preoperative, three-month postoperative, and six-month postoperative groups, we further selected 18 significant differential metabolites by ANOVA and partial least squares discriminant analysis (PLS-DA). The result of hierarchical clustering analysis about the above metabolites showed that the samples were regrouped into the tumor-bearing group (comprising the original recurrence and preoperative groups) and the tumor-free group (comprising the original three-month postoperative and six-month postoperative groups). Based on the results of PLS-DA, 7 differential metabolites (VIP > 1.0) were further selected to distinguish the tumor-bearing group and the tumor-free group. Finally, the results of hierarchical clustering analysis showed that these 7 metabolites could well identify gastric cancer recurrence; (3) Results: Lysophosphatidic acids, triglycerides, lysine, and sphingosine-1-phosphate were significantly elevated in the three-month postoperative, six-month postoperative, and healthy control groups, compared to the preoperative and recurrence groups. Conversely, phosphatidylcholine, oxidized ceramide, and phosphatidylglycerol were significantly reduced in the three-month postoperative, six-month postoperative, and healthy control groups compared to the preoperative and recurrence groups. However, these substances did not show significant differences between the preoperative and recurrence groups, nor between the three-month postoperative, six-month postoperative, and healthy control groups; (4) Conclusions: Our findings demonstrate the presence of distinct metabolites in the serum of gastric cancer patients compared to healthy individuals. Lysophosphatidic acid, triglycerides, lysine, sphingosine-1-phosphate, phosphatidylcholine, oxidized ceramide, and phosphatidylglycerol hold potential as biomarkers for evaluating postoperative efficacy and monitoring recurrence in gastric cancer patients. These metabolites exhibit varying concentrations across different sample categories.


Subject(s)
Stomach Neoplasms , Humans , Stomach Neoplasms/surgery , Lysine , Neoplasm Recurrence, Local , Metabolomics/methods , Triglycerides , Ceramides , Phosphatidylcholines , Phosphatidylglycerols
SELECTION OF CITATIONS
SEARCH DETAIL