Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 379
Filter
1.
Plant Physiol Biochem ; 213: 108806, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38861822

ABSTRACT

The enzyme phospholipase A2 (PLA2) plays a crucial role in acyl remodeling of phospholipids via the Lands' cycle, and consequently alters fatty acid compositions in triacylglycerol (TAG). In this study, a full-length cDNA sequence coding Myrmecia incisa phospholipase A2 (MiPLA2) was cloned using the technique of rapid amplification of cDNA ends. Comparison of the 1082-bp cDNA with its corresponding cloned DNA sequence revealed that MiPLA2 contained 3 introns. Mature MiPLA2 (mMiPLA2) had a conserved Ca2+-binding loop and a catalytic site motif that has been recognized in plant secretory PLA2 (sPLA2) proteins. Correspondingly, phylogenetic analysis illustrated that MiPLA2 was clustered within GroupXIA of plant sPLA2 proteins. To ascertain the function of MiPLA2, the cDNA coding for mMiPLA2 was subcloned into the vector pET-32a to facilitate the production of recombinant mMiPLA2 in Escherichia coli. Recombinant mMiPLA2 was purified and used for the in vitro enzyme reaction. Thin-layer chromatography profiles of the catalytic products generated by recombinant mMiPLA2 indicated a specificity for cleaving sn-2 acyl chains from phospholipids, thereby functionally characterizing MiPLA2. Although recombinant mMiPLA2 displayed a strong preference for phosphatidylethanolamine, it preferentially hydrolyzes arachidonic acid (ArA) at the sn-2 position of phosphatidylcholine. Results from the fused expression of p1300-sp-EGFP-mMiPLA2 illustrated that MiPLA2 was localized in the intercellular space of onion epidermis. Furthermore, the positive correlation between MiPLA2 transcription and free ArA levels were established. Consequently, the role of mMiPLA2 in the biosynthesis of ArA-rich TAG was elucidated. This study helps to understand how M. incisa preferentially uses ArA to synthesize TAG.


Subject(s)
Arachidonic Acid , Phosphatidylcholines , Phospholipases A2 , Phospholipases A2/metabolism , Phospholipases A2/genetics , Arachidonic Acid/metabolism , Phosphatidylcholines/metabolism , Phylogeny , Plant Proteins/genetics , Plant Proteins/metabolism , Substrate Specificity , Amino Acid Sequence , Microalgae/genetics , Microalgae/enzymology , Microalgae/metabolism , Cloning, Molecular
2.
Mech Ageing Dev ; 219: 111940, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38750970

ABSTRACT

To clarify the genetic role of phospholipase A2 (PLA2) genes in Parkinson's disease (PD), we performed a genetic association study in large Chinese population cohorts using next-generation sequencing. In this study, we analyzed both rare and common variants of 38 phospholipase A2 genes in two large cohorts. We detected 1558 and 1115 rare variants in these two cohorts, respectively. In both cohorts, we observed suggestive associations between specific subgroups and the risk of PD. At the single-gene level, several genes (PLA2G2D, PLA2G12A, PLA2G12B, PLA2G4F, PNPLA1, PNPLA3, PNPLA7, PLA2G7, PLA2G15, PLAAT5, and ABHD12) are suggestively associated with PD. Meanwhile, 364 and 2261 common variants were identified in two cohorts, respectively. Our study has expanded the genetic spectrum of the PLA2 family genes and suggested potential pathogenetic roles of PLA2 superfamily in PD.


Subject(s)
Parkinson Disease , Phospholipases A2 , Humans , Parkinson Disease/genetics , Phospholipases A2/genetics , Female , Male , Asian People/genetics , Cohort Studies , Middle Aged , Aged , China/epidemiology , Genetic Predisposition to Disease , East Asian People
3.
FASEB J ; 38(10): e23658, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38742809

ABSTRACT

Phospholipase A2 is the most abundant venom gland enzyme, whose activity leads to the activation of the inflammatory response by accumulating lipid mediators. This study aimed to identify, classify, and investigate the properties of venom PLA2 isoforms. Then, the present findings were confirmed by chemically measuring the activity of PLA2. The sequences representing PLA2 annotation were extracted from the Androctonus crassicauda transcriptome dataset using BLAS searches against the local PLA2 database. We found several cDNA sequences of PLA2 classified and named by conducting multiple searches as platelet-activating factor acetylhydrolases, calcium-dependent PLA2s, calcium-independent PLA2s, and secreted PLA2s. The largest and smallest isoforms of these proteins range between approximately 70.34 kDa (iPLA2) and 17.75 kDa (cPLA2). Among sPLA2 isoforms, sPLA2GXIIA and sPLA2G3 with ORF encoding 169 and 299 amino acids are the smallest and largest secreted PLA2, respectively. These results collectively suggested that A. crassicauda venom has PLA2 activity, and the members of this protein family may have important biological roles in lipid metabolism. This study also revealed the interaction between members of PLA2s in the PPI network. The results of this study would greatly help with the classification, evolutionary relationships, and interactions between PLA2 family proteins in the gene network.


Subject(s)
Phospholipases A2 , Transcriptome , Animals , Phospholipases A2/genetics , Phospholipases A2/metabolism , Scorpions/genetics , Amino Acid Sequence , Phylogeny , Arthropod Proteins/genetics , Arthropod Proteins/metabolism
4.
Free Radic Biol Med ; 218: 82-93, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38579937

ABSTRACT

Peroxiredoxin 6 (Prdx6) repairs peroxidized membranes by reducing oxidized phospholipids, and by replacing oxidized sn-2 fatty acyl groups through hydrolysis/reacylation by its phospholipase A2 (aiPLA2) and lysophosphatidylcholine acyltransferase activities. Prdx6 is highly expressed in the lung, and intact lungs and cells null for Prdx6 or with single-point mutations that inactivate either Prdx6-peroxidase or aiPLA2 activity alone exhibit decreased viability, increased lipid peroxidation, and incomplete repair when exposed to paraquat, hyperoxia, or organic peroxides. Ferroptosis is form of cell death driven by the accumulation of phospholipid hydroperoxides. We studied the role of Prdx6 as a ferroptosis suppressor in the lung. We first compared the expression Prdx6 and glutathione peroxidase 4 (GPx4) and visualized Prdx6 and GPx4 within the lung. Lung Prdx6 mRNA levels were five times higher than GPx4 levels. Both Prdx6 and GPx4 localized to epithelial and endothelial cells. Prdx6 knockout or knockdown sensitized lung endothelial cells to erastin-induced ferroptosis. Cells with genetic inactivation of either aiPLA2 or Prdx6-peroxidase were more sensitive to ferroptosis than WT cells, but less sensitive than KO cells. We then conducted RNA-seq analyses in Prdx6-depleted cells to further explore how the loss of Prdx6 sensitizes lung endothelial cells to ferroptosis. Prdx6 KD upregulated transcriptional signatures associated with selenoamino acid metabolism and mitochondrial function. Accordingly, Prdx6 deficiency blunted mitochondrial function and increased GPx4 abundance whereas GPx4 KD had the opposite effect on Prdx6. Moreover, we detected Prdx6 and GPx4 interactions in intact cells, suggesting that both enzymes cooperate to suppress lipid peroxidation. Notably, Prdx6-depleted cells remained sensitive to erastin-induced ferroptosis despite the compensatory increase in GPx4. These results show that Prdx6 suppresses ferroptosis in lung endothelial cells and that both aiPLA2 and Prdx6-peroxidase contribute to this effect. These results also show that Prdx6 supports mitochondrial function and modulates several coordinated cytoprotective pathways in the pulmonary endothelium.


Subject(s)
Endothelial Cells , Ferroptosis , Group VI Phospholipases A2 , Lipid Peroxidation , Lung , Peroxiredoxin VI , Phospholipid Hydroperoxide Glutathione Peroxidase , Piperazines , Ferroptosis/genetics , Peroxiredoxin VI/metabolism , Peroxiredoxin VI/genetics , Phospholipid Hydroperoxide Glutathione Peroxidase/metabolism , Phospholipid Hydroperoxide Glutathione Peroxidase/genetics , Lung/metabolism , Lung/pathology , Animals , Endothelial Cells/metabolism , Mice , Humans , Phospholipases A2/metabolism , Phospholipases A2/genetics , Mice, Knockout
5.
Sci Rep ; 14(1): 9766, 2024 04 29.
Article in English | MEDLINE | ID: mdl-38684777

ABSTRACT

Eicosanoids are synthesized from phospholipids by the catalytic activity of phospholipase A2 (PLA2). Even though several PLA2s are encoded in the genome of different insect species, their physiological functions are not clearly discriminated. This study identified four PLA2 genes encoded in the western flower thrips, Frankliniella occidentalis. Two PLA2s (Fo-PLA2C and Fo-PLA2D) are predicted to be secretory while the other two PLA2s (Fo-PLA2A and Fo-PLA2B) are intracellular. All four PLA2 genes were expressed in all developmental stages, of which Fo-PLA2B and Fo-PLA2C were highly expressed in larvae while Fo-PLA2A and Fo-PLA2D were highly expressed in adults. Their expressions in different tissues were also detected by fluorescence in situ hybridization. All four PLA2s were detected in the larval and adult intestines and the ovary. Feeding double-stranded RNAs specific to the PLA2 genes specifically suppressed the target transcript levels. Individual RNA interference (RNAi) treatments led to significant developmental retardation, especially in the treatments specific to Fo-PLA2B and Fo-PLA2D. The RNAi treatments also showed that Fo-PLA2B and Fo-PLA2C expressions were required for the induction of immune-associated genes, while Fo-PLA2A and Fo-PLA2D expressions were required for ovary development. These results suggest that four PLA2s are associated with different physiological processes by their unique catalytic activities and expression patterns.


Subject(s)
Phospholipases A2 , Animals , Phospholipases A2/genetics , Phospholipases A2/metabolism , RNA Interference , Insecta/genetics , Gene Expression Regulation, Developmental , Larva/genetics , Larva/growth & development , Phylogeny , Insect Proteins/genetics , Insect Proteins/metabolism , Female , Genome, Insect
6.
Protein Pept Lett ; 31(2): 161-167, 2024.
Article in English | MEDLINE | ID: mdl-38243925

ABSTRACT

INTRODUCTION: Parvovirus B19 (B19V) is a human pathogen, and the minor capsid protein of B19V possesses a unique N terminus called VP1u that plays a crucial role in the life cycle of the virus. OBJECTIVES: The objective of this study was to develop a method for domain segmentation of B19 VP1u using intein technology, particularly its receptor binding domain (RBD) and phospholipase A2 (PLA2) domain. METHODS: RBD and PLA2 domains of VP1u were each fused to the DnaE split inteins derived from the Nostoc punctiforme. Each of these precursor proteins was expressed in E. coli. Combining the purified precursors in equal molar ratios resulted in the formation of full-length VP1u. Furthermore, Circular Dichroism (CD) spectroscopy and PLA2 assays were used to probe the structure and activity of the newly formed protein. RESULTS: The CD spectrum of the full length VP1u confirmed the secondary structure of protein, while the PLA2 assay indicated minimal disruption in enzymatic activity. CONCLUSION: This method would allow for the selective incorporation of NMR-active isotopes into either of the VP1u domains, which can reduce signal overlap in NMR structural determination studies.


Subject(s)
Capsid Proteins , Escherichia coli , Inteins , Inteins/genetics , Capsid Proteins/chemistry , Capsid Proteins/genetics , Capsid Proteins/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism , Protein Domains , Parvovirus B19, Human/genetics , Parvovirus B19, Human/chemistry , Nostoc/genetics , Nostoc/enzymology , Nostoc/chemistry , Phospholipases A2/chemistry , Phospholipases A2/genetics , Phospholipases A2/metabolism , Circular Dichroism , Humans
7.
Anim Reprod Sci ; 260: 107381, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38056177

ABSTRACT

The fatty acid content and the localization and expression of phospholipase A2 (PLA2) in the testis of Hu sheep were investigated. A total of 18 six-month-old Hu sheep were divided into small group (S, with left testis weight < 50 g), medium group (M, with left testis weight among 90-110 g), and large group (L, with left testis weight >160 g), which had six individuals each. The expression of PLA2 in testicular tissues of different sizes was analyzed by immunohistochemistry, RT-qPCR, and Western blot. The fatty acid profile was detected by gas chromatography. Immunohistochemical labeling determined that PLA2 protein was expressed in the Leydig and Sertoli cells of testis, and the immunohistochemical average optional density in the S group was significantly greater than the L group (P < 0.05). RT-qPCR and Western blot analysis showed that PLA2 in the S group was greater than that in the L group (P < 0.05). Docosahexaenoic acid, ω-3 polyunsaturated fatty acid (PUFA), and total PUFA content in the testis of the L group were significantly less than those of the S and M groups (P < 0.01). This study showed that PLA2 content in the S group was greater than that in the L group.


Subject(s)
Fatty Acids, Omega-3 , Testis , Humans , Male , Animals , Sheep , Phospholipases A2/genetics , Fatty Acids, Unsaturated , Sertoli Cells
8.
Ticks Tick Borne Dis ; 15(1): 102256, 2024 01.
Article in English | MEDLINE | ID: mdl-37734164

ABSTRACT

Amblyomma americanum, also known as the lone star tick, is a small arachnid that feeds on blood and can spread disease to humans and other animals. Despite the overlapped ecological niche, geographic distribution, and host selection, there is no proof that A. americanum transmits the pathogen Borrelia burgdorferi that causes Lyme disease. Studies have shown that phospholipase A2 (PLA2) may act as a tool to eliminate B. burgdorferi, but particular PLA2 genes in A. americanum have not been identified and functionally characterized. Using the de novo sequencing method, we identified 42 putative A. americanum PLA2 (pAaPLA2) homologs in the present study, of which three pAaPLA2 had calcium binding sites and canonical histidine catalytic sites. Then, we determined phylogenetic relationships, sequence alignments, and conserved protein motifs of these pAaPLA2s. Protein structural analysis demonstrated that pAaPLA2s primarily consisted of α-helices, ß-sheets, and random coils. These genes were predicted to be engaged in the phospholipid metabolic process, arachidonic acid secretion, and PLA2 activity by functional annotation analysis. A transcriptional factor (Bgb) was discovered that interacted with pAaPLA2 proteins that may have unrecognized roles in regulating neuronal development. Based on the RNA-seq data, we surveyed expression profiles of key pAaPLA2-related genes to reveal putative modulatory networks of these genes. RNAi knockdown of pAaPLA2_1, a dominant isoform in A. americanum, led to decreased bacterial inhibition ability, suggesting pAaPLA2 may play an important role in mediating immune responses. Collectively, this study provides essential evidence of the identification, gene structure, phylogeny, and expression analysis of pAaPLA2 genes in A. americanum, and offers a deeper understanding of the putative borreliacidal roles in the lone star tick.


Subject(s)
Amblyomma , Ixodidae , Humans , Animals , Amblyomma/genetics , Ixodidae/microbiology , RNA Interference , Phylogeny , Phospholipases A2/genetics , Gene Expression Profiling
9.
Int J Mol Sci ; 24(22)2023 Nov 10.
Article in English | MEDLINE | ID: mdl-38003345

ABSTRACT

Phospholipase A2 (PLA2) enzymes influence inflammatory bowel disease in both positive and negative manners depending on the type of PLA2 that is expressed. This study explored the influence of the abundantly expressed Group 1B PLA2 (PLA2G1B) on ulcerative colitis. Wild-type C57BL/6J mice and Pla2g1b-/- mice were treated with dextran sulfate sodium (DSS) for 5 days to induce epithelial injury, followed by another 5 days without DSS for recovery. The Pla2g1b-/- mice displayed significantly less body weight loss, colitis pathology, and disease activity indexes compared to the wild-type mice. The differences in colitis were not due to differences in the colonic lysophospholipid levels, but higher numbers of stem and progenitor cells were found in the intestines of Pla2g1b-/- mice compared to the wild-type mice. The DSS-treated Pla2g1b-/- mice also showed higher expressions of genes that are responsible for epithelial repair and lower expressions of proinflammatory cytokine genes in the colon, as well as reduced inflammatory cytokine levels in the plasma. In vitro experiments revealed the PLA2G1B stimulation of inflammatory cytokine expression by myeloid cells. PLA2G1B inactivation protects against DSS-induced colitis in mice by increasing the intestinal stem cell reservoir for epithelial repair and reducing myeloid cell inflammation in the diseased colon. Thus, PLA2G1B may be a target for colitis management.


Subject(s)
Colitis, Ulcerative , Colitis , Mice , Animals , Group IB Phospholipases A2/metabolism , Mice, Inbred C57BL , Colitis/chemically induced , Colitis/genetics , Colitis/metabolism , Colon/pathology , Colitis, Ulcerative/metabolism , Phospholipases A2/genetics , Phospholipases A2/metabolism , Cytokines/metabolism , Dextran Sulfate/toxicity , Disease Models, Animal , Intestinal Mucosa/metabolism
10.
Toxins (Basel) ; 15(7)2023 06 22.
Article in English | MEDLINE | ID: mdl-37505677

ABSTRACT

Trimeresurus gracilis is an endemic alpine pitviper in Taiwan with controversial phylogeny, and its venom proteome remains unknown. In this study, we conducted a proteomic analysis of T. gracilis venom using high-performance liquid chromatography-tandem mass spectrometry and identified 155 toxin proteoforms that belong to 13 viperid venom toxin families. By searching the sequences of trypsin-digested peptides of the separated HPLC fractions against the NCBI database, T. gracilis venom was found to contain 40.3% metalloproteases (SVMPs), 15.3% serine proteases, 6.6% phospholipases A2, 5.0% L-amino acid oxidase, 4.6% Cys-rich secretory proteins (CRISPs), 3.2% disintegrins, 2.9% vascular endothelial growth factors (VEGFs), 1.9% C-type lectin-like proteins, and 20.2% of minor toxins, nontoxins, and unidentified peptides or compounds. Sixteen of these proteoforms matched the toxins whose full amino-acid sequences have been deduced from T. gracilis venom gland cDNA sequences. The hemorrhagic venom of T. gracilis appears to be especially rich in PI-class SVMPs and lacks basic phospholipase A2. We also cloned and sequenced the cDNAs encoding two CRISP and three VEGF variants from T. gracilis venom glands. Sequence alignments and comparison revealed that the PI-SVMP, kallikrein-like proteases, CRISPs, and VEGF-F of T. gracilis and Ovophis okinavensis are structurally most similar, consistent with their close phylogenetic relationship. However, the expression levels of some of their toxins were rather different, possibly due to their distinct ecological and prey conditions.


Subject(s)
Crotalid Venoms , Trimeresurus , Animals , Proteome/analysis , Vascular Endothelial Growth Factor A/genetics , Phylogeny , Taiwan , Proteomics/methods , Crotalid Venoms/chemistry , Phospholipases A2/genetics , Phospholipases A2/chemistry , Peptides/genetics
11.
Mol Biol Evol ; 40(7)2023 07 05.
Article in English | MEDLINE | ID: mdl-37352150

ABSTRACT

Snake venoms harbor a wide and diverse array of enzymatic and nonenzymatic toxic components, allowing them to exert myriad effects on their prey. However, they appear to trend toward a few optimal compositional scaffolds, dominated by four major toxin classes: SVMPs, SVSPs, 3FTxs, and PLA2s. Nevertheless, the latter appears to be restricted to vipers and elapids, as it has never been reported as a major venom component in rear-fanged species. Here, by investigating the original transcriptomes from 19 species distributed in eight genera from the Pseudoboini tribe (Dipsadidae: Xenodontinae) and screening among seven additional tribes of Dipsadidae and three additional families of advanced snakes, we discovered that a novel type of venom PLA2, resembling a PLA2-IIE, has been recruited to the venom of some species of the Pseudoboini tribe, where it is a major component. Proteomic and functional analyses of these venoms further indicate that these PLA2s play a relevant role in the venoms from this tribe. Moreover, we reconstructed the phylogeny of PLA2s across different snake groups and show that different types of these toxins have been recruited in at least five independent events in caenophidian snakes. Additionally, we present the first compositional profiling of Pseudoboini venoms. Our results demonstrate how relevant phenotypic traits are convergently recruited by different means and from homologous and nonhomologous genes in phylogenetically and ecologically divergent snake groups, possibly optimizing venom composition to overcome diverse adaptative landscapes.


Subject(s)
Colubridae , Proteomics , Animals , Snake Venoms/genetics , Phospholipases A2/genetics , Phylogeny , Colubridae/genetics , Snakes
12.
Toxins (Basel) ; 14(12)2022 11 24.
Article in English | MEDLINE | ID: mdl-36548722

ABSTRACT

Micrurus dumerilii is a coral snake of clinic interest in Colombia. Its venom is mainly composed of phospholipases A2 being MdumPLA2 the most abundant protein. Nevertheless, Micrurus species produce a low quantity of venom, which makes it difficult to produce anticoral antivenoms. Therefore, in this work, we present the recombinant expression of MdumPLA2 to evaluate its biological activities and its immunogenic potential to produce antivenoms. For this, a genetic construct rMdumPLA2 was cloned into the pET28a vector and expressed heterologously in bacteria. His-rMdumPLA2 was extracted from inclusion bodies, refolded in vitro, and isolated using affinity and RP-HPLC chromatography. His-rMdumPLA2 was shown to have phospholipase A2 activity, a weak anticoagulant effect, and induced myonecrosis and edema. The anti-His-rMdumPLA2 antibodies produced in rabbits recognized native PLA2, the complete venom of M. dumerilii, and a phospholipase from another species of the Micrurus genus. Antibodies neutralized 100% of the in vitro phospholipase activity of the recombinant toxin and a moderate percentage of the myotoxic activity of M. dumerilii venom in mice. These results indicate that His-rMdumPLA2 could be used as an immunogen to improve anticoral antivenoms development. This work is the first report of an M. dumerilii functional recombinant PLA2.


Subject(s)
Antivenins , Coral Snakes , Elapid Venoms , Phospholipases A2 , Animals , Mice , Rabbits , Antivenins/biosynthesis , Antivenins/genetics , Antivenins/immunology , Elapid Venoms/enzymology , Phospholipases A2/biosynthesis , Phospholipases A2/genetics , Phospholipases A2/immunology , Recombinant Proteins/biosynthesis , Recombinant Proteins/genetics , Recombinant Proteins/immunology
13.
Vaccine ; 40(42): 6100-6106, 2022 10 06.
Article in English | MEDLINE | ID: mdl-36114131

ABSTRACT

Parvovirus B19 (B19) belongs to the Erythroparvovirus genus and is known to cause the fifth disease in children. Primary infection of pregnant women is associated with a high risk of hydrops fetalis and stillbirth due to severe fetal anemia. Virus-like particle (VLP) vaccine candidates for B19 have been developed, although none have been approved so far. The B19 phospholipase A2 domain (B19 PLA2), located in the VP1 unique region, is believed to be associated with adverse inflammatory reactions, and previous effective attempts to improve this vaccine modality inserted a mutation to impair the PLA2 activity of VLPs. In this study, we designed VLPs with a deletion mutant of PLA2 (⊿PLA2 B19 VLP), devoid of PLA2 activity, and confirmed their immunogenicity and safe use in vivo. These results were supported by the lack of histological inflammatory reactions at the site of immunization or the production of IL-6 in ⊿PLA2 B19 VLP-immunized mice, that were observed in mice immunized with B19 VLPs. CD4+ T cells from mice vaccinated with VLPs and B19-seropositive human samples were not activated by B19 PLA2 stimulation, suggesting that the B19 PLA2 domain does not constitute a major CD4+ T cell epitope. Most importantly, the ⊿PLA2 B19 VLPs induced neutralizing antibodies against B19, in levels similar to those found in B19-seropositive human samples, indicating that they could be used as a safe and effective vaccine candidate against B19.


Subject(s)
Parvovirus B19, Human , Vaccines, Virus-Like Particle , Animals , Antibodies, Neutralizing , Antibodies, Viral , Child , Epitopes, T-Lymphocyte , Female , Humans , Interleukin-6 , Mice , Parvovirus B19, Human/genetics , Phospholipases A2/genetics , Pregnancy
14.
Genome Biol Evol ; 14(7)2022 07 02.
Article in English | MEDLINE | ID: mdl-35670514

ABSTRACT

Despite the medical significance to humans and important ecological roles filled by vipers, few high-quality genomic resources exist for these snakes outside of a few genera of pitvipers. Here we sequence, assemble, and annotate the genome of Fea's Viper (Azemiops feae). This taxon is distributed in East Asia and belongs to a monotypic subfamily, sister to the pitvipers. The newly sequenced genome resulted in a 1.56 Gb assembly, a contig N50 of 1.59 Mb, with 97.6% of the genome assembly in contigs >50 Kb, and a BUSCO completeness of 92.4%. We found that A. feae venom is primarily composed of phospholipase A2 (PLA2) proteins expressed by genes that likely arose from lineage-specific PLA2 gene duplications. Additionally, we show that renin, an enzyme associated with blood pressure regulation in mammals and known from the venoms of two viper species including A. feae, is expressed in the venom gland at comparative levels to known toxins and is present in the venom proteome. The cooption of this gene as a toxin may be more widespread in viperids than currently known. To investigate the historical population demographics of A. feae, we performed coalescent-based analyses and determined that the effective population size has remained stable over the last 100 kyr. This suggests Quaternary glacial cycles likely had minimal influence on the demographic history of A. feae. This newly assembled genome will be an important resource for studying the genomic basis of phenotypic evolution and understanding the diversification of venom toxin gene families.


Subject(s)
Gene Duplication , Viperidae , Animals , Humans , Mammals , Phospholipases A2/genetics , Phospholipases A2/metabolism , Proteome/metabolism , Venoms/metabolism , Viperidae/genetics
15.
Toxins (Basel) ; 14(6)2022 05 31.
Article in English | MEDLINE | ID: mdl-35737043

ABSTRACT

Crotoxin complex CA/CB and crotamine are the main toxins associated with Crotalus envenomation besides the enzymatic activities of phospholipases (PLA2) and proteases. The neutralization at least of the crotoxin complex by neutralizing the subunit B could be a key in the production process of antivenoms against crotalids. Therefore, in this work, a Crotoxin B was recombinantly expressed to evaluate its capacity as an immunogen and its ability to produce neutralizing antibodies against crotalid venoms. A Crotoxin B transcript from Crotalus tzabcan was cloned into a pCR®2.1-TOPO vector (Invitrogen, Waltham, MA, USA) and subsequently expressed heterologously in bacteria. HisrCrotoxin B was extracted from inclusion bodies and refolded in vitro. The secondary structure of HisrCrotoxin B was comparable to the secondary structure of the native Crotoxin B, and it has PLA2 activity as the native Crotoxin B. HisrCrotoxin B was used to immunize rabbits, and the obtained antibodies partially inhibited the activity of PLA2 from C. tzabcan. The anti-HisrCrotoxin B antibodies neutralized the native Crotoxin B and the whole venoms from C. tzabcan, C. s. salvini, and C. mictlantecuhtli. Additionally, anti-HisrCrotoxin B antibodies recognized native Crotoxin B from different Crotalus species, and they could discriminate venom in species with high or low levels of or absence of Crotoxin B.


Subject(s)
Crotalid Venoms , Crotoxin , Animals , Crotalid Venoms/metabolism , Crotalus/metabolism , Phospholipases A2/genetics , Protein Folding , Rabbits
16.
Toxins (Basel) ; 14(6)2022 06 20.
Article in English | MEDLINE | ID: mdl-35737081

ABSTRACT

Venom is a dynamic trait that has contributed to the success of numerous organismal lineages. Predominantly composed of proteins, these complex cocktails are deployed for predation and/or self-defence. Many non-toxic physiological proteins have been convergently and recurrently recruited by venomous animals into their toxin arsenal. Phospholipase A2 (PLA2) is one such protein and features in the venoms of many organisms across the animal kingdom, including snakes of the families Elapidae and Viperidae. Understanding the evolutionary history of this superfamily would therefore provide insight into the origin and diversification of venom toxins and the evolution of novelty more broadly. The literature is replete with studies that have identified diversifying selection as the sole influence on PLA2 evolution. However, these studies have largely neglected the structural/functional constraints on PLA2s, and the ecology and evolutionary histories of the diverse snake lineages that produce them. By considering these crucial factors and employing evolutionary analyses integrated with a schema for the classification of PLA2s, we uncovered lineage-specific differences in selection regimes. Thus, our work provides novel insights into the evolution of this major snake venom toxin superfamily and underscores the importance of considering the influence of evolutionary and ecological contexts on molecular evolution.


Subject(s)
Elapid Venoms , Toxins, Biological , Animals , Elapid Venoms/toxicity , Elapidae , Evolution, Molecular , Phospholipases A2/genetics , Polyesters , Snake Venoms/genetics
17.
Toxins (Basel) ; 14(4)2022 03 25.
Article in English | MEDLINE | ID: mdl-35448846

ABSTRACT

Interspecific differences in snake venom compositions can result from distinct regulatory mechanisms acting in each species. However, comparative analyses focusing on identifying regulatory elements and patterns that led to distinct venom composition are still scarce. Among venomous snakes, Bothrops cotiara and Bothrops fonsecai represent ideal models to complement our understanding of the regulatory mechanisms of venom production. These recently diverged species share a similar specialized diet, habitat, and natural history, but each presents a distinct venom phenotype. Here, we integrated data from the venom gland transcriptome and miRNome and the venom proteome of B. fonsecai and B. cotiara to better understand the regulatory mechanisms that may be acting to produce differing venom compositions. We detected not only the presence of similar toxin isoforms in both species but also distinct expression profiles of phospholipases A2 (PLA2) and some snake venom metalloproteinases (SVMPs) and snake venom serine proteinases (SVSPs) isoforms. We found evidence of modular expression regulation of several toxin isoforms implicated in venom divergence and observed correlated expression of several transcription factors. We did not find strong evidence for miRNAs shaping interspecific divergence of the venom phenotypes, but we identified a subset of toxin isoforms whose final expression may be fine-tuned by specific miRNAs. Sequence analysis on orthologous toxins showed a high rate of substitutions between PLA2s, which indicates that these toxins may be under strong positive selection or represent paralogous toxins in these species. Our results support other recent studies in suggesting that gene regulation is a principal mode of venom evolution across recent timescales, especially among species with conserved ecotypes.


Subject(s)
Bothrops , Crotalid Venoms , MicroRNAs , Toxins, Biological , Animals , Bothrops/genetics , Bothrops/metabolism , Brazil , Crotalid Venoms/genetics , Crotalid Venoms/metabolism , MicroRNAs/metabolism , Phospholipases A2/genetics , Phospholipases A2/metabolism , Snake Venoms/metabolism , Toxins, Biological/metabolism
18.
Chem Biol Drug Des ; 99(6): 908-922, 2022 06.
Article in English | MEDLINE | ID: mdl-35353953

ABSTRACT

Trypanosoma congolense is a pathogenic African animal trypanosome species causing devastating conditions leading to death of an infected host. The drawbacks of the existing trypanocidal drugs have led to the search for new drug candidates. In this study, ß-ionone at 15 and 30 mg/kg body weight (BW) was orally administered to T. congolense infected rats for 14 days followed by an assessment of anemia, organ damages, and the expression of T. congolense trans-sialidase gene variants. A significant decrease in parasitemia (p < .05) was observed in the animals treated with 15 mg/kg BW ß-ionone besides increased animal survival rate. A trypanosome-induced decrease in packed cell volume (PCV) and histopathological changes across tissues was significantly (p < .05) ameliorated following treatment with both doses of ß-ionone. This is in addition to reversing the parasite-induced upsurge in free serum sialic acid (FSA) and expression of T. congolense trans-sialidase gene variants (TconTS1, TconTS3, and TconTS4). Correlation analysis revealed a positive correlation (p > .05) between FSA with the TconTS gene expressions. In addition, the compound inhibited partially purified T. congolense sialidase and phospholipase A2 via mixed inhibition pattern with inhibition binding constants of 25.325 and 4.550 µM, respectively, while molecular docking predicted binding energies of -5.6 kcal/mol for both enzymes. In conclusion, treatment with ß-ionone suppressed T. congolense proliferation and protected the animals against some of the parasite-induced pathologies whilst the effect on anemia development might be due to inhibition of sialidase and PLA2 activities as well as the expression levels of TconTS3 and TconTS4.


Subject(s)
Anemia , Norisoprenoids , Trypanosoma congolense , Trypanosomiasis, African , Anemia/drug therapy , Anemia/parasitology , Animals , Cell Proliferation , Gene Expression , Glycoproteins , Molecular Docking Simulation , Neuraminidase , Norisoprenoids/pharmacology , Phospholipases A2/genetics , Rats , Trypanosoma congolense/genetics , Trypanosomiasis, African/drug therapy , Trypanosomiasis, African/parasitology
19.
J Microbiol ; 60(2): 224-233, 2022 Feb.
Article in English | MEDLINE | ID: mdl-35102528

ABSTRACT

Opportunistic pathogen Vibrio vulnificus causes severe systemic infection in humans with high mortality. Although multiple exotoxins have been characterized in V. vulnificus, their interactions and potential synergistic roles in pathogen-induced host cell death have not been investigated previously. By employing a series of multiple exotoxin deletion mutants, we investigated whether specific exotoxins of the pathogen functioned together to achieve severe and rapid necrotic cell death. Human epithelial cells treated with V. vulnificus with a plpA deletion background exhibited an unusually prolonged cell blebbing, suggesting the importance of PlpA, a phospholipase A2, in rapid necrotic cell death by this pathogen. Additional deletion of the rtxA gene encoding the multifunctional autoprocessing repeats-in-toxin (MARTX) toxin did not result in necrotic cell blebs. However, if the rtxA gene was engineered to produce an effector-free MARTX toxin, the cell blebbing was observed, indicating that the pore forming activity of the MARTX toxin is sufficient, but the MARTX toxin effector domains are not necessary, for the blebbing. When a recombinant PlpA was treated on the blebbed cells, the blebs were completely disrupted. Consistent with this, MARTX toxin-pendent rapid release of cytosolic lactate dehydrogenase was significantly delayed in the plpA deletion background. Mutations in other exotoxins such as elastase, cytolysin/hemolysin, and/or extracellular metalloprotease did not affect the bleb formation or disruption. Together, these findings indicate that the pore forming MARTX toxin and the phospholipase A2, PlpA, cooperate sequentially to achieve rapid necrotic cell death by inducing cell blebbing and disrupting the blebs, respectively.


Subject(s)
Bacterial Toxins/genetics , Exotoxins/genetics , Phospholipases A2/genetics , Vibrio vulnificus/genetics , Vibrio vulnificus/metabolism , 3T3-L1 Cells , Animals , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Bacterial Toxins/metabolism , Cell Death , Exotoxins/metabolism , HeLa Cells , Host-Pathogen Interactions , Humans , Mice , Phospholipases A2/metabolism , Sequence Deletion , Vibrio Infections/microbiology , Vibrio vulnificus/pathogenicity , Virulence Factors/genetics , Virulence Factors/metabolism
20.
Sci Rep ; 12(1): 2852, 2022 02 18.
Article in English | MEDLINE | ID: mdl-35181715

ABSTRACT

Hair loss is one of the most common skin problems experienced by more than half of the world's population. In East Asia, medicinal herbs have been used widely in clinical practice to treat hair loss. Recent studies, including systematic literature reviews, indicate that medicinal herbs may demonstrate potential effects for hair loss treatment. In a previous study, we identified medical herbs used frequently for alopecia treatment. Herein, we explored the potential novel therapeutic mechanisms of 20 vital medicinal herbs for alopecia treatment that could distinguish them from known mechanisms of conventional drugs using network pharmacology analysis methods. We determined the herb-ingredient-target protein networks and ingredient-associated protein (gene)-associated pathway networks and calculated the weighted degree centrality to define the strength of the connections. Data showed that 20 vital medicinal herbs could exert therapeutic effects on alopecia mainly mediated via regulation of various target genes and proteins, including acetylcholinesterase (AChE), phospholipase A2 (PLA2) subtypes, ecto-5-nucleotidase (NTE5), folate receptor (FR), nicotinamide N-methyltransferase (NNMT), and quinolinate phosphoribosyltransferase (QPRT). Findings regarding target genes/proteins and pathways of medicinal herbs associated with alopecia treatment offer insights for further research to better understand the pathogenesis and therapeutic mechanism of medicinal herbs for alopecia treatment with traditional herbal medicine.


Subject(s)
Alopecia/drug therapy , Drugs, Chinese Herbal/therapeutic use , Network Pharmacology , Plants, Medicinal , Acetylcholinesterase/genetics , Alopecia/genetics , Alopecia/prevention & control , Asia, Eastern , Folate Receptor 1/genetics , Humans , Medicine, Chinese Traditional , Nicotinamide N-Methyltransferase/genetics , Nucleotidases/genetics , Pentosyltransferases/genetics , Phospholipases A2/genetics , Phytotherapy , Plant Preparations/chemistry , Plant Preparations/therapeutic use
SELECTION OF CITATIONS
SEARCH DETAIL
...