Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 797
Filter
1.
PLoS Genet ; 20(9): e1011402, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39264953

ABSTRACT

Nucleotide-binding domain and leucine-rich repeat (NLR) proteins play crucial roles in immunity against pathogens in both animals and plants. In solanaceous plants, activation of several sensor NLRs triggers their helper NLRs, known as NLR-required for cell death (NRC), to form resistosome complexes to initiate immune responses. While the sensor NLRs and downstream NRC helpers display diverse genetic compatibility, molecular evolutionary events leading to the complex network architecture remained elusive. Here, we showed that solanaceous NRC3 variants underwent subfunctionalization after the divergence of Solanum and Nicotiana, altering the genetic architecture of the NRC network in Nicotiana. Natural solanaceous NRC3 variants form three allelic groups displaying distinct compatibilities with the sensor NLR Rpi-blb2. Ancestral sequence reconstruction and analyses of natural and chimeric variants identified six key amino acids involved in sensor-helper compatibility. These residues are positioned on multiple surfaces of the resting NRC3 homodimer, collectively contributing to their compatibility with Rpi-blb2. Upon activation, Rpi-blb2-compatible NRC3 variants form membrane-associated punctate and high molecular weight complexes, and confer resistance to the late blight pathogen Phytophthora infestans. Our findings revealed how mutations in NRC alleles lead to subfunctionalization, altering sensor-helper compatibility and contributing to the increased complexity of the NRC network.


Subject(s)
NLR Proteins , Nicotiana , Plant Proteins , Nicotiana/genetics , NLR Proteins/genetics , NLR Proteins/metabolism , NLR Proteins/chemistry , Plant Proteins/genetics , Solanum/genetics , Plant Diseases/genetics , Plant Diseases/microbiology , Plant Diseases/immunology , Evolution, Molecular , Plant Immunity/genetics , Disease Resistance/genetics , Phytophthora infestans/pathogenicity , Phytophthora infestans/genetics , Alleles
2.
Int J Biol Macromol ; 277(Pt 4): 134581, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39122078

ABSTRACT

Potato late blight is the most devastating pre- and post-harvest crop disease in the world, which is widespread and difficult to control, causing serious economic losses. Cultivating resistant varieties is a major way to prevent and control late blight in a green way. However, due to the rapid evolution of pathogens, the plant resistance is losing. Therefore, mining effective and durable genes involved in disease resistance is crucial for breeding resistant varieties against late blight. In this study, we took "potato-Phytophthora infestans" as the "host-pathogen" model system to discover the potential disease resistance-related genes and elucidate their molecular functional mechanism. Through yeast two-hybridization, bimolecular fluorescence complementation, Co-immunoprecipitation assays, and gene function validation etc., we found that ribosomal protein S6 kinase 2 (StS6K2) is a key resistant protein, which is interacted with StWRKY59 transcription factor. Overexpression of StS6K2 and StWRKY59 both enhanced the plants resistance to P. infestans, and promoted the host immune response, such as ROS burst and callose deposition. In OEStWRKY59 lines, DEGs involved in secondary metabolites synthesis, plant hormone signaling transduction and plant-pathogen interaction were significantly enriched. These findings provide novel genetic resources for the breeding of resistant varieties.


Subject(s)
Disease Resistance , Phytophthora infestans , Plant Diseases , Plant Proteins , Solanum tuberosum , Transcription Factors , Gene Expression Regulation, Plant , Host-Pathogen Interactions , Phytophthora infestans/pathogenicity , Plant Diseases/microbiology , Plant Diseases/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Plants, Genetically Modified , Solanum tuberosum/microbiology , Solanum tuberosum/genetics , Solanum tuberosum/metabolism , Transcription Factors/metabolism , Transcription Factors/genetics
3.
Nat Commun ; 15(1): 6488, 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-39103347

ABSTRACT

Phytophthora infestans is a major oomycete plant pathogen, responsible for potato late blight, which led to the Irish Potato Famine from 1845-1852. Since then, potatoes resistant to this disease have been bred and deployed worldwide. Their resistance (R) genes recognize pathogen effectors responsible for virulence and then induce a plant response stopping disease progression. However, most deployed R genes are quickly overcome by the pathogen. We use targeted sequencing of effector and R genes on herbarium specimens to examine the joint evolution in both P. infestans and potato from 1845-1954. Currently relevant effectors are historically present in P. infestans, but with alternative alleles compared to modern reference genomes. The historic FAM-1 lineage has the virulent Avr1 allele and the ability to break the R1 resistance gene before breeders deployed it in potato. The FAM-1 lineage is diploid, but later, triploid US-1 lineages appear. We show that pathogen virulence genes and host resistance genes have undergone significant changes since the Famine, from both natural and artificial selection.


Subject(s)
Disease Resistance , Phytophthora infestans , Plant Diseases , Solanum tuberosum , Phytophthora infestans/genetics , Phytophthora infestans/pathogenicity , Solanum tuberosum/microbiology , Plant Diseases/microbiology , Disease Resistance/genetics , Host-Pathogen Interactions/genetics , Virulence/genetics , Famine , Evolution, Molecular , Ireland , Alleles , Phylogeny , History, 19th Century
4.
J Agric Food Chem ; 72(29): 16359-16367, 2024 Jul 24.
Article in English | MEDLINE | ID: mdl-39011851

ABSTRACT

In our screening program for natural products that are effective in controlling plant diseases, we found that the culture filtrate of Paraconiothyrium sporulosum SFC20160907-M11 effectively suppressed the development of tomato late blight disease caused by Phytophthora infestans. Using a bioassay-guided fractionation of antioomycete activity, 12 active compounds (1-12) were obtained from an ethyl acetate extract of the culture filtrate. Chemical structures of five new compounds 1-5 were determined by the extensive analyses of nuclear magnetic resonance (NMR), high resolution mass spectrometry (HRMS), and circular dichroism (CD) data. Interestingly, mycosporulonol (1) and botrallin (8) completely inhibited the growth of P. infestans at concentrations of 8 and 16 µg/mL, respectively. Furthermore, the spray treatment of 1 and 8 (500 µg/mL) successfully protected tomato seedlings against P. infestans with disease control values of 92%. Taken together, these results suggest that the culture filtrates of P. sporulosum SFC20160907-M11 and their bioactive metabolites can be used as new antioomycete agents for Phytophthora late blight control.


Subject(s)
Ascomycota , Fungicides, Industrial , Phytophthora infestans , Plant Diseases , Solanum lycopersicum , Solanum lycopersicum/microbiology , Solanum lycopersicum/chemistry , Plant Diseases/microbiology , Phytophthora infestans/drug effects , Phytophthora infestans/growth & development , Ascomycota/chemistry , Ascomycota/metabolism , Fungicides, Industrial/pharmacology , Fungicides, Industrial/chemistry , Molecular Structure , Magnetic Resonance Spectroscopy
5.
BMC Genomics ; 25(1): 710, 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-39044130

ABSTRACT

BACKGROUND: Identifying the DNA-binding specificities of transcription factors (TF) is central to understanding gene networks that regulate growth and development. Such knowledge is lacking in oomycetes, a microbial eukaryotic lineage within the stramenopile group. Oomycetes include many important plant and animal pathogens such as the potato and tomato blight agent Phytophthora infestans, which is a tractable model for studying life-stage differentiation within the group. RESULTS: Mining of the P. infestans genome identified 197 genes encoding proteins belonging to 22 TF families. Their chromosomal distribution was consistent with family expansions through unequal crossing-over, which were likely ancient since each family had similar sizes in most oomycetes. Most TFs exhibited dynamic changes in RNA levels through the P. infestans life cycle. The DNA-binding preferences of 123 proteins were assayed using protein-binding oligonucleotide microarrays, which succeeded with 73 proteins from 14 families. Binding sites predicted for representatives of the families were validated by electrophoretic mobility shift or chromatin immunoprecipitation assays. Consistent with the substantial evolutionary distance of oomycetes from traditional model organisms, only a subset of the DNA-binding preferences resembled those of human or plant orthologs. Phylogenetic analyses of the TF families within P. infestans often discriminated clades with canonical and novel DNA targets. Paralogs with similar binding preferences frequently had distinct patterns of expression suggestive of functional divergence. TFs were predicted to either drive life stage-specific expression or serve as general activators based on the representation of their binding sites within total or developmentally-regulated promoters. This projection was confirmed for one TF using synthetic and mutated promoters fused to reporter genes in vivo. CONCLUSIONS: We established a large dataset of binding specificities for P. infestans TFs, representing the first in the stramenopile group. This resource provides a basis for understanding transcriptional regulation by linking TFs with their targets, which should help delineate the molecular components of processes such as sporulation and host infection. Our work also yielded insight into TF evolution during the eukaryotic radiation, revealing both functional conservation as well as diversification across kingdoms.


Subject(s)
Evolution, Molecular , Phylogeny , Phytophthora infestans , Transcription Factors , Phytophthora infestans/genetics , Phytophthora infestans/metabolism , Transcription Factors/metabolism , Transcription Factors/genetics , Binding Sites , Protein Binding
6.
Funct Plant Biol ; 512024 Jul.
Article in English | MEDLINE | ID: mdl-39024476

ABSTRACT

Abscisic acid (ABA) regulates plant development, seed germination, and stress responses. The PYR1-like (PYL) proteins are essential for ABA signalling. However, the evolution and expression of PYL genes in potato (Solanum tuberosum ) remain poorly understood. Here, we analysed and identified 17 PYL genes in the potato genome, which were categorised into three groups based on phylogenetic analysis. These genes are distributed across nine chromosomes with predicted proteins subcellar localisation primarily in the cytoplasm. These StPYLs revealed conserved exon structures and domains among the groups. Promoter region analysis indicated hormone and stress-related elements in all StPYL s. Protein-protein interactions and microRNA networks predicted that the interactions of StPYLs are crucial components of ABA signalling, underlining their pivotal role in stress management and growth regulation in potato. Expression profiling across different tissues and under various stresses revealed their varied expression pattern. Further, we validated the expression pattern of selected StPYLs through reverse transcription quantitative PCR under drought, salt, and Phytophthora infestans stresses. This revealed consistent upregulation of StPYL6 in these stresses, while StPYL11 exhibited significant downregulation over time. Other genes showed downregulation under drought and salt stresses while upregulation under P. infestans . Overall, our results suggested the potential role of PYL genes in abiotic and biotic stresses.


Subject(s)
Gene Expression Regulation, Plant , Phylogeny , Plant Proteins , Solanum tuberosum , Stress, Physiological , Solanum tuberosum/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Stress, Physiological/genetics , Abscisic Acid/metabolism , Abscisic Acid/pharmacology , Droughts , MicroRNAs/genetics , MicroRNAs/metabolism , Phytophthora infestans/physiology , Gene Expression Profiling , Genes, Plant
7.
Phytopathology ; 114(7): 1502-1514, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39023506

ABSTRACT

Late blight, caused by the notorious pathogen Phytophthora infestans, poses a significant threat to potato (Solanum tuberosum) crops worldwide, impacting their quality as well as yield. Here, we aimed to investigate the potential use of cinnamaldehyde, carvacrol, and eugenol as control agents against P. infestans and to elucidate their underlying mechanisms of action. To determine the pathogen-inhibiting concentrations of these three plant essential oils (PEOs), a comprehensive evaluation of their effects using gradient dilution, mycelial growth rate, and spore germination methods was carried out. Cinnamaldehyde, carvacrol, and eugenol were capable of significantly inhibiting P. infestans by hindering its mycelial radial growth, zoospore release, and sporangium germination; the median effective inhibitory concentration of the three PEOs was 23.87, 8.66, and 89.65 µl/liter, respectively. Scanning electron microscopy revealed that PEOs caused the irreversible deformation of P. infestans, resulting in hyphal shrinkage, distortion, and breakage. Moreover, propidium iodide staining and extracellular conductivity measurements demonstrated that all three PEOs significantly impaired the integrity and permeability of the pathogen's cell membrane in a time- and dose-dependent manner. In vivo experiments confirmed the dose-dependent efficacy of PEOs in reducing the lesion diameter of potato late blight. Altogether, these findings provide valuable insight into the antifungal mechanisms of PEOs vis-à-vis late blight-causing P. infestans. By utilizing the inherent capabilities of these natural compounds, we could effectively limit the harmful impacts of late blight on potato crops, thereby enhancing agricultural practices and ensuring the resilience of global potato food production.


Subject(s)
Cymenes , Eugenol , Oils, Volatile , Phytophthora infestans , Plant Diseases , Solanum tuberosum , Phytophthora infestans/drug effects , Phytophthora infestans/physiology , Solanum tuberosum/microbiology , Oils, Volatile/pharmacology , Plant Diseases/microbiology , Plant Diseases/prevention & control , Eugenol/pharmacology , Cymenes/pharmacology , Monoterpenes/pharmacology , Mycelium/drug effects , Mycelium/growth & development , Plant Oils/pharmacology , Hyphae/drug effects , Hyphae/growth & development , Spores/drug effects , Spores/physiology , Acrolein/analogs & derivatives
8.
Nat Commun ; 15(1): 5224, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38890293

ABSTRACT

Continued climate change impose multiple stressors on crops, including pathogens, salt, and drought, severely impacting agricultural productivity. Innovative solutions are necessary to develop resilient crops. Here, using quantitative potato proteomics, we identify Parakletos, a thylakoid protein that contributes to disease susceptibility. We show that knockout or silencing of Parakletos enhances resistance to oomycete, fungi, bacteria, salt, and drought, whereas its overexpression reduces resistance. In response to biotic stimuli, Parakletos-overexpressing plants exhibit reduced amplitude of reactive oxygen species and Ca2+ signalling, and silencing Parakletos does the opposite. Parakletos homologues have been identified in all major crops. Consecutive years of field trials demonstrate that Parakletos deletion enhances resistance to Phytophthora infestans and increases yield. These findings demark a susceptibility gene, which can be exploited to enhance crop resilience towards abiotic and biotic stresses in a low-input agriculture.


Subject(s)
Plant Diseases , Plant Proteins , Solanum tuberosum , Stress, Physiological , Solanum tuberosum/genetics , Solanum tuberosum/microbiology , Solanum tuberosum/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Stress, Physiological/genetics , Plant Diseases/microbiology , Plant Diseases/genetics , Reactive Oxygen Species/metabolism , Disease Resistance/genetics , Gene Expression Regulation, Plant , Droughts , Phytophthora infestans , Plants, Genetically Modified , Crops, Agricultural/genetics , Crops, Agricultural/microbiology , Gene Deletion , Proteomics
9.
Commun Biol ; 7(1): 757, 2024 Jun 22.
Article in English | MEDLINE | ID: mdl-38909167

ABSTRACT

N-methyltransferase (NMT)-catalyzed methylation at the termini of nonribosomal peptides (NRPs) has rarely been reported. Here, we discover a fungal NMT LcsG for the iterative terminal N-methylation of a family of NRPs, leucinostatins. Gene deletion results suggest that LcsG is essential for leucinostatins methylation. Results from in vitro assays and HRESI-MS-MS analysis reveal the methylation sites as NH2, NHCH3 and N(CH3)2 in the C-terminus of various leucinostatins. LcsG catalysis yields new lipopeptides, some of which demonstrate effective antibiotic properties against the human pathogen Cryptococcus neoformans and the plant pathogen Phytophthora infestans. Multiple sequence alignments and site-directed mutagenesis of LcsG indicate the presence of a highly conserved SAM-binding pocket, along with two possible active site residues (D368 and D395). Molecular dynamics simulations show that the targeted N can dock between these two residues. Thus, this study suggests a method for increasing the variety of natural bioactivity of NPRs and a possible catalytic mechanism underlying the N-methylation of NRPs.


Subject(s)
Cryptococcus neoformans , Hypocreales , Methyltransferases , Methyltransferases/metabolism , Methyltransferases/genetics , Methyltransferases/chemistry , Methylation , Hypocreales/enzymology , Hypocreales/genetics , Cryptococcus neoformans/enzymology , Cryptococcus neoformans/genetics , Fungal Proteins/genetics , Fungal Proteins/metabolism , Fungal Proteins/chemistry , Molecular Dynamics Simulation , Phytophthora infestans/enzymology , Phytophthora infestans/genetics , Amino Acid Sequence , Mutagenesis, Site-Directed , Catalytic Domain , Antimicrobial Cationic Peptides
10.
Plant Cell ; 36(9): 3729-3750, 2024 Sep 03.
Article in English | MEDLINE | ID: mdl-38941447

ABSTRACT

Plants possess a robust and sophisticated innate immune system against pathogens and must balance growth with rapid pathogen detection and defense. The intracellular receptors with nucleotide-binding leucine-rich repeat (NLR) motifs recognize pathogen-derived effector proteins and thereby trigger the immune response. The expression of genes encoding NLR receptors is precisely controlled in multifaceted ways. The alternative splicing (AS) of introns in response to infection is recurrently observed but poorly understood. Here we report that the potato (Solanum tuberosum) NLR gene RB undergoes AS of its intron, resulting in 2 transcriptional isoforms, which coordinately regulate plant immunity and growth homeostasis. During normal growth, RB predominantly exists as an intron-retained isoform RB_IR, encoding a truncated protein containing only the N-terminus of the NLR. Upon late blight infection, the pathogen induces intron splicing of RB, increasing the abundance of RB_CDS, which encodes a full-length and active R protein. By deploying the RB splicing isoforms fused with a luciferase reporter system, we identified IPI-O1 (also known as Avrblb1), the RB cognate effector, as a facilitator of RB AS. IPI-O1 directly interacts with potato splicing factor StCWC15, resulting in altered localization of StCWC15 from the nucleoplasm to the nucleolus and nuclear speckles. Mutations in IPI-O1 that eliminate StCWC15 binding also disrupt StCWC15 re-localization and RB intron splicing. Thus, our study reveals that StCWC15 serves as a surveillance facilitator that senses the pathogen-secreted effector and regulates the trade-off between RB-mediated plant immunity and growth, expanding our understanding of molecular plant-microbe interactions.


Subject(s)
Alternative Splicing , Disease Resistance , Gene Expression Regulation, Plant , Homeostasis , Plant Diseases , Plant Immunity , Plant Proteins , Solanum tuberosum , Solanum tuberosum/genetics , Solanum tuberosum/microbiology , Solanum tuberosum/growth & development , Solanum tuberosum/immunology , Solanum tuberosum/metabolism , Alternative Splicing/genetics , Disease Resistance/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Plant Diseases/microbiology , Plant Diseases/immunology , Plant Diseases/genetics , Plant Immunity/genetics , Phytophthora infestans/pathogenicity , Introns/genetics
11.
Phytopathology ; 114(9): 2151-2161, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38888504

ABSTRACT

The evolution of new variants of plant pathogens is one of the biggest challenges to controlling and managing plant diseases. Of the forces driving these evolutionary processes, global migration events are particularly important for widely distributed diseases such as potato late blight, caused by the oomycete Phytophthora infestans. However, little is known about its migration routes outside North America and Europe. This work used genotypic data from population studies to elucidate the migration history originating the Colombian P. infestans population. For this purpose, a dataset of 1,706 P. infestans genotypes was recollected, representing North and South America, Europe, and Asia. Descriptive analysis and historical records from North America and Europe were used to propose three global migration hypotheses, differing on the origin of the disease (Mexico or Peru) and the hypothesis that it returned to South America from Europe. These scenarios were tested using approximate Bayesian computation. According to this analysis, the most probable scenario (posterior probability = 0.631) was the one proposing a Peruvian origin for P. infestans, an initial migration toward Colombia and Mexico, and a later event from Mexico to the United States and then to Europe and Asia, with no return to northern South America. In Colombia, the scenario considering a single migration from Peru and posterior migrations within Colombia was the most probable, with a posterior probability of 0.640. The obtained results support the hypothesis of a Peruvian origin for P. infestans followed by rare colonization events worldwide.


Subject(s)
Phytophthora infestans , Plant Diseases , Phytophthora infestans/genetics , Colombia , Plant Diseases/microbiology , Genotype , Bayes Theorem , Solanum tuberosum/microbiology , Europe , Mexico , Asia , North America
12.
J Colloid Interface Sci ; 673: 258-266, 2024 Nov.
Article in English | MEDLINE | ID: mdl-38875791

ABSTRACT

Plants exhibit rapid responses to biotic and abiotic stresses by releasing a range of volatile organic compounds (VOCs). Monitoring changes in these VOCs holds the potential for the early detection of plant diseases. This study proposes a method for identifying late blight in potatoes based on the detection of (E)-2-hexenal, one of the major VOC markers released during plant infection by Phytophthora infestans. By combining the Michael addition reaction with cysteine-mediated etching of aggregation-induced emission gold nanoclusters (Au NCs), we have developed a portable hydrogel kit for on-site detection of (E)-2-hexenal. The Michael addition reaction between (E)-2-hexenal and cysteine effectively alleviates the etching of cysteine-mediated Au NCs, leading to a distinct fluorescence color change in the Au NCs, enabling a detection limit of 0.61 ppm. Utilizing the superior loading and diffusion characteristics of the three-dimensional structure of agarose hydrogel, our sensor demonstrated exceptional performance in terms of sensitivity, selectivity, reaction time, and ease of use. Moreover, quantitative measurement of (E)-2-hexenal was made easier by using ImageJ software to transform fluorescent images from the hydrogel kit into digital data. Such method was effectively used for the early detection of potato late blight. This study presents a low-cost, portable fluorescent analytical tool, offering a new avenue for on-site detection of plant diseases.


Subject(s)
Aldehydes , Gold , Hydrogels , Metal Nanoparticles , Solanum tuberosum , Aldehydes/chemistry , Hydrogels/chemistry , Solanum tuberosum/chemistry , Gold/chemistry , Metal Nanoparticles/chemistry , Gases/analysis , Gases/chemistry , Phytophthora infestans , Plant Diseases/microbiology , Limit of Detection , Particle Size
13.
Plant Physiol ; 196(1): 479-494, 2024 Sep 02.
Article in English | MEDLINE | ID: mdl-38828881

ABSTRACT

Plants recognize a variety of external signals and induce appropriate mechanisms to increase their tolerance to biotic and abiotic stresses. Precise recognition of attacking pathogens and induction of effective resistance mechanisms are critical functions for plant survival. Some molecular patterns unique to a certain group of microbes, microbe-associated molecular patterns (MAMPs), are sensed by plant cells as nonself molecules via pattern recognition receptors. While MAMPs of bacterial and fungal origin have been identified, reports on oomycete MAMPs are relatively limited. This study aimed to identify MAMPs from an oomycete pathogen Phytophthora infestans, the causal agent of potato late blight. Using reactive oxygen species (ROS) production and phytoalexin production in potato (Solanum tuberosum) as markers, two structurally different groups of elicitors, namely ceramides and diacylglycerols, were identified. P. infestans ceramides (Pi-Cer A, B, and D) induced ROS production, while diacylglycerol (Pi-DAG A and B), containing eicosapentaenoic acid (EPA) as a substructure, induced phytoalexins production in potato. The molecular patterns in Pi-Cers and Pi-DAGs essential for defense induction were identified as 9-methyl-4,8-sphingadienine (9Me-Spd) and 5,8,11,14-tetraene-type fatty acid (5,8,11,14-TEFA), respectively. These structures are not found in plants, but in oomycetes and fungi, indicating that they are microbe molecular patterns recognized by plants. When Arabidopsis (Arabidopsis thaliana) was treated with Pi-Cer D and EPA, partially overlapping but different sets of genes were induced. Furthermore, expression of some genes is upregulated only after the simultaneous treatment with Pi-Cer D and EPA, indicating that plants combine the signals from simultaneously recognized MAMPs to adapt their defense response to pathogens.


Subject(s)
Ceramides , Phytoalexins , Phytophthora infestans , Plant Diseases , Plant Immunity , Reactive Oxygen Species , Solanum tuberosum , Phytophthora infestans/pathogenicity , Phytophthora infestans/physiology , Reactive Oxygen Species/metabolism , Solanum tuberosum/microbiology , Solanum tuberosum/genetics , Solanum tuberosum/immunology , Solanum tuberosum/drug effects , Solanum tuberosum/metabolism , Ceramides/metabolism , Plant Diseases/microbiology , Plant Diseases/immunology , Pathogen-Associated Molecular Pattern Molecules/metabolism , Diglycerides/metabolism , Sesquiterpenes/metabolism , Sesquiterpenes/pharmacology , Gene Expression Regulation, Plant , Oomycetes/pathogenicity
14.
Int J Mol Sci ; 25(10)2024 May 13.
Article in English | MEDLINE | ID: mdl-38791351

ABSTRACT

Phytophthora infestans (Mont.) de Bary, the oomycotic pathogen responsible for potato late blight, is the most devastating disease of potato production. The primary pesticides used to control oomycosis are phenyl amide fungicides, which cause environmental pollution and toxic residues harmful to both human and animal health. To address this, an antimicrobial peptide, NoPv1, has been screened to target Plasmopara viticola cellulose synthase 2 (PvCesA2) to inhibit the growth of Phytophthora infestans (P. infestans). In this study, we employed AlphaFold2 to predict the three-dimensional structure of PvCesA2 along with NoPv peptides. Subsequently, utilizing computational methods, we dissected the interaction mechanism between PvCesA2 and these peptides. Based on this analysis, we performed a saturation mutation of NoPv1 and successfully obtained the double mutants DP1 and DP2 with a higher affinity for PvCesA2. Meanwhile, dynamics simulations revealed that both DP1 and DP2 utilize a mechanism akin to the barrel-stave model for penetrating the cell membrane. Furthermore, the predicted results showed that the antimicrobial activity of DP1 was superior to that of NoPv1 without being toxic to human cells. These findings may offer insights for advancing the development of eco-friendly pesticides targeting various oomycete diseases, including late blight.


Subject(s)
Phytophthora infestans , Plant Diseases , Solanum tuberosum , Phytophthora infestans/drug effects , Solanum tuberosum/microbiology , Plant Diseases/microbiology , Antimicrobial Peptides/pharmacology , Antimicrobial Peptides/chemistry , Antimicrobial Peptides/metabolism , Molecular Dynamics Simulation , Glucosyltransferases/metabolism , Glucosyltransferases/genetics , Humans
15.
New Phytol ; 243(2): 688-704, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38769723

ABSTRACT

Potato (Solanum tuberosum) is the fourth largest food crop in the world. Late blight, caused by oomycete Phytophthora infestans, is the most devastating disease threatening potato production. Previous research has shown that StRFP1, a potato Arabidopsis Tóxicos en Levadura (ATL) family protein, positively regulates late blight resistance via its E3 ligase activity. However, the underlying mechanism is unknown. Here, we reveal that StRFP1 is associated with the plasma membrane (PM) and undergoes constitutive endocytic trafficking. Its PM localization is essential for inhibiting P. infestans colonization. Through in vivo and in vitro assays, we investigated that StRFP1 interacts with two sugar transporters StSWEET10c and StSWEET11 at the PM. Overexpression (OE) of StSWEET10c or StSWEET11 enhances P. infestans colonization. Both StSWEET10c and StSWEET11 exhibit sucrose transport ability in yeast, and OE of StSWEET10c leads to an increased sucrose content in the apoplastic fluid of potato leaves. StRFP1 ubiquitinates StSWEET10c and StSWEET11 to promote their degradation. We illustrate a novel mechanism by which a potato ATL protein enhances disease resistance by degrading susceptibility (S) factors, such as Sugars Will Eventually be Exported Transporters (SWEETs). This offers a potential strategy for improving disease resistance by utilizing host positive immune regulators to neutralize S factors.


Subject(s)
Disease Resistance , Phytophthora infestans , Plant Diseases , Plant Proteins , Solanum tuberosum , Ubiquitin-Protein Ligases , Plant Diseases/microbiology , Disease Resistance/genetics , Phytophthora infestans/pathogenicity , Solanum tuberosum/microbiology , Solanum tuberosum/genetics , Solanum tuberosum/metabolism , Plant Proteins/metabolism , Plant Proteins/genetics , Ubiquitin-Protein Ligases/metabolism , Ubiquitin-Protein Ligases/genetics , Cell Membrane/metabolism , Ubiquitination , Gene Expression Regulation, Plant , Sucrose/metabolism , Plant Leaves/metabolism , Plant Leaves/microbiology , Protein Binding , Protein Transport
16.
Phytopathology ; 114(8): 1810-1821, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38723191

ABSTRACT

The microbial oomycete pathogen Phytophthora infestans causes severe epidemics of potato late blight in crops globally. Disease management benefits from an understanding of the diversity of pathogen populations. In this study, we explore the dynamics of P. infestans populations in the late blight-potato agro-ecosystem across the Indian subcontinent. Investigations of the macroecological observations at the field level and microbial ecological principles provided insights into future pathogen behavior. We use a comprehensive simple sequence repeat allele dataset to demonstrate that an invasive clonal lineage called EU_13_A2 has dominated populations over 14 years across India, Bangladesh, and Pakistan. Increasing levels of subclonal variation were tracked over time and space, and, for the first time, populations in Asia were also compared with the source populations from Europe. Within India, a regional pathogen population structure was observed with evidence for local migration, cross-border movement between surrounding countries, and introductions via imports. There was also evidence of genetic drift and between-season transmission of more strongly pathogenic subclones with a complete displacement of some subclonal types. The limited introduction of novel genotypes and the use of resistant potato cultivars could contribute to the dominance of the 13_A2 lineage. The insights will contribute to the management of the pathogen in these key global potato production regions.


Subject(s)
Phytophthora infestans , Plant Diseases , Solanum tuberosum , India , Plant Diseases/microbiology , Solanum tuberosum/microbiology , Phytophthora infestans/genetics , Phytophthora infestans/physiology , Genetic Variation , Genotype , Bangladesh , Pakistan , Introduced Species , Alleles , Microsatellite Repeats/genetics , Population Dynamics
17.
Curr Biol ; 34(10): 2049-2065.e6, 2024 05 20.
Article in English | MEDLINE | ID: mdl-38677281

ABSTRACT

Plants rely on autophagy and membrane trafficking to tolerate stress, combat infections, and maintain cellular homeostasis. However, the molecular interplay between autophagy and membrane trafficking is poorly understood. Using an AI-assisted approach, we identified Rab3GAP-like (Rab3GAPL) as a key membrane trafficking node that controls plant autophagy negatively. Rab3GAPL suppresses autophagy by binding to ATG8, the core autophagy adaptor, and deactivating Rab8a, a small GTPase essential for autophagosome formation and defense-related secretion. Rab3GAPL reduces autophagic flux in three model plant species, suggesting that its negative regulatory role in autophagy is conserved in land plants. Beyond autophagy regulation, Rab3GAPL modulates focal immunity against the oomycete pathogen Phytophthora infestans by preventing defense-related secretion. Altogether, our results suggest that Rab3GAPL acts as a molecular rheostat to coordinate autophagic flux and defense-related secretion by restraining Rab8a-mediated trafficking. This unprecedented interplay between a RabGAP-Rab pair and ATG8 sheds new light on the intricate membrane transport mechanisms underlying plant autophagy and immunity.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Autophagy , GTPase-Activating Proteins , Plant Immunity , Autophagy/physiology , Arabidopsis/immunology , Arabidopsis/metabolism , Arabidopsis/genetics , Arabidopsis/microbiology , GTPase-Activating Proteins/metabolism , GTPase-Activating Proteins/genetics , Arabidopsis Proteins/metabolism , Arabidopsis Proteins/genetics , Autophagy-Related Protein 8 Family/metabolism , Autophagy-Related Protein 8 Family/genetics , Phytophthora infestans/physiology , Plant Diseases/microbiology , Plant Diseases/immunology , rab GTP-Binding Proteins/metabolism , rab GTP-Binding Proteins/genetics , Protein Transport
18.
Fungal Genet Biol ; 172: 103895, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38679292

ABSTRACT

Botrytis cinerea is a necrotrophic pathogen that infects across a broad range of plant hosts, including high-impact crop species. Its generalist necrotrophic behavior stems from its ability to detoxify structurally diverse phytoalexins. The current study aims to provide evidence of the ability of B. cinerea to tolerate the sesquiterpenoid phytoalexin rishitin, which is produced by potato and tomato. While the growth of potato pathogens Phytophthora infestans (late blight) and Alternaria solani (early blight) was severely inhibited by rishitin, B. cinerea was tolerant to rishitin. After incubation of rishitin with the mycelia of B. cinerea, it was metabolized to at least six oxidized forms. Structural analysis of these purified rishitin metabolites revealed a variety of oxidative metabolism including hydroxylation at C7 or C12, ketone formation at C5, and dihydroxylation at the 10,11-olefin. Six rishitin metabolites showed reduced toxicity to P. infestans and A. solani, indicating that B. cinerea has at least 5 distinct enzymatic reactions to detoxify rishitin. Four host-specialized phytopathogenic Botrytis species, namely B. elliptica, B. allii, B. squamosa, and B. tulipae also had at least a partial ability to metabolize rishitin as B. cinerea, but their metabolic capacity was significantly weaker than that of B. cinerea. These results suggest that the ability of B. cinerea to rapidly metabolize rishitin through multiple detoxification mechanisms could be critical for its pathogenicity in potato and tomato.


Subject(s)
Botrytis , Phytoalexins , Phytophthora infestans , Plant Diseases , Sesquiterpenes , Botrytis/metabolism , Botrytis/genetics , Botrytis/drug effects , Sesquiterpenes/metabolism , Plant Diseases/microbiology , Phytophthora infestans/metabolism , Phytophthora infestans/genetics , Phytophthora infestans/growth & development , Phytophthora infestans/drug effects , Solanum lycopersicum/microbiology , Inactivation, Metabolic , Alternaria/metabolism , Alternaria/genetics , Metabolic Networks and Pathways , Solanum tuberosum/microbiology
19.
Physiol Plant ; 176(2): e14293, 2024.
Article in English | MEDLINE | ID: mdl-38641970

ABSTRACT

MicroRNAs (miRNAs) are small noncoding RNAs in eukaryotes. Plant endogenous miRNAs play pivotal roles in regulating plant development and defense responses. MicroRNA394 (miR394) has been reported to regulate plant development, abiotic stresses and defense responses. Previous reports showed that miR394 responded to P. infestans inoculation in potato, indicating that miR394 may be involved in defense responses. In this study, we further investigated its role in potato defense against P. infestans. Stable expression of miR394 in tobacco and potato enhances the susceptibility to P. infestans, which is accompanied with the reduced accumulation of ROS and down-regulation of the PTI (pattern-triggered immunity) marker genes. Besides well-known target StLCR, miR394 also targets StA/N-INVE, which encodes a chloroplast Alkaline/Neutral Invertases (A/N-INVE). Both StLCR and StA/N-INVE positively regulate late blight resistance, while miR394 degrades them. Interestingly, StA/N-INVE is located in the chloroplast, indicating that miR394 may manipulate chloroplast immunity. Degradation of StA/N-INVE may affect the chloroplast function and hence lead to the compromised ROS (reactive oxygen species) burst and reduced retrograde signaling from the chloroplast to the nucleus and cytoplasm. In summary, this study provides new information that miR394 targets and degrades StA/N-INVE and StLCR, which are positive regulators, to enhance potato susceptibility to P. infestans.


Subject(s)
MicroRNAs , Phytophthora infestans , Solanum tuberosum , Solanum tuberosum/genetics , Solanum tuberosum/metabolism , Reactive Oxygen Species/metabolism , Phytophthora infestans/genetics , Phytophthora infestans/metabolism , Plants/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Plant Diseases/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Gene Expression Regulation, Plant
20.
BMC Ecol Evol ; 24(1): 36, 2024 Mar 18.
Article in English | MEDLINE | ID: mdl-38494489

ABSTRACT

BACKGROUND: Sequence variation produced by mutation provides the ultimate source of natural selection for species adaptation. Unlike nonsynonymous mutation, synonymous mutations are generally considered to be selectively neutral but accumulating evidence suggests they also contribute to species adaptation by regulating the flow of genetic information and the development of functional traits. In this study, we analysed sequence characteristics of ATP6, a housekeeping gene from 139 Phytophthora infestans isolates, and compared the fitness components including metabolic rate, temperature sensitivity, aggressiveness, and fungicide tolerance among synonymous mutations. RESULTS: We found that the housekeeping gene exhibited low genetic variation and was represented by two major synonymous mutants at similar frequency (0.496 and 0.468, respectively). The two synonymous mutants were generated by a single nucleotide substitution but differed significantly in fitness as well as temperature-mediated spatial distribution and expression. The synonymous mutant ending in AT was more common in cold regions and was more expressed at lower experimental temperature than the synonymous mutant ending in GC and vice versa. CONCLUSION: Our results are consistent with the argument that synonymous mutations can modulate the adaptive evolution of species including pathogens and have important implications for sustainable disease management, especially under climate change.


Subject(s)
Fungicides, Industrial , Phytophthora infestans , Silent Mutation , Phytophthora infestans/genetics , Mutation/genetics , Selection, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL