Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.669
Filter
1.
J Agric Food Chem ; 72(29): 16191-16203, 2024 Jul 24.
Article in English | MEDLINE | ID: mdl-38990326

ABSTRACT

Interactions between phenolic compounds and the allergen Mal d 1 are discussed to be the reason for better tolerance of apple cultivars, which are rich in polyphenols. Because Mal d 1 is susceptible to proteolytic digestion and allergenic symptoms are usually restricted to the mouth and throat area, the release of native Mal d 1 during the oral phase is of particular interest. Therefore, we studied the release of Mal d 1 under different in vitro oral digestion conditions and revealed that only 6-15% of the total Mal d 1 present in apples is released. To investigate proposed polyphenol-Mal d 1 interactions, various analytical methods, e.g., isothermal titration calorimetry, 1H-15N-HSQC NMR, and untargeted mass spectrometry, were applied. For monomeric polyphenols, only limited noncovalent interactions were observed, whereas oligomeric polyphenols and browning products caused aggregation. While covalent modifications were not detectable in apple samples, a Michael addition of epicatechin at cysteine 107 in r-Mal d 1.01 was observed.


Subject(s)
Allergens , Malus , Polyphenols , Malus/chemistry , Malus/immunology , Polyphenols/chemistry , Allergens/immunology , Allergens/chemistry , Plant Proteins/chemistry , Plant Proteins/immunology , Magnetic Resonance Spectroscopy , Fruit/chemistry , Fruit/immunology , Humans , Mass Spectrometry , Digestion , Antigens, Plant
2.
Proc Natl Acad Sci U S A ; 121(28): e2402872121, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38968126

ABSTRACT

Bioengineering of plant immune receptors has emerged as a key strategy for generating novel disease resistance traits to counteract the expanding threat of plant pathogens to global food security. However, current approaches are limited by rapid evolution of plant pathogens in the field and may lack durability when deployed. Here, we show that the rice nucleotide-binding, leucine-rich repeat (NLR) immune receptor Pik-1 can be engineered to respond to a conserved family of effectors from the multihost blast fungus pathogen Magnaporthe oryzae. We switched the effector binding and response profile of the Pik NLR from its cognate rice blast effector AVR-Pik to the host-determining factor pathogenicity toward weeping lovegrass 2 (Pwl2) by installing a putative host target, OsHIPP43, in place of the native integrated heavy metal-associated domain (generating Pikm-1OsHIPP43). This chimeric receptor also responded to other PWL alleles from diverse blast isolates. The crystal structure of the Pwl2/OsHIPP43 complex revealed a multifaceted, robust interface that cannot be easily disrupted by mutagenesis, and may therefore provide durable, broad resistance to blast isolates carrying PWL effectors in the field. Our findings highlight how the host targets of pathogen effectors can be used to bioengineer recognition specificities that have more robust properties compared to naturally evolved disease resistance genes.


Subject(s)
Fungal Proteins , NLR Proteins , Oryza , Plant Diseases , Plant Proteins , Oryza/microbiology , Oryza/immunology , Plant Diseases/microbiology , Plant Diseases/immunology , NLR Proteins/metabolism , Plant Proteins/metabolism , Plant Proteins/immunology , Plant Proteins/genetics , Fungal Proteins/metabolism , Fungal Proteins/genetics , Fungal Proteins/chemistry , Fungal Proteins/immunology , Host-Pathogen Interactions/immunology , Disease Resistance/immunology , Plant Immunity , Bioengineering/methods , Magnaporthe/immunology , Magnaporthe/genetics , Magnaporthe/metabolism , Protein Binding , Receptors, Immunologic/metabolism , Ascomycota
3.
Allergol Immunopathol (Madr) ; 52(4): 9-14, 2024.
Article in English | MEDLINE | ID: mdl-38970259

ABSTRACT

BACKGROUND: Allergy to lipid transfer proteins (LPT) is common in Mediterranean Europe, and it causes severe reactions in patients and affects multiple foods, impairing the quality of life. OBJECTIVE: This study aimed to describe the clinical and sensitization profile of patients with LTP syndrome and to determine a clinical pattern of severity. Molecular diagnosis is shown in a broad population through microarrays. MATERIAL AND METHODS: This study was performed at the LTP Allergy Consultation of the Reina Sofia Hospital in Murcia, Spain. We analyzed the patients' characteristics, reactions, cofactors, food implicated, quality of life, skin prick test to food and aeroallergens, and serologic parameters, such as total immunoglobulin E, peach LTP (Pru p 3 IgE) and immunoglobulin G4, and microarray Immuno Solid-phase Allergen Chip (ISAC). We related the severity of the reactions with other variables. RESULTS: We presented a series of 236 patients diagnosed with LTP allergy, 54.66% suffering from anaphylaxis, 36.02% from urticaria angioedema, and 9.32% from oral allergy syndrome. The most frequently implicated food was peach, producing symptoms in 70% of patients, followed by walnut in 55%, peanut in 45%, hazelnut in 44%, and apple in 38% patients. Regarding the food that provoked anaphylaxis, walnut was the most frequent instigator, along with peach, peanut, hazelnut, almond, sunflower seed, and apple. According to the severity of LPT reaction, we did not discover significant differences in gender, age, food group involved, and serologic parameters. We found differences in the presence of cofactors, with 48.84% of cofactors in patients with anaphylaxis, compared to 27.1% in patients without anaphylaxis and in family allergy background (P < 0.0001). CONCLUSION: In our series of patients, 54% presented anaphylaxis, and the foods that most frequently produced symptoms were peaches, apples, and nuts. Cofactors and family allergy backgrounds were associated with the severity of LPT reaction.


Subject(s)
Allergens , Antigens, Plant , Food Hypersensitivity , Immunoglobulin E , Skin Tests , Humans , Male , Female , Food Hypersensitivity/immunology , Food Hypersensitivity/diagnosis , Food Hypersensitivity/epidemiology , Immunoglobulin E/blood , Immunoglobulin E/immunology , Adult , Middle Aged , Antigens, Plant/immunology , Allergens/immunology , Spain/epidemiology , Adolescent , Plant Proteins/immunology , Young Adult , Carrier Proteins/immunology , Child , Immunoglobulin G/blood , Immunoglobulin G/immunology , Aged , Quality of Life , Anaphylaxis/immunology , Anaphylaxis/diagnosis , Anaphylaxis/etiology , Child, Preschool
4.
Int J Mol Sci ; 25(11)2024 May 26.
Article in English | MEDLINE | ID: mdl-38891986

ABSTRACT

Food allergies mediated by specific IgE (sIgE) have a significant socioeconomic impact on society. Evaluating the IgE cross-reactivity between allergens from different allergen sources can enable the better management of these potentially life-threatening adverse reactions to food proteins and enhance food safety. A novel banana fruit allergen, S-adenosyl-L-homocysteine hydrolase (SAHH), has been recently identified and its recombinant homolog was heterologously overproduced in E. coli. In this study, we performed a search in the NCBI (National Center for Biotechnology Information) for SAHH homologs in ryegrass, latex, and kiwifruit, all of which are commonly associated with pollen-latex-fruit syndrome. In addition, Western immunoblot analysis was utilized to identify the cross-reactive IgE to banana SAHH in the sera of patients with a latex allergy, kiwifruit allergy, and ryegrass allergy. ClustalOmega analysis showed more than 92% amino acid sequence identity among the banana SAHH homologs in ryegrass, latex, and kiwifruit. In addition to five B-cell epitopes, in silico analysis predicted eleven T-cell epitopes in banana SAHH, seventeen in kiwifruit SAHH, twelve in ryegrass SAHH, and eight in latex SAHH, which were related to the seven-allele HLA reference set (HLA-DRB1*03:01, HLA-DRB1*07:01, HLA-DRB1*15:01, HLA-DRB3*01:01, HLA-DRB3*02:02, HLA-DRB4*01:01, HLA-DRB5*01:01). Four T-cell epitopes were identical in banana and kiwifruit SAHH (positions 328, 278, 142, 341), as well as banana and ryegrass SAHH (positions 278, 142, 96, and 341). All four SAHHs shared two T-cell epitopes (positions 278 and 341). In line with the high amino acid sequence identity and B-cell epitope homology among the analyzed proteins, the cross-reactive IgE to banana SAHH was detected in three of three latex-allergic patients, five of six ryegrass-allergic patients, and two of three kiwifruit-allergic patients. Although banana SAHH has only been studied in a small group of allergic individuals, it is a novel cross-reactive food allergen that should be considered when testing for pollen-latex-fruit syndrome.


Subject(s)
Actinidia , Allergens , Cross Reactions , Food Hypersensitivity , Immunoglobulin E , Latex , Musa , Humans , Cross Reactions/immunology , Food Hypersensitivity/immunology , Allergens/immunology , Allergens/genetics , Musa/immunology , Musa/genetics , Immunoglobulin E/immunology , Actinidia/immunology , Female , Latex/immunology , Male , Plant Proteins/immunology , Plant Proteins/genetics , Adult , Antigens, Plant/immunology , Antigens, Plant/genetics , Amino Acid Sequence , Epitopes, T-Lymphocyte/immunology , Middle Aged , Adolescent , Child , Young Adult
5.
Front Immunol ; 15: 1379833, 2024.
Article in English | MEDLINE | ID: mdl-38911871

ABSTRACT

Pollen from Salsola kali, i.e., saltwort, Russian thistle, is a major allergen source in the coastal regions of southern Europe, in Turkey, Central Asia, and Iran. S. kali-allergic patients mainly suffer from hay-fever (i.e., rhinitis and conjunctivitis), asthma, and allergic skin symptoms. The aim of this study was to investigate the importance of individual S. kali allergen molecules. Sal k 1, Sal k 2, Sal k 3, Sal k 4, Sal k 5, and Sal k 6 were expressed in Escherichia coli as recombinant proteins containing a C-terminal hexahistidine tag and purified by nickel affinity chromatography. The purity of the recombinant allergens was analyzed by SDS-PAGE. Their molecular weight was determined by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry, and their fold and secondary structure were studied by circular dichroism (CD) spectroscopy. Sera from clinically well-characterized S. kali-allergic patients were used for IgE reactivity and basophil activation experiments. S. kali allergen-specific IgE levels and IgE levels specific for the highly IgE cross-reactive profilin and the calcium-binding allergen from timothy grass pollen, Phl p 12 and Phl p 7, respectively, were measured by ImmunoCAP. The allergenic activity of natural S. kali pollen allergens was studied in basophil activation experiments. Recombinant S. kali allergens were folded when studied by CD analysis. The sum of recombinant allergen-specific IgE levels and allergen-extract-specific IgE levels was highly correlated. Sal k 1 and profilin, reactive with IgE from 64% and 49% of patients, respectively, were the most important allergens, whereas the other S. kali allergens were less frequently recognized. Specific IgE levels were highest for profilin. Of note, 37% of patients who were negative for Sal k 1 showed IgE reactivity to Phl p 12, emphasizing the importance of the ubiquitous cytoskeletal actin-binding protein, profilin, for the diagnosis of IgE sensitization in S. kali-allergic patients. rPhl p 12 and rSal k 4 showed equivalent IgE reactivity, and the clinical importance of profilin was underlined by the fact that profilin-monosensitized patients suffered from symptoms of respiratory allergy to saltwort. Accordingly, profilin should be included in the panel of allergen molecules for diagnosis and in molecular allergy vaccines for the treatment and prevention of S. kali allergy.


Subject(s)
Allergens , Cross Reactions , Immunoglobulin E , Pollen , Profilins , Salsola , Humans , Profilins/immunology , Profilins/chemistry , Immunoglobulin E/immunology , Allergens/immunology , Allergens/genetics , Salsola/immunology , Female , Pollen/immunology , Male , Cross Reactions/immunology , Adult , Recombinant Proteins/immunology , Rhinitis, Allergic, Seasonal/immunology , Middle Aged , Basophils/immunology , Basophils/metabolism , Antigens, Plant/immunology , Antigens, Plant/genetics , Young Adult , Adolescent , Plant Proteins/immunology , Plant Proteins/genetics
6.
Arerugi ; 73(4): 347-352, 2024.
Article in Japanese | MEDLINE | ID: mdl-38880634

ABSTRACT

Gibberellin-regulated protein (GRP) is a newly discovered allergen in systemic fruit allergies. The kind of fruits which cause allergy is extensive as GRP is universally included in plants. Two children with GRP allergy were reported. Case 1: A 6-year-old boy experienced anaphylaxis while running after school lunch, which included canned peaches. A skin prick test (SPT) and blood examination suggested that he had peach GRP allergy. Six months and three years later, he experienced a similar episode after eating apple and citrus flesh, respectively. Case 2: An 11-year-old boy experienced anaphylaxis while running after consuming canned peaches during school lunch. A SPT implied that he had peach GRP allergy. However, a similar episode occurred after eating strawberry flesh 18 months later.Patients with GRP allergy often have one or more allergies to fruits other than peaches, as in these cases, and relevant fruits differ depending on the case. Particularly, clinicians should recognize that apple and citrus fruits are frequently included in school lunches as fruit flesh and as flavoring or seasoning in ready-made sauces or dressings. Therefore, an appropriate removal strategy should be considered in school lunches depending on each case of GRP allergy.


Subject(s)
Food Hypersensitivity , Fruit , Child , Male , Humans , Food Hypersensitivity/immunology , Fruit/immunology , Schools , Plant Proteins/immunology , Lunch , Allergens/immunology , Skin Tests
7.
Int J Mol Sci ; 25(12)2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38928218

ABSTRACT

Pollen from common ragweed is an important allergen source worldwide and especially in western and southern Romania. More than 100 million patients suffer from symptoms of respiratory allergy (e.g., rhinitis, asthma) to ragweed pollen. Among the eleven characterized allergens, Amb a 6 is a non-specific lipid transfer protein (nsLTP). nsLTPs are structurally stable proteins in pollen and food from different unrelated plants capable of inducing severe reactions. The goal of this study was to produce Amb a 6 as a recombinant and structurally folded protein (rAmb a 6) and to characterize its physicochemical and immunological features. rAmb a 6 was expressed in Spodoptera frugiperda Sf9 cells as a secreted protein and characterized by mass spectrometry and circular dichroism (CD) spectroscopy regarding molecular mass and fold, respectively. The IgE-binding frequency towards the purified protein was evaluated using sera from 150 clinically well-characterized ragweed-allergic patients. The allergenic activities of rAmb a 6 and the nsLTP from the weed Parietaria judaica (Par j 2) were evaluated in basophil activation assays. rAmb a 6-specific IgE reactivity was associated with clinical features. Pure rAmb a 6 was obtained by insect cell expression. Its deduced molecular weight corresponded to that determined by mass spectrometry (i.e., 10,963 Da). rAmb a 6 formed oligomers as determined by SDS-PAGE under non-reducing conditions. According to multiple sequence comparisons, Amb a 6 was a distinct nsLTP with less than 40% sequence identity to currently known plant nsLTP allergens, except for nsLTP from Helianthus (i.e., 52%). rAmb a 6 is an important ragweed allergen recognized by 30% of ragweed pollen allergic patients. For certain patients, rAmb a 6-specific IgE levels were higher than those specific for the major ragweed allergen Amb a 1 and analysis also showed a higher allergenic activity in the basophil activation test. rAmb a 6-positive patients suffered mainly from respiratory symptoms. The assumption that Amb a 6 is a source-specific ragweed allergen is supported by the finding that none of the patients showing rAmb a 6-induced basophil activation reacted with Par j 2 and only one rAmb a 6-sensitized patient had a history of plant food allergy. Immunization of rabbits with rAmb a 6 induced IgG antibodies which strongly inhibited IgE binding to rAmb a 6. Our results demonstrate that Amb a 6 is an important source-specific ragweed pollen allergen that should be considered for diagnosis and allergen-specific immunotherapy of ragweed pollen allergy.


Subject(s)
Allergens , Antigens, Plant , Carrier Proteins , Immunoglobulin E , Humans , Allergens/immunology , Immunoglobulin E/immunology , Antigens, Plant/immunology , Antigens, Plant/chemistry , Animals , Carrier Proteins/immunology , Carrier Proteins/metabolism , Plant Proteins/immunology , Plant Proteins/chemistry , Female , Rhinitis, Allergic, Seasonal/immunology , Male , Adult , Ambrosia/immunology , Spodoptera/immunology , Recombinant Proteins/immunology , Amino Acid Sequence , Sf9 Cells , Middle Aged , Plant Extracts
8.
Microbiol Res ; 286: 127789, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38870619

ABSTRACT

Plants have developed intricate immune mechanisms to impede Phytophthora colonization. In response, Phytophthora secretes RxLR effector proteins that disrupt plant defense and promote infection. The specific molecular interactions through which Phytophthora RxLR effectors undermine plant immunity, however, remain inadequately defined. In this study, we delineate the role of the nuclear-localized RxLR effector PcAvh87, which is pivotal for the full virulence of Phytophthora cinnamomi. Gene expression analysis indicates that PcAvh87 expression is significantly upregulated during the initial infection stages, interacting with the immune responses triggered by the elicitin protein INF1 and pro-apoptotic protein BAX. Utilizing PEG/CaCl2-mediated protoplast transformation and CRISPR/Cas9-mediated gene editing, we generated PcAvh87 knockout mutants, which demonstrated compromised hyphal growth, sporangium development, and zoospore release, along with a marked reduction in pathogenicity. This underscores PcAvh87's crucial role as a virulence determinant. Notably, PcAvh87, conserved across the Phytophthora genus, was found to modulate the activity of plant immune protein 113, thereby attenuating plant immune responses. This implies that the PcAvh87-mediated regulatory mechanism could be a common strategy in Phytophthora species to manipulate plant immunity. Our findings highlight the multifaceted roles of PcAvh87 in promoting P. cinnamomi infection, including its involvement in sporangia production, mycelial growth, and the targeting of plant immune proteins to enhance pathogen virulence.


Subject(s)
Cell Death , Phytophthora , Plant Diseases , Plant Immunity , Phytophthora/pathogenicity , Phytophthora/genetics , Plant Diseases/microbiology , Plant Diseases/immunology , Virulence , Virulence Factors/genetics , Cell Nucleus/metabolism , Host-Pathogen Interactions , Plant Proteins/genetics , Plant Proteins/metabolism , Plant Proteins/immunology , Nicotiana/microbiology , Nicotiana/immunology , Hyphae/genetics , Hyphae/growth & development , Hyphae/immunology
9.
J Agric Food Chem ; 72(26): 15040-15052, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38906536

ABSTRACT

Wheat species with various ploidy levels may be different regarding their immunoreactive potential in celiac disease (CD), but a comprehensive comparison of peptide sequences with known epitopes is missing. Thus, we used an untargeted liquid chromatography tandem mass spectrometry method to analyze the content of peptides with CD-active epitope in the five wheat species common wheat, spelt, durum wheat, emmer, and einkorn. In total, 494 peptides with CD-active epitope were identified. Considering the average of the eight cultivars of each species, spelt contained the highest number of different peptides with CD-active epitope (193 ± 12, mean ± SD). Einkorn showed the smallest variability of peptides (63 ± 4) but higher amounts of certain peptides compared to the other species. The wheat species differ in the presence and distribution of CD-active epitopes; hence, the entirety of peptides with CD-active epitope is crucial for the assessment of their immunoreactive potential.


Subject(s)
Celiac Disease , Epitopes , Plant Proteins , Proteomics , Triticum , Celiac Disease/immunology , Triticum/chemistry , Triticum/immunology , Epitopes/immunology , Epitopes/chemistry , Plant Proteins/immunology , Plant Proteins/chemistry , Plant Proteins/genetics , Humans , Tandem Mass Spectrometry , Peptides/immunology , Peptides/chemistry
10.
Nat Commun ; 15(1): 5102, 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38877009

ABSTRACT

Tomato (Solanum lycopersicum) is one of the world's most important food crops, and as such, its production needs to be protected from infectious diseases that can significantly reduce yield and quality. Here, we survey the effector-triggered immunity (ETI) landscape of tomato against the bacterial pathogen Pseudomonas syringae. We perform comprehensive ETI screens in five cultivated tomato varieties and two wild relatives, as well as an immunodiversity screen on a collection of 149 tomato varieties that includes both wild and cultivated varieties. The screens reveal a tomato ETI landscape that is more limited than what was previously found in the model plant Arabidopsis thaliana. We also demonstrate that ETI eliciting effectors can protect tomato against P. syringae infection when the effector is delivered by a non-virulent strain either prior to or simultaneously with a virulent strain. Overall, our findings provide a snapshot of the ETI landscape of tomatoes and demonstrate that ETI can be used as a biocontrol treatment to protect crop plants.


Subject(s)
Plant Diseases , Plant Immunity , Pseudomonas syringae , Solanum lycopersicum , Solanum lycopersicum/microbiology , Solanum lycopersicum/immunology , Pseudomonas syringae/immunology , Pseudomonas syringae/pathogenicity , Plant Diseases/microbiology , Plant Diseases/immunology , Arabidopsis/immunology , Arabidopsis/microbiology , Plant Proteins/immunology , Virulence , Gene Expression Regulation, Plant , Bacterial Proteins/metabolism , Bacterial Proteins/immunology
11.
J Agric Food Chem ; 72(23): 13205-13216, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38809782

ABSTRACT

Calcium (Ca2+) is a second messenger in various physiological processes within plants. The significance of the Ca2+/H+ exchanger (CAX) has been established in facilitating Ca2+ transport in plants; however, disease resistance functions of the CAX gene remain elusive. In this study, we conducted sequence characterization and expression analysis for a sugarcane CAX gene, ScCAX4 (GenBank Accession Number: MW206380). In order to further investigate the disease resistance functions, this gene was then transiently overexpressed in Nicotiana benthamiana leaves, which were subsequently inoculated with Fusarium solani var. coeruleum. Results showed that ScCAX4 overexpression increased the susceptibility of N. benthamiana to pathogen infection by regulating the expression of genes related to salicylic acid (SA), jasmonic acid (JA), and ethylene (ET) pathways, suggesting its negative role in disease resistance. Furthermore, we genetically transformed the ScCAX4 gene into N. benthamiana and obtained three positive T2 generation lines. Interestingly, the symptomatology of transgenic plants was consistent with that of transient overexpression after pathogen inoculation. Notably, the JA content in transgenic overexpression lines was significantly higher than that in the wild-type. RNA-seq revealed that ScCAX4 could mediate multiple signaling pathways, and the JA signaling pathway played a key role in modulating disease resistance. Finally, a regulatory model was depicted for the increased susceptibility to pathogen infection conferred by the ScCAX4 gene. This study provides genetic resources for sugarcane molecular breeding and the research direction for plant CAX genes.


Subject(s)
Cyclopentanes , Disease Resistance , Fusarium , Gene Expression Regulation, Plant , Oxylipins , Plant Diseases , Plant Proteins , Saccharum , Salicylic Acid , Plant Diseases/microbiology , Plant Diseases/genetics , Disease Resistance/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Plant Proteins/immunology , Saccharum/genetics , Saccharum/microbiology , Saccharum/metabolism , Saccharum/immunology , Fusarium/physiology , Oxylipins/metabolism , Salicylic Acid/metabolism , Cyclopentanes/metabolism , Plants, Genetically Modified/genetics , Plants, Genetically Modified/microbiology , Plants, Genetically Modified/immunology , Plants, Genetically Modified/metabolism , Nicotiana/genetics , Nicotiana/microbiology , Nicotiana/metabolism , Nicotiana/immunology , Ethylenes/metabolism
12.
Nature ; 629(8014): 1158-1164, 2024 May.
Article in English | MEDLINE | ID: mdl-38750355

ABSTRACT

Plant pattern-recognition receptors perceive microorganism-associated molecular patterns to activate immune signalling1,2. Activation of the pattern-recognition receptor kinase CERK1 is essential for immunity, but tight inhibition of receptor kinases in the absence of pathogen is crucial to prevent autoimmunity3,4. Here we find that the U-box ubiquitin E3 ligase OsCIE1 acts as a molecular brake to inhibit OsCERK1 in rice. During homeostasis, OsCIE1 ubiquitinates OsCERK1, reducing its kinase activity. In the presence of the microorganism-associated molecular pattern chitin, active OsCERK1 phosphorylates OsCIE1 and blocks its E3 ligase activity, thus releasing the brake and promoting immunity. Phosphorylation of a serine within the U-box of OsCIE1 prevents its interaction with E2 ubiquitin-conjugating enzymes and serves as a phosphorylation switch. This phosphorylation site is conserved in E3 ligases from plants to animals. Our work identifies a ligand-released brake that enables dynamic immune regulation.


Subject(s)
Oryza , Plant Immunity , Plant Proteins , Ubiquitin , Animals , Chitin/metabolism , Homeostasis , Ligands , Oryza/enzymology , Oryza/immunology , Oryza/metabolism , Oryza/microbiology , Phosphorylation , Plant Proteins/antagonists & inhibitors , Plant Proteins/immunology , Plant Proteins/metabolism , Ubiquitin/metabolism , Ubiquitin-Conjugating Enzymes/metabolism , Ubiquitin-Protein Ligases/antagonists & inhibitors , Ubiquitin-Protein Ligases/chemistry , Ubiquitin-Protein Ligases/metabolism , Ubiquitination , Phosphoserine/metabolism , Conserved Sequence
13.
J Agric Food Chem ; 72(22): 12398-12414, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38797944

ABSTRACT

Plant-based peptides (PBPs) benefit functional food development and environmental sustainability. Proteolysis remains the primary method of peptide production because it is a mild and nontoxic technique. However, potential safety concerns still emanate from toxic or allergenic sequences, amino acid racemization, iso-peptide bond formation, Maillard reaction, dose usage, and frequency. The main aim of this review is to investigate the techno-functions of PBPs in food matrices, as well as their safety concerns. The distinctive characteristics of PBPs exhibit their techno-functions for improving food quality and functionality by contributing to several crucial food formulations and processing. The techno-functions of PBPs include solubility, hydrophobicity, bitterness, foaming, oil-binding, and water-holding capacities, which subsequently affect food matrices. The safety and quality of foodstuff containing PBPs depend on the proper source of plant proteins, the selection of processing approaches, and compliance with legal regulations for allergen labeling and safety evaluations. The safety concerns in allergenicity and toxicity were discussed. The conclusion is that food technologists must apply safe limits and consider potential allergenic components generated during the development of food products with PBPs. Therefore, functional food products containing PBPs can be a promising strategy to provide consumers with wholesome health benefits.


Subject(s)
Food Safety , Peptides , Plant Proteins , Peptides/chemistry , Plant Proteins/chemistry , Plant Proteins/immunology , Humans , Animals , Allergens/chemistry , Allergens/immunology , Food Handling , Functional Food
14.
Int J Mol Sci ; 25(10)2024 May 09.
Article in English | MEDLINE | ID: mdl-38791214

ABSTRACT

Common ragweed pollen allergy has become a health burden worldwide. One of the major allergens in ragweed allergy is Amb a 1, which is responsible for over 90% of the IgE response in ragweed-allergic patients. The major allergen isoform Amb a 1.01 is the most allergenic isoform in ragweed pollen. So far, no recombinant Amb a 1.01 with similar allergenic properties to its natural counterpart (nAmb a 1.01) has been produced. Hence, this study aimed to produce a recombinant Amb a 1.01 with similar properties to the natural isoform for improved ragweed allergy management. Amb a 1.01 was expressed in insect cells using a codon-optimized DNA construct with a removable N-terminal His-Tag (rAmb a 1.01). The recombinant protein was purified by affinity chromatography and physicochemically characterized. The rAmb a 1.01 was compared to nAmb a 1.01 in terms of the IgE binding (enzyme-linked immunosorbent assay (ELISA), immunoblot) and allergenic activity (mediator release assay) in well-characterized ragweed-allergic patients. The rAmb a 1.01 exhibited similar IgE reactivity to nAmb a 1.01 in different IgE-binding assays (i.e., IgE immunoblot, ELISA, quantitative ImmunoCAP inhibition measurements). Furthermore, the rAmb a 1.01 showed comparable dose-dependent allergenic activity to nAmb a 1.01 regarding basophil activation. Overall, the results showed the successful expression of an rAmb a 1.01 with comparable characteristics to the corresponding natural isoform. Our findings provide the basis for an improvement in ragweed allergy research, diagnosis, and immunotherapy.


Subject(s)
Allergens , Ambrosia , Antigens, Plant , Immunoglobulin E , Recombinant Proteins , Humans , Antigens, Plant/immunology , Antigens, Plant/genetics , Antigens, Plant/chemistry , Immunoglobulin E/immunology , Animals , Allergens/immunology , Allergens/genetics , Ambrosia/immunology , Recombinant Proteins/immunology , Recombinant Proteins/genetics , Female , Adult , Plant Proteins/immunology , Plant Proteins/genetics , Plant Proteins/chemistry , Rhinitis, Allergic, Seasonal/immunology , Male , Middle Aged , Plant Extracts/chemistry
15.
J Agric Food Chem ; 72(20): 11561-11576, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38739709

ABSTRACT

The aim of this study is to validate the activity of hazelnut (Corylus avellana L.)-derived immunoactive peptides inhibiting the main protease (Mpro) of SARS-CoV-2 and further unveil their interaction mechanism using in vitro assays, molecular dynamics (MD) simulations, and binding free energy calculations. In general, the enzymatic hydrolysis components, especially molecular weight < 3 kDa, possess good immune activity as measured by the proliferation ability of mouse splenic lymphocytes and phagocytic activity of mouse peritoneal macrophages. Over 866 unique peptide sequences were isolated, purified, and then identified by nanohigh-performance liquid chromatography/tandem mass spectrometry (NANO-HPLC-MS/MS) from hazelnut protein hydrolysates, but Trp-Trp-Asn-Leu-Asn (WWNLN) and Trp-Ala-Val-Leu-Lys (WAVLK) in particular are found to increase the cell viability and phagocytic capacity of RAW264.7 macrophages as well as promote the secretion of the cytokines nitric oxide (NO), tumor necrosis factor-α (TNF-α), and interleukin-1ß (IL-1ß). Fluorescence resonance energy transfer assay elucidated that WWNLN and WAVLK exhibit excellent inhibitory potency against Mpro, with IC50 values of 6.695 and 16.750 µM, respectively. Classical all-atom MD simulations show that hydrogen bonds play a pivotal role in stabilizing the complex conformation and protein-peptide interaction. Molecular Mechanics/Generalized Born Surface Area (MM/GBSA) calculation indicates that WWNLN has a lower binding free energy with Mpro than WAVLK. Furthermore, adsorption, distribution, metabolism, excretion, and toxicity (ADMET) predictions illustrate favorable drug-likeness and pharmacokinetic properties of WWNLN compared to WAVLK. This study provides a new understanding of the immunomodulatory activity of hazelnut hydrolysates and sheds light on peptide inhibitors targeting Mpro.


Subject(s)
Corylus , Peptides , Animals , Mice , Coronavirus 3C Proteases/chemistry , Coronavirus 3C Proteases/antagonists & inhibitors , Coronavirus 3C Proteases/metabolism , Corylus/chemistry , Macrophages/drug effects , Macrophages/immunology , Molecular Dynamics Simulation , Peptides/chemistry , Peptides/pharmacology , Plant Proteins/chemistry , Plant Proteins/pharmacology , Plant Proteins/immunology , Protease Inhibitors/pharmacology , Protease Inhibitors/chemistry , RAW 264.7 Cells , SARS-CoV-2/drug effects , SARS-CoV-2/immunology , SARS-CoV-2/chemistry , Vero Cells
16.
J Agric Food Chem ; 72(20): 11682-11693, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38739764

ABSTRACT

Phytophthora blight of pepper, which is caused by the notorious oomycete pathogen Phytophthora capsici, is a serious disease in global pepper production regions. Our previous study had identified two WRKY transcription factors (TFs), CaWRKY01-10 and CaWRKY08-4, which are prominent modulators in the resistant pepper line CM334 against P. capsici infection. However, their functional mechanisms and underlying signaling networks remain unknown. Herein, we determined that CaWRKY01-10 and CaWRKY08-4 are localized in plant nuclei. Transient overexpression assays indicated that both CaWRKY01-10 and CaWRKY08-4 act as positive regulators in pepper resistance to P. capsici. Besides, the stable overexpression of CaWRKY01-10 and CaWRKY08-4 in transgenic Nicotiana benthamiana plants also significantly enhanced the resistance to P. capsici. Using comprehensive approaches including RNA-seq, CUT&RUN-qPCR, and dual-luciferase reporter assays, we revealed that overexpression of CaWRKY01-10 and CaWRKY08-4 can activate the expressions of the same four Capsicum annuum defense-related genes (one PR1, two PR4, and one pathogen-related gene) by directly binding to their promoters. However, we did not observe protein-protein interactions and transcriptional amplification/inhibition effects of their shared target genes when coexpressing these two WRKY TFs. In conclusion, these data suggest that both of the resistant line specific upregulated WRKY TFs (CaWRKY01-10 and CaWRKY08-4) can confer pepper's resistance to P. capsici infection by directly activating a cluster of defense-related genes and are potentially useful for genetic improvement against Phytophthora blight of pepper and other crops.


Subject(s)
Capsicum , Disease Resistance , Gene Expression Regulation, Plant , Phytophthora , Plant Diseases , Plant Proteins , Transcription Factors , Phytophthora/physiology , Plant Diseases/microbiology , Plant Diseases/genetics , Plant Diseases/immunology , Capsicum/genetics , Capsicum/microbiology , Capsicum/immunology , Disease Resistance/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Plant Proteins/immunology , Transcription Factors/genetics , Transcription Factors/metabolism , Plants, Genetically Modified/genetics , Plants, Genetically Modified/microbiology , Plants, Genetically Modified/immunology
17.
Int J Mol Sci ; 25(9)2024 May 02.
Article in English | MEDLINE | ID: mdl-38732184

ABSTRACT

Today, allergies have become a serious problem. PR-10 proteins are clinically relevant allergens that have the ability to bind hydrophobic ligands, which can significantly increase their allergenicity potential. It has been recently shown that not only the birch pollen allergen Bet v 1 but also the alder pollen allergen Aln g 1, might act as a true sensitizer of the immune system. The current investigation is aimed at the further study of the allergenic and structural features of Aln g 1. By using qPCR, we showed that Aln g 1 was able to upregulate alarmins in epithelial cells, playing an important role in sensitization. With the use of CD-spectroscopy and ELISA assays with the sera of allergic patients, we demonstrated that Aln g 1 did not completely restore its structure after thermal denaturation, which led to a decrease in its IgE-binding capacity. Using site-directed mutagenesis, we revealed that the replacement of two residues (Asp27 and Leu30) in the structure of Aln g 1 led to a decrease in its ability to bind to both IgE from sera of allergic patients and lipid ligands. The obtained data open a prospect for the development of hypoallergenic variants of the major alder allergen Aln g 1 for allergen-specific immunotherapy.


Subject(s)
Allergens , Antigens, Plant , Immunoglobulin E , Plant Proteins , Pollen , Humans , Pollen/immunology , Pollen/chemistry , Allergens/immunology , Allergens/chemistry , Antigens, Plant/immunology , Antigens, Plant/chemistry , Immunoglobulin E/immunology , Plant Proteins/immunology , Plant Proteins/chemistry , Alnus/immunology , Alnus/chemistry
18.
Pediatr Allergy Immunol ; 35(5): e14146, 2024 May.
Article in English | MEDLINE | ID: mdl-38783409

ABSTRACT

BACKGROUND: Oral immunotherapy (OIT) is an increasingly acceptable therapeutic option for peanut-allergic (PA) children, despite significant side effects. Major peanut allergenic proteins are heat-resistant and are not rendered hypoallergenic after baking or cooking. Lyophilized peanut protein-MH (LPP-MH) is a novel composition from developing peanuts, enabling cooking-induced reduction in allergenicity. We aimed to explore the safety and efficacy of OIT, with extensively heated and baked (EHEB) LPP-MH in PA children. METHODS: In a single-arm, single-center, pilot study, PA children with a single highest tolerated dose of <100 mg peanut protein were placed on a 40-week OIT protocol with 300 mg daily of heat-treated LPP-MH. A repeat open peanut food challenge was performed after 40 weeks of treatment and at a 6-12 months of follow-up visit. RESULTS: Thirty-three children with PA were enrolled, with a mean cumulative tolerated dose (MCTD) of 71.2 mg PP (95% CI 45-100 mg). After 40 weeks, 32/33 patients were able to consume more than 300 mg of natural PP, with MCTD of 1709 mg (CI 365-3675 mg). There were no severe allergic reactions requiring epinephrine, during any of the observed LPP-MH challenges or any treatment related doses at home. After 6-12 months on daily maintenance, the MCTD was 8821 mg (95% CI 1930-13,500 mg). This enabled most children age-appropriate dietary inclusion of peanuts. CONCLUSION: An OIT protocol with heat-treated LPP-MH, a novel composition from developing peanuts, seems a potentially safe and efficacious OIT modality for PA children, enabling the introduction of dietary levels of peanut proteins in highly allergic PA children. Validation in randomized controlled studies is mandated.


Subject(s)
Allergens , Arachis , Cooking , Desensitization, Immunologic , Peanut Hypersensitivity , Humans , Peanut Hypersensitivity/therapy , Peanut Hypersensitivity/immunology , Arachis/immunology , Desensitization, Immunologic/methods , Male , Child , Female , Administration, Oral , Pilot Projects , Allergens/immunology , Allergens/administration & dosage , Child, Preschool , Hot Temperature , Treatment Outcome , Adolescent , Plant Proteins/immunology , Plant Proteins/administration & dosage
19.
Food Funct ; 15(12): 6488-6501, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38804660

ABSTRACT

Mustard seeds belong to the food category of mandatory labelling due to the severe reactions they can trigger in allergic patients. However, the mechanisms underlying allergic sensitization to mustard seeds are poorly understood. The aim of this work is to study type 2 immune activation induced by the mustard seed major allergen Sin a1 via the intestinal mucosa, employing an in vitro model mimicking allergen exposure via the intestinal epithelial cells (IECs). Sin a1 was isolated from the total protein extract and exposed to IEC, monocyte derived dendritic cells (DCs) or IEC/DC co-cultures. A system of consecutive co-cultures was employed to study the generic capacity of Sin a1 to induce type 2 activation leading to sensitization: IEC/DC, DC/T-cell, T/B-cell and stem cell derived mast cells (MCs) derived from healthy donors. Immune profiles were determined by ELISA and flow cytometry. Sin a1 activated IEC and induced type-2 cytokine secretion in IEC/DC co-culture or DC alone (IL-15, IL-25 and TSLP), and primed DC induced type 2 T-cell skewing. IgG secretion in the T-cell/B-cell phase was enhanced in the presence of Sin a1 in the first stages of the co-culture. Anti-IgE did not induce degranulation but promoted IL-13 and IL-4 release by MC primed with the supernatant from B-cells co-cultured with Sin a1-IEC/DC or -DC primed T-cells. Sin a1 enhanced the release of type-2 inflammatory mediators by epithelial and dendritic cells; the latter instructed generic type-2 responses in T-cells that resulted in B-cell activation, and finally MC activation upon anti-IgE exposure. This indicates that via activation of IEC and/or DC, mustard seed allergen Sin a1 is capable of driving type 2 immunity which may lead to allergic sensitization.


Subject(s)
Allergens , Dendritic Cells , Epithelial Cells , Mustard Plant , Seeds , Dendritic Cells/immunology , Dendritic Cells/drug effects , Humans , Seeds/chemistry , Allergens/immunology , Epithelial Cells/immunology , Epithelial Cells/drug effects , Intestinal Mucosa/immunology , Coculture Techniques , Antigens, Plant/immunology , Mast Cells/immunology , Mast Cells/drug effects , Immunoglobulin E/immunology , Cytokines/metabolism , Plant Proteins/immunology , Plant Proteins/pharmacology
20.
J Agric Food Chem ; 72(19): 11259-11267, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38691423

ABSTRACT

Peanut allergen monitoring is currently an effective strategy to avoid allergic diseases, while food matrix interference is a critical challenge during detection. Here, we developed an antifouling surface plasmon resonance sensor (SPR) with stratified zwitterionic peptides, which provides both excellent antifouling and sensing properties. The antifouling performance was measured by the SPR, which showed that stratified peptide coatings showed much better protein resistance, reaching ultralow adsorption levels (<5 ng/cm2). Atomic force microscopy was used to further analyze the antifouling mechanism from a mechanical perspective, which demonstrated lower adsorption forces on hybrid peptide coatings, confirming the better antifouling performance of stratified surfaces. Moreover, the recognition of peanut allergens in biscuits was performed using an SPR with high efficiency and appropriate recovery results (98.2-112%), which verified the feasibility of this assay. Therefore, the fabrication of antifouling sensors with stratified zwitterionic peptides provides an efficient strategy for food safety inspection.


Subject(s)
Allergens , Arachis , Peptides , Surface Plasmon Resonance , Surface Plasmon Resonance/methods , Arachis/chemistry , Arachis/immunology , Peptides/chemistry , Peptides/immunology , Allergens/analysis , Allergens/immunology , Allergens/chemistry , Biofouling/prevention & control , Food Contamination/analysis , Plant Proteins/immunology , Plant Proteins/chemistry , Plant Proteins/analysis , Biosensing Techniques/instrumentation , Biosensing Techniques/methods , Adsorption
SELECTION OF CITATIONS
SEARCH DETAIL