Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 992
Filter
1.
Mol Plant ; 17(7): 1090-1109, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38822523

ABSTRACT

The precise control of receptor levels is crucial for initiating cellular signaling transduction in response to specific ligands; however, such mechanisms regulating nodulation factor (NF) receptor (NFR)-mediated perception of NFs to establish symbiosis remain unclear. In this study, we unveil the pivotal role of the NFR-interacting RING-type E3 ligase 1 (NIRE1) in regulating NFR1/NFR5 homeostasis to optimize rhizobial infection and nodule development in Lotus japonicus. We demonstrated that NIRE1 has a dual function in this regulatory process. It associates with both NFR1 and NFR5, facilitating their degradation through K48-linked polyubiquitination before rhizobial inoculation. However, following rhizobial inoculation, NFR1 phosphorylates NIRE1 at a conserved residue, Tyr-109, inducing a functional switch in NIRE1, which enables NIRE1 to mediate K63-linked polyubiquitination, thereby stabilizing NFR1/NFR5 in infected root cells. The introduction of phospho-dead NIRE1Y109F leads to delayed nodule development, underscoring the significance of phosphorylation at Tyr-109 in orchestrating symbiotic processes. Conversely, expression of the phospho-mimic NIRE1Y109E results in the formation of spontaneous nodules in L. japonicus, further emphasizing the critical role of the phosphorylation-dependent functional switch in NIRE1. In summary, these findings uncover a fine-tuned symbiotic mechanism that a single E3 ligase could undergo a phosphorylation-dependent functional switch to dynamically and precisely regulate NF receptor protein levels.


Subject(s)
Lotus , Plant Proteins , Plant Root Nodulation , Ubiquitin-Protein Ligases , Phosphorylation , Ubiquitin-Protein Ligases/metabolism , Plant Proteins/metabolism , Plant Proteins/genetics , Lotus/metabolism , Lotus/microbiology , Lotus/genetics , Ubiquitination , Symbiosis/physiology , Gene Expression Regulation, Plant , Root Nodules, Plant/metabolism , Root Nodules, Plant/microbiology
2.
Sci Total Environ ; 945: 173733, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-38851347

ABSTRACT

Symbiotic nitrogen fixation can reduce the impact of agriculture on the environment by reducing fertilizer input. The rapid development of nanomaterials in agriculture provides a new prospect for us to improve the biological nitrogen fixation ability of leguminous crops. Molybdenum is an important component of nitrogenase, and the potential application of MoO3NPs in agriculture is largely unexplored. In this study, on the basis of verifying that MoO3NPs can improve the nitrogen fixation ability of soybean, the effects of MoO3NPs on the symbiotic nitrogen fixation process of soybean were investigated by using dynamic transcriptome and targeted metabolome techniques. Here we showed that compared with conventional molybdenum fertilizer, minute concentrations of MoO3NPs (0.01-0.1 mg kg-1) could promote soybean growth and nitrogen fixation efficiency. The nodules number, fresh nodule weight and nitrogenase activity of 0.1 mg kg-1 were increased by 17 %, 14 % and 27 %, and plant nitrogen accumulation increased by 17 %. Compared with conventional molybdenum fertilizer, MoO3NPs had a greater effect on apigenin, kaempferol and other flavonoid, and the expression of nodulation related genes such as ENOD93, F3'H. Based on WGCNA analysis, we identified a core gene GmCHS9 that was positively responsive to molybdenum and was highly expressed during MoO3NPs induced nodulation. MoO3NPs could improve the nitrogen fixation ability of soybean by promoting the secretion of flavonoids and the expression of key genes. This study provided a new perspective for the nano-strengthening strategy of nodules development and flavonoid biosynthesis by molybdenum.


Subject(s)
Flavonoids , Glycine max , Metabolome , Molybdenum , Nitrogen Fixation , Transcriptome , Glycine max/drug effects , Nitrogen Fixation/drug effects , Fertilizers , Plant Root Nodulation/drug effects , Nanoparticles/toxicity , Metal Nanoparticles/toxicity
3.
World J Microbiol Biotechnol ; 40(8): 234, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38844667

ABSTRACT

Bradyrhizobia are the principal symbiotic partner of the leguminous plant and take active part in biological nitrogen-fixation. The present investigation explores the underlying competition among different strains during colonization in host roots. Six distinct GFP and RFP-tagged Bradyrhizobium strains were engineered to track them inside the peanut roots either independently or in combination. The Bradyrhizobium strains require different time-spans ranging from 4 to 21 days post-infection (dpi) for successful colonization which further varies in presence of another strain. While most of the individual strains enhanced the shoot and root dry weight, number of nodules, and nitrogen fixation capabilities of the host plants, no significant enhancement of plant growth and nodulation efficiency was observed when they were allowed to colonize in combinations. However, if among the combinations one strains is SEMIA 6144, the co-infection results in higher growth and nodulation efficiency of the hosts. From the competition experiments it has been found that Bradyrhizobium japonicum SEMIA 6144 was found to be the most dominant strain for effective nodulation in peanut. The extent of biofilm and exopolysaccharide (EPS) production by these isolates, individually or in combinations, were envisaged to correlate whether these parameters have any impact on the symbiotic association. But the extent of colonization, growth-promotion and nitrogen-fixation ability drastically lowered when a strain present together with other Bradyrhizobium strain. Therefore, it is imperative to understand the interaction between two co-inoculating Bradyrhizobium species for nodulation followed by plant growth promotion to develop suitable consortia for enhancing BNF in peanut and possibly for other legumes.


Subject(s)
Arachis , Biofilms , Bradyrhizobium , Nitrogen Fixation , Plant Root Nodulation , Plant Roots , Root Nodules, Plant , Symbiosis , Arachis/microbiology , Arachis/growth & development , Bradyrhizobium/growth & development , Bradyrhizobium/physiology , Plant Roots/microbiology , Plant Roots/growth & development , Root Nodules, Plant/microbiology , Root Nodules, Plant/growth & development , Biofilms/growth & development , Polysaccharides, Bacterial/metabolism , Microbial Interactions , Plant Development
4.
BMC Plant Biol ; 24(1): 585, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38902623

ABSTRACT

BACKGROUND: Soybean establishes a mutualistic interaction with nitrogen-fixing rhizobacteria, acquiring most of its nitrogen requirements through symbiotic nitrogen fixation. This crop is susceptible to water deficit; evidence suggests that its nodulation status-whether it is nodulated or not-can influence how it responds to water deficit. The translational control step of gene expression has proven relevant in plants subjected to water deficit. RESULTS: Here, we analyzed soybean roots' differential responses to water deficit at transcriptional, translational, and mixed (transcriptional + translational) levels. Thus, the transcriptome and translatome of four combined-treated soybean roots were analyzed. We found hormone metabolism-related genes among the differentially expressed genes (DEGs) at the translatome level in nodulated and water-restricted plants. Also, weighted gene co-expression network analysis followed by differential expression analysis identified gene modules associated with nodulation and water deficit conditions. Protein-protein interaction network analysis was performed for subsets of mixed DEGs of the modules associated with the plant responses to nodulation, water deficit, or their combination. CONCLUSIONS: Our research reveals that the stand-out processes and pathways in the before-mentioned plant responses partially differ; terms related to glutathione metabolism and hormone signal transduction (2 C protein phosphatases) were associated with the response to water deficit, terms related to transmembrane transport, response to abscisic acid, pigment metabolic process were associated with the response to nodulation plus water deficit. Still, two processes were common: galactose metabolism and branched-chain amino acid catabolism. A comprehensive analysis of these processes could lead to identifying new sources of tolerance to drought in soybean.


Subject(s)
Glycine max , Plant Roots , Transcriptome , Glycine max/genetics , Glycine max/physiology , Plant Roots/genetics , Plant Roots/metabolism , Gene Expression Regulation, Plant , Plant Root Nodulation/genetics , Gene Regulatory Networks , Gene Expression Profiling , Dehydration
5.
Plant Cell Rep ; 43(7): 169, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38864921

ABSTRACT

KEY MESSAGE: The study unveils Si's regulatory influence by regulating DEGs, TFs, and TRs. Further bHLH subfamily and auxin transporter pathway elucidates the mechanisms enhancing root development and nodulation. Soybean is a globally important crop serving as a primary source of vegetable protein for millions of individuals. The roots of these plants harbour essential nitrogen fixing structures called nodules. This study investigates the multifaceted impact of silicon (Si) application on soybean, with a focus on root development, and nodulation employing comprehensive transcriptomic analyses and gene regulatory network. RNA sequence analysis was utilised to examine the change in gene expression and identify the noteworthy differentially expressed genes (DEGs) linked to the enhancement of soybean root nodulation and root development. A set of 316 genes involved in diverse biological and molecular pathways are identified, with emphasis on transcription factors (TFs) and transcriptional regulators (TRs). The study uncovers TF and TR genes, categorized into 68 distinct families, highlighting the intricate regulatory landscape influenced by Si in soybeans. Upregulated most important bHLH subfamily and the involvement of the auxin transporter pathway underscore the molecular mechanisms contributing to enhanced root development and nodulation. The study bridges insights from other research, reinforcing Si's impact on stress-response pathways and phenylpropanoid biosynthesis crucial for nodulation. The study reveals significant alterations in gene expression patterns associated with cellular component functions, root development, and nodulation in response to Si.


Subject(s)
Gene Expression Profiling , Gene Expression Regulation, Plant , Gene Regulatory Networks , Glycine max , Plant Root Nodulation , Plant Roots , Silicon , Transcription Factors , Glycine max/genetics , Glycine max/growth & development , Plant Root Nodulation/genetics , Plant Roots/genetics , Plant Roots/growth & development , Silicon/pharmacology , Transcription Factors/genetics , Transcription Factors/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Transcriptome/genetics
6.
J Agric Food Chem ; 72(25): 14114-14125, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38867659

ABSTRACT

In this study, the role of E3 ubiquitin ligase GmSNE3 in halosulfuron methyl (HSM) inhibiting soybean nodulation was investigated. GmSNE3 was strongly induced by HSM stress, and the overexpression of GmSNE3 significantly reduced the number of soybean nodules. Further investigation found that GmSNE3 could interact with a nodulation signaling pathway 1 protein (GmNSP1a) and GmSNE3 could mediate the degradation of GmNSP1a. Importantly, GmSNE3-mediated degradation of GmNSP1a could be promoted by HSM stress. Moreover, HSM stress and the overexpression of GmSNE3 resulted in a substantial decrease in the expression of the downstream target genes of GmNSP1a. These results revealed that HSM promotes the ubiquitin-mediated degradation of GmNSP1a by inducing GmSNE3, thereby inhibiting the regulatory effect of GmNSP1a on its downstream target genes and ultimately leading to a reduction in nodulation. Our findings will promote a better understanding of the toxic mechanism of herbicides on the symbiotic nodulation between legumes and rhizobia.


Subject(s)
Gene Expression Regulation, Plant , Glycine max , Herbicides , Plant Proteins , Plant Root Nodulation , Sulfonylurea Compounds , Ubiquitin-Protein Ligases , Glycine max/genetics , Glycine max/metabolism , Glycine max/chemistry , Ubiquitin-Protein Ligases/metabolism , Ubiquitin-Protein Ligases/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Herbicides/pharmacology , Plant Root Nodulation/genetics , Plant Root Nodulation/drug effects , Gene Expression Regulation, Plant/drug effects , Sulfonylurea Compounds/pharmacology
7.
Microbiol Res ; 285: 127748, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38735241

ABSTRACT

The rhizosphere system of plants hosts a diverse consortium of bacteria that confer beneficial effects on plant, such as plant growth-promoting rhizobacteria (PGPR), biocontrol agents with disease-suppression activities, and symbiotic nitrogen fixing bacteria with the formation of root nodule. Efficient colonization in planta is of fundamental importance for promoting of these beneficial activities. However, the process of root colonization is complex, consisting of multiple stages, including chemotaxis, adhesion, aggregation, and biofilm formation. The secondary messenger, c-di-GMP (cyclic bis-(3'-5') dimeric guanosine monophosphate), plays a key regulatory role in a variety of physiological processes. This paper reviews recent progress on the actions of c-di-GMP in plant beneficial bacteria, with a specific focus on its role in chemotaxis, biofilm formation, and nodulation.


Subject(s)
Biofilms , Chemotaxis , Cyclic GMP , Plant Roots , Plants , Symbiosis , Cyclic GMP/analogs & derivatives , Cyclic GMP/metabolism , Biofilms/growth & development , Plants/microbiology , Plant Roots/microbiology , Bacteria/metabolism , Bacteria/genetics , Rhizosphere , Plant Root Nodulation , Second Messenger Systems , Bacterial Physiological Phenomena , Soil Microbiology
8.
Plant Physiol Biochem ; 211: 108712, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38733940

ABSTRACT

Phosphorus (P), a macronutrient, plays key roles in plant growth, development, and yield. Phosphate (Pi) transporters (PHTs) and PHOSPHATE1 (PHO1) are central to Pi acquisition and distribution. Potentially, PHO1 is also involved in signal transduction under low P. The current study was designed to identify and functionally characterize the PHO1 gene family in chickpea (CaPHO1s). Five CaPHO1 genes were identified through a comprehensive genome-wide search. Phylogenetically, CaPHO1s formed two clades, and protein sequence analyses confirmed the presence of conserved domains. CaPHO1s are expressed in different plant organs including root nodules and are induced by Pi-limiting conditions. Functional complementation of atpho1 mutant with three CaPHO1 members, CaPHO1, CaPHO1;like, and CaPHO1;H1, independently demonstrated their role in root to shoot Pi transport, and their redundant functions. To further validate this, we raised independent RNA-interference (RNAi) lines of CaPHO1, CaPHO1;like, and CaPHO1;H1 along with triple mutant line in chickpea. While single gene RNAi lines behaved just like WT, triple knock-down RNAi lines (capho1/like/h1) showed reduced shoot growth and shoot Pi content. Lastly, we showed that CaPHO1s are involved in root nodule development and Pi content. Our findings suggest that CaPHO1 members function redundantly in root to shoot Pi export and root nodule development in chickpea.


Subject(s)
Cicer , Plant Proteins , Plant Root Nodulation , Cicer/genetics , Cicer/metabolism , Cicer/growth & development , Plant Proteins/genetics , Plant Proteins/metabolism , Plant Root Nodulation/genetics , Gene Expression Regulation, Plant , Phosphates/metabolism , Phosphate Transport Proteins/metabolism , Phosphate Transport Proteins/genetics , Plant Roots/metabolism , Plant Roots/genetics , Plant Roots/growth & development , Phylogeny , Biological Transport/genetics , Multigene Family
9.
Nat Plants ; 10(5): 736-742, 2024 May.
Article in English | MEDLINE | ID: mdl-38724696

ABSTRACT

Symbiotic nitrogen fixation in legume nodules requires substantial energy investment from host plants, and soybean (Glycine max (L.) supernodulation mutants show stunting and yield penalties due to overconsumption of carbon sources. We obtained soybean mutants differing in their nodulation ability, among which rhizobially induced cle1a/2a (ric1a/2a) has a moderate increase in nodule number, balanced carbon allocation, and enhanced carbon and nitrogen acquisition. In multi-year and multi-site field trials in China, two ric1a/2a lines had improved grain yield, protein content and sustained oil content, demonstrating that gene editing towards optimal nodulation improves soybean yield and quality.


Subject(s)
Glycine max , Plant Root Nodulation , Glycine max/genetics , Glycine max/metabolism , Glycine max/microbiology , Plant Root Nodulation/genetics , Root Nodules, Plant/metabolism , Root Nodules, Plant/genetics , Root Nodules, Plant/microbiology , Symbiosis , Nitrogen Fixation/genetics , Gene Editing , Mutation , Plant Proteins/metabolism , Plant Proteins/genetics , Soybean Proteins/genetics , Soybean Proteins/metabolism
10.
Physiol Plant ; 176(3): e14341, 2024.
Article in English | MEDLINE | ID: mdl-38741264

ABSTRACT

Symbiotic nitrogen fixation (SNF) is crucial for legumes, providing them with the nitrogen necessary for plant growth and development. Nodulation is the first step in the establishment of SNF. However, the determinant genes in soybean nodulation and the understanding of the underlying molecular mechanisms governing nodulation are still limited. Herein, we identified a phosphatase, GmPP2C61A, which was specifically induced by rhizobia inoculation. Using transgenic hairy roots harboring GmPP2C61A::GUS, we showed that GmPP2C61A was mainly induced in epidermal cells following rhizobia inoculation. Functional analysis revealed that knockdown or knock-out of GmPP2C61A significantly reduced the number of nodules, while overexpression of GmPP2C61A promoted nodule formation. Additionally, GmPP2C61A protein was mainly localized in the cytoplasm and exhibited conserved phosphatase activity in vitro. Our findings suggest that phosphatase GmPP2C61A serves as a critical regulator in soybean nodulation, highlighting its potential significance in enhancing symbiotic nitrogen fixation.


Subject(s)
Gene Expression Regulation, Plant , Glycine max , Nitrogen Fixation , Plant Proteins , Plant Root Nodulation , Symbiosis , Glycine max/genetics , Glycine max/microbiology , Glycine max/physiology , Plant Root Nodulation/genetics , Plant Proteins/metabolism , Plant Proteins/genetics , Symbiosis/genetics , Rhizobium/physiology , Root Nodules, Plant/genetics , Root Nodules, Plant/microbiology , Root Nodules, Plant/metabolism , Plants, Genetically Modified , Phosphoric Monoester Hydrolases/metabolism , Phosphoric Monoester Hydrolases/genetics , Plant Roots/genetics , Plant Roots/microbiology , Plant Roots/metabolism
11.
Nat Commun ; 15(1): 2924, 2024 Apr 04.
Article in English | MEDLINE | ID: mdl-38575565

ABSTRACT

Biological nitrogen fixation by free-living bacteria and rhizobial symbiosis with legumes plays a key role in sustainable crop production. Here, we study how different crop combinations influence the interaction between peanut plants and their rhizosphere microbiota via metabolite deposition and functional responses of free-living and symbiotic nitrogen-fixing bacteria. Based on a long-term (8 year) diversified cropping field experiment, we find that peanut co-cultured with maize and oilseed rape lead to specific changes in peanut rhizosphere metabolite profiles and bacterial functions and nodulation. Flavonoids and coumarins accumulate due to the activation of phenylpropanoid biosynthesis pathways in peanuts. These changes enhance the growth and nitrogen fixation activity of free-living bacterial isolates, and root nodulation by symbiotic Bradyrhizobium isolates. Peanut plant root metabolites interact with Bradyrhizobium isolates contributing to initiate nodulation. Our findings demonstrate that tailored intercropping could be used to improve soil nitrogen availability through changes in the rhizosphere microbiome and its functions.


Subject(s)
Fabaceae , Nitrogen Fixation , Fabaceae/microbiology , Plant Root Nodulation , Soil , Soil Microbiology , Symbiosis , Arachis , Vegetables , Nitrogen , Root Nodules, Plant/microbiology
12.
New Phytol ; 242(5): 2195-2206, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38571285

ABSTRACT

Legume nodulation requires the detection of flavonoids in the rhizosphere by rhizobia to activate their production of Nod factor countersignals. Here we investigated the flavonoids involved in nodulation of Medicago truncatula. We biochemically characterized five flavonoid-O-methyltransferases (OMTs) and a lux-based nod gene reporter was used to investigate the response of Sinorhizobium medicae NodD1 to various flavonoids. We found that chalcone-OMT 1 (ChOMT1) and ChOMT3, but not OMT2, 4, and 5, were able to produce 4,4'-dihydroxy-2'-methoxychalcone (DHMC). The bioreporter responded most strongly to DHMC, while isoflavones important for nodulation of soybean (Glycine max) showed no activity. Mutant analysis revealed that loss of ChOMT1 strongly reduced DHMC levels. Furthermore, chomt1 and omt2 showed strongly reduced bioreporter luminescence in their rhizospheres. In addition, loss of both ChOMT1 and ChOMT3 reduced nodulation, and this phenotype was strengthened by the further loss of OMT2. We conclude that: the loss of ChOMT1 greatly reduces root DHMC levels; ChOMT1 or OMT2 are important for nod gene activation in the rhizosphere; and ChOMT1/3 and OMT2 promote nodulation. Our findings suggest a degree of exclusivity in the flavonoids used for nodulation in M. truncatula compared to soybean, supporting a role for flavonoids in rhizobial host range.


Subject(s)
Chalcones , Medicago truncatula , Plant Root Nodulation , Rhizosphere , Medicago truncatula/genetics , Medicago truncatula/microbiology , Medicago truncatula/metabolism , Chalcones/metabolism , Plant Root Nodulation/genetics , Gene Expression Regulation, Plant , Mutation/genetics , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Flavonoids/metabolism , Plant Proteins/metabolism , Plant Proteins/genetics , Sinorhizobium/physiology , Sinorhizobium/genetics , Methyltransferases/metabolism , Methyltransferases/genetics
13.
New Phytol ; 242(6): 2746-2762, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38666352

ABSTRACT

Legume plants develop two types of root postembryonic organs, lateral roots and symbiotic nodules, using shared regulatory components. The module composed by the microRNA390, the Trans-Acting SIRNA3 (TAS3) RNA and the Auxin Response Factors (ARF)2, ARF3, and ARF4 (miR390/TAS3/ARFs) mediates the control of both lateral roots and symbiotic nodules in legumes. Here, a transcriptomic approach identified a member of the Lateral Organ Boundaries Domain (LBD) family of transcription factors in Medicago truncatula, designated MtLBD17/29a, which is regulated by the miR390/TAS3/ARFs module. ChIP-PCR experiments evidenced that MtARF2 binds to an Auxin Response Element present in the MtLBD17/29a promoter. MtLBD17/29a is expressed in root meristems, lateral root primordia, and noninfected cells of symbiotic nodules. Knockdown of MtLBD17/29a reduced the length of primary and lateral roots and enhanced lateral root formation, whereas overexpression of MtLBD17/29a produced the opposite phenotype. Interestingly, both knockdown and overexpression of MtLBD17/29a reduced nodule number and infection events and impaired the induction of the symbiotic genes Nodulation Signaling Pathway (NSP) 1 and 2. Our results demonstrate that MtLBD17/29a is regulated by the miR390/TAS3/ARFs module and a direct target of MtARF2, revealing a new lateral root regulatory hub recruited by legumes to act in the root nodule symbiotic program.


Subject(s)
Gene Expression Regulation, Plant , Indoleacetic Acids , Medicago truncatula , Plant Proteins , Plant Root Nodulation , Plant Roots , Transcription Factors , Medicago truncatula/genetics , Medicago truncatula/microbiology , Medicago truncatula/metabolism , Medicago truncatula/growth & development , Plant Proteins/metabolism , Plant Proteins/genetics , Transcription Factors/metabolism , Transcription Factors/genetics , Plant Root Nodulation/genetics , Plant Roots/growth & development , Plant Roots/genetics , Plant Roots/metabolism , Indoleacetic Acids/metabolism , Promoter Regions, Genetic/genetics , MicroRNAs/genetics , MicroRNAs/metabolism , Gene Knockdown Techniques , Symbiosis/genetics , Root Nodules, Plant/metabolism , Root Nodules, Plant/genetics , Root Nodules, Plant/growth & development
14.
J Exp Bot ; 75(11): 3214-3219, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38476021

ABSTRACT

Certain legumes provide a special pathway for rhizobia to invade the root and develop nitrogen-fixing nodules, a process known as lateral root base (LRB) nodulation. This pathway involves intercellular infection at the junction of the lateral roots with the taproot, leading to nodule formation in the lateral root cortex. Remarkably, this LRB pathway serves as a backbone for various adaptative symbiotic processes. Here, we describe different aspects of LRB nodulation and highlight directions for future research to elucidate the mechanisms of this as yet little known but original pathway that will help in broadening our knowledge on the rhizobium-legume symbiosis.


Subject(s)
Fabaceae , Plant Root Nodulation , Rhizobium , Symbiosis , Plant Root Nodulation/physiology , Fabaceae/microbiology , Fabaceae/physiology , Symbiosis/physiology , Rhizobium/physiology , Plant Roots/microbiology , Plant Roots/physiology , Root Nodules, Plant/microbiology , Root Nodules, Plant/physiology , Nitrogen Fixation/physiology
15.
J Exp Bot ; 75(11): 3643-3662, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38531677

ABSTRACT

All non-Mimosoid nodulated genera in the legume subfamily Caesalpinioideae confine their rhizobial symbionts within cell wall-bound 'fixation threads' (FTs). The exception is the large genus Chamaecrista in which shrubs and subshrubs house their rhizobial bacteroids more intimately within symbiosomes, whereas large trees have FTs. This study aimed to unravel the evolutionary relationships between Chamaecrista growth habit, habitat, nodule bacteroid type, and rhizobial genotype. The growth habit, bacteroid anatomy, and rhizobial symbionts of 30 nodulated Chamaecrista species native to different biomes in the Brazilian state of Bahia, a major centre of diversity for the genus, was plotted onto an ITS-trnL-F-derived phylogeny of Chamaecrista. The bacteroids from most of the Chamaecrista species examined were enclosed in symbiosomes (SYM-type nodules), but those in arborescent species in the section Apoucouita, at the base of the genus, were enclosed in cell wall material containing homogalacturonan (HG) and cellulose (FT-type nodules). Most symbionts were Bradyrhizobium genotypes grouped according to the growth habits of their hosts, but the tree, C. eitenorum, was nodulated by Paraburkholderia. Chamaecrista has a range of growth habits that allow it to occupy several different biomes and to co-evolve with a wide range of (mainly) bradyrhizobial symbionts. FTs represent a less intimate symbiosis linked with nodulation losses, so the evolution of SYM-type nodules by most Chamaecrista species may have (i) aided the genus-wide retention of nodulation, and (ii) assisted in its rapid speciation and radiation out of the rainforest into more diverse and challenging habitats.


Subject(s)
Chamaecrista , Phylogeny , Rainforest , Symbiosis , Chamaecrista/physiology , Chamaecrista/genetics , Chamaecrista/growth & development , Brazil , Ecosystem , Rhizobium/physiology , Plant Root Nodulation/physiology , Biological Evolution , Nitrogen Fixation
16.
Sci Rep ; 14(1): 5024, 2024 02 29.
Article in English | MEDLINE | ID: mdl-38424094

ABSTRACT

Legumes have the ability to establish a nitrogen-fixing symbiosis with soil rhizobia that they house in specific organs, the nodules. In most rhizobium-legume interactions, nodulation occurs on the root. However, certain tropical legumes growing in wetlands possess a unique trait: the capacity to form rhizobia-harbouring nodules on the stem. Despite the originality of the stem nodulation process, its occurrence and diversity in waterlogging-tolerant legumes remains underexplored, impeding a comprehensive analysis of its genetics and biology. Here, we aimed at filling this gap by surveying stem nodulation in legume species-rich wetlands of Madagascar. Stem nodulation was readily observed in eight hydrophytic species of the legume genera, Aeschynomene and Sesbania, for which significant variations in stem nodule density and morphology was documented. Among these species, A. evenia, which is used as genetic model to study the rhizobial symbiosis, was found to be frequently stem-nodulated. Two other Aeschynomene species, A. cristata and A. uniflora, were evidenced to display a profuse stem-nodulation as occurs in S. rostrata. These findings extend our knowledge on legumes species that are endowed with stem nodulation and further indicate that A. evenia, A. cristata, A. uniflora and S. rostrata are of special interest for the study of stem nodulation. As such, these legume species represent opportunities to investigate different modalities of the nitrogen-fixing symbiosis and this knowledge could provide cues for the engineering of nitrogen-fixation in non-legume crops.


Subject(s)
Fabaceae , Rhizobium , Sesbania , Fabaceae/genetics , Madagascar , Wetlands , Nitrogen Fixation , Vegetables , Nitrogen , Symbiosis/genetics , Plant Root Nodulation/genetics , Root Nodules, Plant
17.
Int J Mol Sci ; 25(3)2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38339080

ABSTRACT

Nitrogen fixation, occurring through the symbiotic relationship between legumes and rhizobia in root nodules, is crucial in sustainable agriculture. Nodulation and soybean production are influenced by low levels of phosphorus stress. In this study, we discovered a MADS transcription factor, GmAGL82, which is preferentially expressed in nodules and displays significantly increased expression under conditions of phosphate (Pi) deficiency. The overexpression of GmAGL82 in composite transgenic plants resulted in an increased number of nodules, higher fresh weight, and enhanced soluble Pi concentration, which subsequently increased the nitrogen content, phosphorus content, and overall growth of soybean plants. Additionally, transcriptome analysis revealed that the overexpression of GmAGL82 significantly upregulated the expression of genes associated with nodule growth, such as GmENOD100, GmHSP17.1, GmHSP17.9, GmSPX5, and GmPIN9d. Based on these findings, we concluded that GmAGL82 likely participates in the phosphorus signaling pathway and positively regulates nodulation in soybeans. The findings of this research may lay the theoretical groundwork for further studies and candidate gene resources for the genetic improvement of nutrient-efficient soybean varieties in acidic soils.


Subject(s)
Phosphorus , Plant Root Nodulation , Phosphorus/metabolism , Plant Root Nodulation/genetics , Root Nodules, Plant/metabolism , Glycine max/genetics , Nitrogen Fixation/genetics , Symbiosis , Gene Expression Regulation, Plant , Plant Proteins/genetics , Plant Proteins/metabolism
18.
Plant J ; 118(3): 607-625, 2024 May.
Article in English | MEDLINE | ID: mdl-38361340

ABSTRACT

The conservation of GOLVEN (GLV)/ROOT MERISTEM GROWTH FACTOR (RGF) peptide encoding genes across plant genomes capable of forming roots or root-like structures underscores their potential significance in the terrestrial adaptation of plants. This study investigates the function and role of GOLVEN peptide-coding genes in Medicago truncatula. Five out of fifteen GLV/RGF genes were notably upregulated during nodule organogenesis and were differentially responsive to nitrogen deficiency and auxin treatment. Specifically, the expression of MtGLV9 and MtGLV10 at nodule initiation sites was contingent upon the NODULE INCEPTION transcription factor. Overexpression of these five nodule-induced GLV genes in hairy roots of M. truncatula and application of their synthetic peptide analogues led to a decrease in nodule count by 25-50%. Uniquely, the GOLVEN10 peptide altered the positioning of the first formed lateral root and nodule on the primary root axis, an observation we term 'noduletaxis'; this decreased the length of the lateral organ formation zone on roots. Histological section of roots treated with synthetic GOLVEN10 peptide revealed an increased cell number within the root cortical cell layers without a corresponding increase in cell length, leading to an elongation of the root likely introducing a spatiotemporal delay in organ formation. At the transcription level, the GOLVEN10 peptide suppressed expression of microtubule-related genes and exerted its effects by changing expression of a large subset of Auxin responsive genes. These findings advance our understanding of the molecular mechanisms by which GOLVEN peptides modulate root morphology, nodule ontogeny, and interactions with key transcriptional pathways.


Subject(s)
Gene Expression Regulation, Plant , Medicago truncatula , Plant Proteins , Plant Roots , Root Nodules, Plant , Medicago truncatula/genetics , Medicago truncatula/growth & development , Medicago truncatula/metabolism , Medicago truncatula/drug effects , Medicago truncatula/physiology , Plant Proteins/genetics , Plant Proteins/metabolism , Plant Roots/growth & development , Plant Roots/genetics , Plant Roots/drug effects , Plant Roots/metabolism , Root Nodules, Plant/genetics , Root Nodules, Plant/growth & development , Root Nodules, Plant/metabolism , Root Nodules, Plant/drug effects , Indoleacetic Acids/metabolism , Indoleacetic Acids/pharmacology , Plant Root Nodulation/genetics , Meristem/genetics , Meristem/growth & development , Meristem/drug effects , Peptides/metabolism , Peptides/genetics
19.
Plant J ; 118(4): 1136-1154, 2024 May.
Article in English | MEDLINE | ID: mdl-38341846

ABSTRACT

Rhizobial phosphatidylcholine (PC) is thought to be a critical phospholipid for the symbiotic relationship between rhizobia and legume host plants. A PC-deficient mutant of Sinorhizobium meliloti overproduces succinoglycan, is unable to swim, and lacks the ability to form nodules on alfalfa (Medicago sativa) host roots. Suppressor mutants had been obtained which did not overproduce succinoglycan and regained the ability to swim. Previously, we showed that point mutations leading to altered ExoS proteins can reverse the succinoglycan and swimming phenotypes of a PC-deficient mutant. Here, we report that other point mutations leading to altered ExoS, ChvI, FabA, or RpoH1 proteins also revert the succinoglycan and swimming phenotypes of PC-deficient mutants. Notably, the suppressor mutants also restore the ability to form nodule organs on alfalfa roots. However, nodules generated by these suppressor mutants express only low levels of an early nodulin, do not induce leghemoglobin transcript accumulation, thus remain white, and are unable to fix nitrogen. Among these suppressor mutants, we detected a reduced function mutant of the 3-hydoxydecanoyl-acyl carrier protein dehydratase FabA that produces reduced amounts of unsaturated and increased amounts of shorter chain fatty acids. This alteration of fatty acid composition probably affects lipid packing thereby partially compensating for the previous loss of PC and contributing to the restoration of membrane homeostasis.


Subject(s)
Fatty Acids , Medicago sativa , Phosphatidylcholines , Plant Root Nodulation , Sinorhizobium meliloti , Symbiosis , Sinorhizobium meliloti/physiology , Sinorhizobium meliloti/genetics , Medicago sativa/microbiology , Medicago sativa/genetics , Plant Root Nodulation/genetics , Fatty Acids/metabolism , Fatty Acids/biosynthesis , Phosphatidylcholines/metabolism , Phosphatidylcholines/biosynthesis , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Root Nodules, Plant/microbiology , Root Nodules, Plant/genetics , Root Nodules, Plant/metabolism , Mutation , Polysaccharides, Bacterial/metabolism , Polysaccharides, Bacterial/biosynthesis , Nitrogen Fixation
20.
New Phytol ; 242(2): 626-640, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38396236

ABSTRACT

Gibberellins (GA) have a profound influence on the formation of lateral root organs. However, the precise role this hormone plays in the cell-specific events during lateral root formation, rhizobial infection and nodule organogenesis, including interactions with auxin and cytokinin (CK), is not clear. We performed epidermal- and endodermal-specific complementation of the severely GA-deficient na pea (Pisum sativum) mutant with Agrobacterium rhizogenes. Gibberellin mutants were used to examine the spatial expression pattern of CK (TCSn)- and auxin (DR5)-responsive promoters and hormone levels. We found that GA produced in the endodermis promote lateral root and nodule organogenesis and can induce a mobile signal(s) that suppresses rhizobial infection. By contrast, epidermal-derived GA suppress infection but have little influence on root or nodule development. GA suppress the CK-responsive TCSn promoter in the cortex and are required for normal auxin activation during nodule primordia formation. Our findings indicate that GA regulate the checkpoints between infection thread (IT) penetration of the cortex and invasion of nodule primordial cells and promote the subsequent progression of nodule development. It appears that GA limit the progression and branching of IT in the cortex by restricting CK response and activate auxin response to promote nodule primordia development.


Subject(s)
Gibberellins , Plant Root Nodulation , Plant Root Nodulation/physiology , Cytokinins , Indoleacetic Acids/pharmacology , Pisum sativum/genetics , Hormones , Gene Expression Regulation, Plant , Root Nodules, Plant/microbiology , Symbiosis , Plant Proteins/genetics , Plant Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...