Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 11.536
1.
Curr Microbiol ; 81(7): 207, 2024 Jun 04.
Article En | MEDLINE | ID: mdl-38831110

The current study aimed to evaluate the plant growth-promoting (PGP) potential of endophytic strain Bacillus subtilis KU21 isolated from the roots of Rosmarinus officinalis. The strain exhibited multiple traits of plant growth promotion viz., phosphate (P) solubilization, nitrogen fixation, indole-3-acetic acid (IAA), siderophore, hydrogen cyanide (HCN), lytic enzymes production, and 1-aminocyclopropane-1-carboxylate (ACC) deaminase activity. The isolate also exhibited antagonistic activity against phytopathogenic fungi, i.e., Fusarium oxysporum, Fusarium graminiarum, and Rhizoctonia solani. The P-solubilization activity of B. subtilis KU21 was further elucidated via detection of glucose dehydrogenase (gdh) gene involved in the production of gluconic acid which is responsible for P-solubilization. Further, B. subtilis KU21 was evaluated for in vivo growth promotion studies of tomato (test crop) under net house conditions. A remarkable increase in seed germination, plant growth parameters, nutrient acquisition, and soil quality parameters (NPK) was observed in B. subtilis KU21-treated plants over untreated control. Hence, the proposed module could be recommended for sustainable tomato production in the Northwest Himalayan region without compromising soil health and fertility.


Bacillus subtilis , Endophytes , Plant Roots , Rosmarinus , Bacillus subtilis/genetics , Bacillus subtilis/growth & development , Bacillus subtilis/isolation & purification , Bacillus subtilis/metabolism , Endophytes/isolation & purification , Endophytes/metabolism , Endophytes/genetics , Endophytes/classification , Rosmarinus/chemistry , Rosmarinus/microbiology , Plant Roots/microbiology , Plant Roots/growth & development , Solanum lycopersicum/microbiology , Solanum lycopersicum/growth & development , Fusarium/growth & development , Fusarium/genetics , Fusarium/metabolism , Soil Microbiology , Plant Development , Germination , Indoleacetic Acids/metabolism , Rhizoctonia/growth & development , Rhizoctonia/drug effects , Nitrogen Fixation , Phosphates/metabolism
2.
BMC Plant Biol ; 24(1): 492, 2024 Jun 03.
Article En | MEDLINE | ID: mdl-38831289

Non-hydraulic root source signaling (nHRS) is a unique positive response to soil drying in the regulation of plant growth and development. However, it is unclear how the nHRS mediates the tradeoff between source and sink at the late growth stages and its adaptive mechanisms in primitive wheat. To address this issue, a root-splitting design was made by inserting solid partition in the middle of the pot culture to induce the occurrence of nHRS using four wheat cultivars (MO1 and MO4, diploid; DM22 and DM31, tetraploid) as materials. Three water treatments were designed as 1) both halves watered (CK), 2) holistic root system watered then droughted (FS), 3) one-half of the root system watered and half droughted (PS). FS and PS were designed to compare the role of the full root system and split root system to induce nHRS. Leaves samples were collected during booting and anthesis to compare the role of nHRS at both growth stages. The data indicated that under PS treatment, ABA concentration was significantly higher than FS and CK, demonstrating the induction of nHRS in split root design and nHRS decreased cytokinin (ZR) levels, particularly in the PS treatment. Soluble sugar and proline accumulation were higher in the anthesis stage as compared to the booting stage. POD activity was higher at anthesis, while CAT was higher at the booting stage. Increased ABA (nHRS) correlated with source-sink relationships and metabolic rate (i.e., leaf) connecting other stress signals. Biomass density showed superior resource acquisition and utilization capabilities in both FS and PS treatment as compared to CK in all plants. Our findings indicate that nHRS-induced alterations in phytohormones and their effect on source-sink relations were allied with the growth stages in primitive wheat.


Diploidy , Plant Roots , Signal Transduction , Tetraploidy , Triticum , Triticum/genetics , Triticum/growth & development , Triticum/metabolism , Plant Roots/growth & development , Plant Roots/metabolism , Plant Roots/genetics , Plant Shoots/growth & development , Plant Shoots/metabolism , Plant Shoots/genetics , Plant Growth Regulators/metabolism , Abscisic Acid/metabolism , Cytokinins/metabolism , Plant Leaves/growth & development , Plant Leaves/metabolism , Plant Leaves/genetics
3.
Plant Cell Rep ; 43(6): 159, 2024 Jun 01.
Article En | MEDLINE | ID: mdl-38822842

KEY MESSAGE: AcEXPA1, an aluminum (Al)-inducible expansin gene, is demonstrated to be involved in carpetgrass (Axonopus compressus) root elongation under Al toxicity through analyzing composite carpetgrass plants overexpressing AcEXPA1. Aluminum (Al) toxicity is a major mineral toxicity that limits plant productivity in acidic soils by inhibiting root growth. Carpetgrass (Axonopus compressus), a dominant warm-season turfgrass widely grown in acidic tropical soils, exhibits superior adaptability to Al toxicity. However, the mechanisms underlying its Al tolerance are largely unclear, and knowledge of the functional genes involved in Al detoxification in this turfgrass is limited. In this study, phenotypic variation in Al tolerance, as indicated by relative root elongation, was observed among seventeen carpetgrass genotypes. Al-responsive genes related to cell wall modification were identified in the roots of the Al-tolerant genotype 'A58' via transcriptome analysis. Among them, a gene encoding α-expansin was cloned and designated AcEXPA1 for functional characterization. Observed Al dose effects and temporal responses revealed that Al induced AcEXPA1 expression in carpetgrass roots. Subsequently, an efficient and convenient Agrobacterium rhizogenes-mediated transformation method was established to generate composite carpetgrass plants with transgenic hairy roots for investigating AcEXPA1 involvement in carpetgrass root growth under Al toxicity. AcEXPA1 was successfully overexpressed in the transgenic hairy roots, and AcEXPA1 overexpression enhanced Al tolerance in composite carpetgrass plants through a decrease in Al-induced root growth inhibition. Taken together, these findings suggest that AcEXPA1 contributes to Al tolerance in carpetgrass via root growth regulation.


Aluminum , Gene Expression Regulation, Plant , Plant Proteins , Plant Roots , Plants, Genetically Modified , Aluminum/toxicity , Plant Roots/genetics , Plant Roots/growth & development , Plant Roots/drug effects , Gene Expression Regulation, Plant/drug effects , Plant Proteins/genetics , Plant Proteins/metabolism , Adaptation, Physiological/genetics , Adaptation, Physiological/drug effects , Poaceae/genetics , Poaceae/drug effects
4.
Bull Environ Contam Toxicol ; 112(6): 83, 2024 Jun 01.
Article En | MEDLINE | ID: mdl-38822863

To investigate the toxicological effects of polystyrene microplastics (PS-MPs), cadmium (Cd), and their combined contamination on the growth and physiological responses of V. faba seedlings, this experiment employed a hydroponic method. The Hoagland nutrient solution served as the control, changes in root growth, physiological and biochemical indicators of V. faba seedlings under different concentrations of PS-MPs (10, 100 mg/L) alone and combined with 0.5 mg/L Cd. The results demonstrated that the root biomass, root vitality, generation rate of superoxide radicals (O2·-), malondialdehyde (MDA) content, and superoxide dismutase (SOD) activity increased with increasing concentration under the influence of PS-MPs alone, while the soluble sugar content and peroxidase (POD) activity decreased. In the combined treatment with Cd, the trends of these indicators are generally similar to the PS-MPs alone treatment group. However, root vitality and SOD activity showed an inverse relationship with the concentration of PS-MPs. Furthermore, laser confocal and electron microscopy scanning revealed that the green fluorescent polystyrene microspheres entered the root tips of the V. faba and underwent agglomeration in the treatment group with a low concentration of PS-MPs alone and a high concentration of composite PS-MPs with Cd.


Cadmium , Microplastics , Seedlings , Superoxide Dismutase , Vicia faba , Vicia faba/drug effects , Vicia faba/growth & development , Seedlings/drug effects , Seedlings/growth & development , Cadmium/toxicity , Microplastics/toxicity , Superoxide Dismutase/metabolism , Malondialdehyde/metabolism , Water Pollutants, Chemical/toxicity , Plant Roots/drug effects , Plant Roots/growth & development
5.
Sci Rep ; 14(1): 12705, 2024 06 03.
Article En | MEDLINE | ID: mdl-38831025

Fifty-nine diverse Brassica juncea (Indian mustard) genotypes were used to find an effective screening method to identify salt tolerance at the germination and seedling stages. Salinity stress limits crop productivity and is difficult to simulate on farms, hindering parental selection for hybridization programmes and the development of tolerant cultivars. To estimate an optimum salt concentration for screening, seeds of 15 genotypes were selected randomly and grown in vitro at 0 mM/L, 75 mM/L, 150 mM/L, 225 mM/L, and 300 mM/L concentrations of NaCl in 2 replications in a complete randomized design. Various morphological parameters, viz., length of seedling, root and shoot length, fresh weight, and dry weight, were observed to determine a single concentration using the Salt Injury Index. Then, this optimum concentration (225 mM/L) was used to assess the salt tolerance of all the 59 genotypes in 4 replications while observing the same morphological parameters. With the help of Mean Membership Function Value evaluation criteria, the genotypes were categorized into 5 grades: 4 highly salt-tolerant (HST), 6 salt-tolerant (ST), 19 moderately salt-tolerant (MST), 21 salt-sensitive (SS), and 9 highly salt-sensitive (HSS). Seedling fresh weight (SFW) at 225 mM/L was found to be an ideal trait, which demonstrates the extent to which B. juncea genotypes respond to saline conditions. This is the first report that establishes a highly efficient and reliable method for evaluating the salinity tolerance of Indian mustard at the seedling stage and will facilitate breeders in the development of salt-tolerant cultivars.


Genotype , Mustard Plant , Salt Stress , Salt Tolerance , Seedlings , Mustard Plant/genetics , Mustard Plant/growth & development , Mustard Plant/drug effects , Mustard Plant/physiology , Seedlings/growth & development , Seedlings/drug effects , Seedlings/genetics , Salt Tolerance/genetics , Germination/drug effects , Sodium Chloride/pharmacology , Plant Roots/growth & development , Plant Roots/drug effects
6.
Sci Rep ; 14(1): 12854, 2024 06 04.
Article En | MEDLINE | ID: mdl-38834735

Salinity stress significantly impacts crops, disrupting their water balance and nutrient uptake, reducing growth, yield, and overall plant health. High salinity in soil can adversely affect plants by disrupting their water balance. Excessive salt levels can lead to dehydration, hinder nutrient absorption, and damage plant cells, ultimately impairing growth and reducing crop yields. Gallic acid (GA) and zinc ferrite (ZnFNP) can effectively overcome this problem. GA can promote root growth, boost photosynthesis, and help plants absorb nutrients efficiently. However, their combined application as an amendment against drought still needs scientific justification. Zinc ferrite nanoparticles possess many beneficial properties for soil remediation and medical applications. That's why the current study used a combination of GA and ZnFNP as amendments to wheat. There were 4 treatments, i.e., 0, 10 µM GA, 15 µM GA, and 20 µM GA, without and with 5 µM ZnFNP applied in 4 replications following a completely randomized design. Results exhibited that 20 µM GA + 5 µM ZnFNP caused significant improvement in wheat shoot length (28.62%), shoot fresh weight (16.52%), shoot dry weight (11.38%), root length (3.64%), root fresh weight (14.72%), and root dry weight (9.71%) in contrast to the control. Significant enrichment in wheat chlorophyll a (19.76%), chlorophyll b (25.16%), total chlorophyll (21.35%), photosynthetic rate (12.72%), transpiration rate (10.09%), and stomatal conductance (15.25%) over the control validate the potential of 20 µM GA + 5 µM ZnFNP. Furthermore, improvement in N, P, and K concentration in grain and shoot verified the effective functioning of 20 µM GA + 5 µM ZnFNP compared to control. In conclusion, 20 µM GA + 5 µM ZnFNP can potentially improve the growth, chlorophyll contents and gas exchange attributes of wheat cultivated in salinity stress. More investigations are suggested to declare 20 µM GA + 5 µM ZnFNP as the best amendment for alleviating salinity stress in different cereal crops.


Ferric Compounds , Gallic Acid , Salt Stress , Triticum , Triticum/growth & development , Triticum/drug effects , Triticum/metabolism , Gallic Acid/metabolism , Zinc/metabolism , Photosynthesis/drug effects , Nanoparticles/chemistry , Chlorophyll/metabolism , Plant Roots/growth & development , Plant Roots/drug effects , Plant Roots/metabolism , Salinity , Soil/chemistry
7.
BMC Plant Biol ; 24(1): 495, 2024 Jun 03.
Article En | MEDLINE | ID: mdl-38831411

BACKGROUND: Phosphorus (P) and iron (Fe) deficiencies are relevant plants nutritional disorders, prompting responses such as increased root exudation to aid nutrient uptake, albeit at an energy cost. Reacquiring and reusing exudates could represent an efficient energy and nitrogen saving strategy. Hence, we investigated the impact of plant development, Fe and P deficiencies on this process. Tomato seedlings were grown hydroponically for 3 weeks in Control, -Fe, and -P conditions and sampled twice a week. We used Isotope Ratio Mass-Spectrometry to measure δ13C in roots and shoots after a 2-h exposure to 13C-labeled glycine (0, 50, or 500 µmol L-1). Plant physiology was assessed with an InfraRed Gas Analyzer and ionome with an Inductively Coupled Plasma Mass-Spectrometry. RESULTS: Glycine uptake varied with concentration, suggesting an involvement of root transporters with different substrate affinities. The uptake decreased over time, with -Fe and -P showing significantly higher values as compared to the Control. This highlights its importance during germination and in nutrient-deficient plants. Translocation to shoots declined over time in -P and Control but increased in -Fe plants, suggesting a role of Gly in the Fe xylem transport. CONCLUSIONS: Root exudates, i.e. glycine, acquisition and their subsequent shoot translocation depend on Fe and P deficiency. The present findings highlight the importance of this adaptation to nutrient deficiencies, that can potentially enhance plants fitness. A thorough comprehension of this trait holds potential significance for selecting cultivars that can better withstand abiotic stresses.


Glycine , Phosphorus , Plant Roots , Solanum lycopersicum , Solanum lycopersicum/metabolism , Solanum lycopersicum/growth & development , Glycine/metabolism , Plant Roots/metabolism , Plant Roots/growth & development , Phosphorus/metabolism , Phosphorus/deficiency , Iron Deficiencies , Iron/metabolism , Biological Transport , Seedlings/metabolism , Seedlings/growth & development , Plant Shoots/metabolism , Plant Shoots/growth & development
8.
Nat Commun ; 15(1): 4689, 2024 Jun 01.
Article En | MEDLINE | ID: mdl-38824148

Global warming will lead to significantly increased temperatures on earth. Plants respond to high ambient temperature with altered developmental and growth programs, termed thermomorphogenesis. Here we show that thermomorphogenesis is conserved in Arabidopsis, soybean, and rice and that it is linked to a decrease in the levels of the two macronutrients nitrogen and phosphorus. We also find that low external levels of these nutrients abolish root growth responses to high ambient temperature. We show that in Arabidopsis, this suppression is due to the function of the transcription factor ELONGATED HYPOCOTYL 5 (HY5) and its transcriptional regulation of the transceptor NITRATE TRANSPORTER 1.1 (NRT1.1). Soybean and Rice homologs of these genes are expressed consistently with a conserved role in regulating temperature responses in a nitrogen and phosphorus level dependent manner. Overall, our data show that root thermomorphogenesis is a conserved feature in species of the two major groups of angiosperms, monocots and dicots, that it leads to a reduction of nutrient levels in the plant, and that it is dependent on environmental nitrogen and phosphorus supply, a regulatory process mediated by the HY5-NRT1.1 module.


Arabidopsis Proteins , Arabidopsis , Gene Expression Regulation, Plant , Glycine max , Nitrogen , Oryza , Phosphorus , Plant Roots , Arabidopsis/genetics , Arabidopsis/growth & development , Arabidopsis/metabolism , Phosphorus/metabolism , Nitrogen/metabolism , Plant Roots/growth & development , Plant Roots/metabolism , Plant Roots/genetics , Oryza/genetics , Oryza/growth & development , Oryza/metabolism , Arabidopsis Proteins/metabolism , Arabidopsis Proteins/genetics , Glycine max/genetics , Glycine max/growth & development , Glycine max/metabolism , Nutrients/metabolism , Plant Proteins/metabolism , Plant Proteins/genetics , Nuclear Proteins/metabolism , Nuclear Proteins/genetics , Hot Temperature , Nitrate Transporters , Anion Transport Proteins/metabolism , Anion Transport Proteins/genetics , Temperature , Basic-Leucine Zipper Transcription Factors
9.
Sci Rep ; 14(1): 11603, 2024 05 21.
Article En | MEDLINE | ID: mdl-38773236

Zikui (Camellia sinensis cv. Zikui) is a recently discovered cultivar of local purple tea in Guizhou, China. It is a purple leaf bud mutation material of Meitan Taicha (Camellia sinensis cv. 'Meitan-taicha') 'N61' strain, which is an important local germplasm resource in Guizhou. It is also a model plant for the study of anthocyanins, but the limited germplasm resources and the limitation of traditional reproduction hinder its application. Here, an efficient regeneration system is established by using hypocotyl as explants for the first time. Different plant growth regulators (PGRs) are evaluated during different regeneration processes including callus and root induction. According to our findings, using the optimal disinfection conditions, the seed embryo contamination rate is 17.58%. Additionally, the mortality rate is 9.69%, while the survival rate is measured as 72.73%. Moreover, the highest germination rate of 93.64% is observed under MS + 2.40 mg/L GA3 medium conditions. The optimal callus induction rate is 95.19%, while the optimal adventitious bud differentiation rate is 20.74%, Medium with 1.6 mg/L IBA achieved 68.6% rooting of the adventitious shoots. The survival rate is more than 65% after 6 days growth in the cultivated matrix. In summary, our research aims to establish a regeneration system for Zikui tea plants and design a transformation system for tea plant tissue seedlings. This will enable transfer of the target gene and ultimately facilitate the cultivation of new tea varieties with unique characteristics.


Camellia sinensis , Hypocotyl , Plant Growth Regulators , Regeneration , Hypocotyl/growth & development , Camellia sinensis/growth & development , Camellia sinensis/physiology , Camellia sinensis/genetics , Plant Growth Regulators/metabolism , Plant Growth Regulators/pharmacology , Plant Roots/growth & development , Germination , Tea
10.
Chemosphere ; 358: 142199, 2024 Jun.
Article En | MEDLINE | ID: mdl-38692366

Industrial hemp (Cannabis sativa L.) has great application potential in heavy metal-polluted soils owing to its safe non-food utilization. However, the fate of heavy metals in different varieties of hemp planted in strongly contaminated natural soils remains unknown. Here, we investigated the growth, heavy metal uptake, distribution, and transfer of nine hemp varieties in soils strongly contaminated with Cu, As, Cd, and Pb. Hemp variety and metal type were the main factors affecting the growth and heavy metal uptake in hemp. The nine hemp varieties grew well in the contaminated soils; however, differences existed among the varieties. The biomass of Z3 reached 5669.1 kg hm-1, whereas that of Yunma No. 1 was only 51.8 % of Z3. The plant height, stalk diameter, and stalk bark thickness of Z3 were greater than those of the other varieties, reaching 168 cm, 9.2 mm, and 0.56 mm, respectively. Permanova's analysis revealed that the total effects of Cu, As, Cd, and Pb on the growth of the nine hemp varieties reached 60 %, with leaf As having the greatest effect, reaching 16 %. , Even in strongly contaminated soils, the nine varieties showed poor Cu, As, Cd, and Pb uptake. Most of the Cu, As, Cd, and Pb were retained in the root, reaching 57.7-72.4, 47.6-64.7, 76.0-92.9, and 70.0-87.8 %, respectively. Overall, the Cu, As, Cd, and Pb uptake of Wanma No.1 was the highest among the nine varieties, whereas that of Guangxi Bama was the lowest. These results indicate that hemp is a viable alternative for phytoattenuation in soils contaminated with heavy metals because of its ability to tolerate and accumulate Cu, As, Cd, and Pb in its roots, and Guangxi Bama is superior to the other varieties considering the safe utilization of hemp products.


Arsenic , Biodegradation, Environmental , Cadmium , Cannabis , Copper , Lead , Metals, Heavy , Soil Pollutants , Soil , Cannabis/growth & development , Cannabis/metabolism , Soil Pollutants/metabolism , Soil Pollutants/analysis , Metals, Heavy/analysis , Metals, Heavy/metabolism , Lead/metabolism , Lead/analysis , Cadmium/metabolism , Cadmium/analysis , Arsenic/metabolism , Arsenic/analysis , Copper/analysis , Soil/chemistry , Biomass , Plant Roots/metabolism , Plant Roots/growth & development
11.
Chemosphere ; 358: 142203, 2024 Jun.
Article En | MEDLINE | ID: mdl-38697571

Excessive release of chromium (Cr) from the tanning industry and antibiotics from livestock caused severe hazards to humans. Gallic acid (GA 10 mM) alleviated alone/combined SDZ 30 mg kg-1 and TWW 40, 60, and 100% stress in wheat. GA (10 mM) decreased the TSP 12 and 13%, TFAA 8 and 10%, TSS 14 and 16%, RS 18 and 16%, and NRS 11 and 9% in shoots and grains under SDZ + TWW (30 mg kg-1+100%), compared without foliar. GA (10 mM) declined the MDA 20 and 31, EL 13 and 36%, H2O2 17 and 15%, O2•- 10 and 11% in leaves and roots, under combined SDZ + TWW (30 mg kg-1+100%), compared without foliar. GA (10 mM) improved the POD 106 and 30%, SOD 145 and 31%, CAT 78, and 35%, APX 100 and 25% in leaves and roots under combined SDZ + TWW (30 mg kg-1+100%), compared without foliar application. Considerably GA (10 mM) reduced total Cr 18, CrIII 20, and CrVI 50% in roots and shoots 19, 41, and 48%, and grains 15, 27, and 29% respectively, under combined SDZ + TWW (30 mg kg-1+100%) stress, compared without foliar. Overall, GA boosted the wheat growth, physiology, and defence system by inhibiting the combined SDZ + Cr toxicity.


Gallic Acid , Sulfadiazine , Tanning , Triticum , Wastewater , Triticum/drug effects , Triticum/growth & development , Wastewater/chemistry , Sulfadiazine/toxicity , Chromium/toxicity , Plant Roots/drug effects , Plant Roots/growth & development , Soil Pollutants/toxicity , Plant Leaves/drug effects
12.
Physiol Plant ; 176(3): e14336, 2024.
Article En | MEDLINE | ID: mdl-38783514

The tiller inhibition (tin) and Reduced height (Rht) genes strongly influence the carbon partitioning and architecture of wheat shoots, but their effects on the energy economy of roots have not been examined in detail. We examined multiple root traits in three sets of near-isogenic wheat lines (NILs) that differ in the tin gene or various dwarfing gene alleles (Rht-B1b, Rht-D1b, Rht-B1c and Rht-B1b + Rht-D1b) to determine their effects on root structure, anatomy and carbon allocation. The tin gene resulted in fewer tillers but more costly roots in an extreme tin phenotype with a Banks genetic background due to increases in root-to-shoot ratio, total root length, and whole root respiration. However, this effect depended on the genetic background as tin caused both smaller shoots and roots in a different genetic background. The semi-dwarf gene Rht-B1b caused few changes to the root structure, whereas Rht-D1b, Rht-B1c and the double dwarf (Rht-B1b + Rht-D1b) decreased the root biomass. Rht-B1c reduced the energy cost of roots by increasing specific root length, increasing the volume of cortical aerenchyma and by reducing root length, number, and biomass without affecting the root-to-shoot ratio. This work informs researchers using tin and Rht genes how to modify root system architecture to suit specific environments.


Phenotype , Plant Roots , Triticum , Triticum/genetics , Triticum/growth & development , Triticum/physiology , Triticum/metabolism , Plant Roots/genetics , Plant Roots/growth & development , Plant Roots/anatomy & histology , Plant Roots/metabolism , Plant Shoots/genetics , Plant Shoots/growth & development , Genes, Plant/genetics , Biomass
13.
Funct Plant Biol ; 512024 05.
Article En | MEDLINE | ID: mdl-38753957

Detrimental effects of salinity could be mitigated by exogenous zinc (Zn) application; however, the mechanisms underlying this amelioration are poorly understood. This study demonstrated the interaction between Zn and salinity by measuring plant biomass, photosynthetic performance, ion concentrations, ROS accumulation, antioxidant activity and electrophysiological parameters in barley (Hordeum vulgare L.). Salinity stress (200mM NaCl for 3weeks) resulted in a massive reduction in plant biomass; however, both fresh and dry weight of shoots were increased by ~30% with adequate Zn supply. Zinc supplementation also maintained K+ and Na+ homeostasis and prevented H2 O2 toxicity under salinity stress. Furthermore, exposure to 10mM H2 O2 resulted in massive K+ efflux from root epidermal cells in both the elongation and mature root zones, and pre-treating roots with Zn reduced ROS-induced K+ efflux from the roots by 3-4-fold. Similar results were observed for Ca2+ . The observed effects may be causally related to more efficient regulation of cation-permeable non-selective channels involved in the transport and sequestration of Na+ , K+ and Ca2+ in various cellular compartments and tissues. This study provides valuable insights into Zn protective functions in plants and encourages the use of Zn fertilisers in barley crops grown on salt-affected soils.


Homeostasis , Hordeum , Plant Roots , Potassium , Salinity , Zinc , Hordeum/drug effects , Hordeum/growth & development , Hordeum/metabolism , Plant Roots/drug effects , Plant Roots/growth & development , Plant Roots/metabolism , Zinc/pharmacology , Zinc/metabolism , Homeostasis/drug effects , Potassium/metabolism , Reactive Oxygen Species/metabolism , Sodium/metabolism , Salt Stress/drug effects , Photosynthesis/drug effects , Hydrogen Peroxide/metabolism , Antioxidants/pharmacology , Antioxidants/metabolism
14.
Arch Microbiol ; 206(6): 282, 2024 May 29.
Article En | MEDLINE | ID: mdl-38806859

Plant growth-promoting rhizobacteria (PGPR) offer an eco-friendly alternative to agrochemicals for better plant growth and development. Here, we evaluated the plant growth promotion abilities of actinobacteria isolated from the tea (Camellia sinensis) rhizosphere of Darjeeling, India. 16 S rRNA gene ribotyping of 28 isolates demonstrated the presence of nine different culturable actinobacterial genera. Assessment of the in vitro PGP traits revealed that Micrococcus sp. AB420 exhibited the highest level of phosphate solubilization (i.e., 445 ± 2.1 µg/ml), whereas Kocuria sp. AB429 and Brachybacterium sp. AB440 showed the highest level of siderophore (25.8 ± 0.1%) and IAA production (101.4 ± 0.5 µg/ml), respectively. Biopriming of maize seeds with the individual actinobacterial isolate revealed statistically significant growth in the treated plants compared to controls. Among them, treatment with Paenarthrobacter sp. AB416 and Brachybacterium sp. AB439 exhibited the highest shoot and root length. Biopriming has also triggered significant enzymatic and non-enzymatic antioxidative defense reactions in maize seedlings both locally and systematically, providing a critical insight into their possible role in the reduction of reactive oxygen species (ROS) burden. To better understand the role of actinobacterial isolates in the modulation of plant defense, three selected actinobacterial isolates, AB426 (Brevibacterium sp.), AB427 (Streptomyces sp.), and AB440 (Brachybacterium sp.) were employed to evaluate the dynamics of induced systemic resistance (ISR) in maize. The expression profile of five key genes involved in SA and JA pathways revealed that bio-priming with actinobacteria (Brevibacterium sp. AB426 and Brachybacterium sp. AB440) preferably modulates the JA pathway rather than the SA pathway. The infection studies in bio-primed maize plants resulted in a delay in disease progression by the biotrophic pathogen Ustilago maydis in infected maize plants, suggesting the positive efficacy of bio-priming in aiding plants to cope with biotic stress. Conclusively, this study unravels the intrinsic mechanisms of PGPR-mediated ISR dynamics in bio-primed plants, offering a futuristic application of these microorganisms in the agricultural fields as an eco-friendly alternative.


Actinobacteria , Camellia sinensis , Rhizosphere , Seeds , Soil Microbiology , Zea mays , Zea mays/microbiology , Zea mays/growth & development , Zea mays/metabolism , Actinobacteria/genetics , Actinobacteria/isolation & purification , Actinobacteria/metabolism , Seeds/microbiology , Seeds/growth & development , Seeds/metabolism , Camellia sinensis/microbiology , Camellia sinensis/growth & development , Camellia sinensis/genetics , Camellia sinensis/metabolism , India , Plant Roots/microbiology , Plant Roots/growth & development , Signal Transduction , RNA, Ribosomal, 16S/genetics , Plant Growth Regulators/metabolism , Indoleacetic Acids/metabolism , Siderophores/metabolism
15.
Environ Sci Pollut Res Int ; 31(23): 34368-34380, 2024 May.
Article En | MEDLINE | ID: mdl-38703317

Manganese-based (Mn-based) nanomaterials (NMs) have great potential as alternatives to conventional Mn fertilizers. Yet, its environmental risks and effects on plant growth are not completely well understood. This study investigated the physiological effects of manganese dioxide (MnO2) and manganese tetroxide (Mn3O4) NMs on inter-root exposure (0-500 mg/L) of hydroponically grown rice. The results showed that on inter-root exposure, 50 mg/L Mn-based NMs promoted the uptake of mineral elements and enhanced the enzymatic activities of antioxidant systems (CAT and SOD) in rice, whereas 500 mg/L Mn3O4 NMs disrupted the mineral element homeostasis and led to phytotoxicity. The promotion effect of MnO2 NMs was better, firstly because MnO2 NMs treatment had lower Mn content in the plant than Mn3O4 NMs. In addition, MnO2 NMs are more transported and absorbed in the plant in ionic form, while Mn3O4 NMs exist in granular form. MnO2 NMs and Mn3O4 NMs both can be used as nano-fertilizers to improve the growth of rice by inter-root application, but the doses should be carefully selected.


Manganese , Oryza , Oryza/growth & development , Oryza/drug effects , Manganese/toxicity , Fertilizers , Nanostructures/toxicity , Manganese Compounds , Oxides , Plant Roots/drug effects , Plant Roots/growth & development
16.
PeerJ ; 12: e17285, 2024.
Article En | MEDLINE | ID: mdl-38708359

Background: Waterlogging poses a significant threat to plant growth and yield worldwide. Identifying the genes responsible for mitigating waterlogging stress is crucial. Ethylene-responsive factors (ERFs) are transcriptional regulators that respond to various biotic and abiotic stresses in plants. However, their roles and involvement in responding to waterlogging stress remain largely unexplored. Hence, this study aimed to elucidate the role of ERFs in enhancing banana plant resilience to waterlogging. Methods: We hypothesized that introducing a group VII ERF transcription factor in Arabidopsis could enhance waterlogging stress tolerance. To test this hypothesis, we isolated MaERFVII3 from banana roots, where it exhibited a significant induction in response to waterlogging stress. The isolated MaERFVII3 was introduced into Arabidopsis plants for functional gene studies. Results: Compared with wild-type plants, the MaERFVII3-expressing Arabidopsis showed increased survival and biomass under waterlogging stress. Furthermore, the abundance of transcripts related to waterlogging and hypoxia response showed an elevation in transgenic plants but a decrease in wild-type and empty vector plants when exposed to waterlogging stress. Our results demonstrate the significant contribution of MaERFVII3 to waterlogging tolerance in Arabidopsis, providing baseline data for further exploration and potentially contributing to crop improvement programs.


Musa , Plant Proteins , Plants, Genetically Modified , Stress, Physiological , Transcription Factors , Arabidopsis/genetics , Arabidopsis/growth & development , Arabidopsis/physiology , Gene Expression Regulation, Plant , Musa/genetics , Musa/growth & development , Musa/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Plant Roots/growth & development , Plant Roots/genetics , Plant Roots/metabolism , Plants, Genetically Modified/genetics , Transcription Factors/genetics , Transcription Factors/metabolism , Water/metabolism
17.
Zhongguo Zhong Yao Za Zhi ; 49(8): 2128-2137, 2024 Apr.
Article Zh | MEDLINE | ID: mdl-38812228

The rhizosphere is an important place for material exchange between medicinal plants and soil. Root exudates are the medium of material and signal exchange between plants and soil and are the key factors in the regulation of rhizosphere microecology. Rhizosphere microorganisms are an important part of the rhizosphere microecology of medicinal plants, and the interaction between root exudates and rhizosphere microorganisms has an important influence on the growth and quality formation of medicinal plants. Rational utilization of the interaction between root exudates and rhizosphere microorganisms of medicinal plants is one of the important ways to ensure the healthy growth of medicinal plants and promote the development of ecological planting of Chinese medicinal materials. In the paper, the research status of root exudates and rhizosphere microorganisms of medicinal plants in recent years was summarized. The interaction mechanism between root exudates and rhizosphere microorganisms of medicinal plants, as well as the influence of rhizosphere microorganisms on the growth of medicinal plants, were analyzed. In addition, the advantages and promoting effects of intercropping ecological planting mode on rhizosphere microecology of medicinal plants and quality improvement of Chinese medicinal materials were explained, providing a good basis for the study of the interaction among medicinal plants, microorganisms, and soil. Furthermore, it could produce important theoretical and practical significance for the ecological planting and sustainable utilization of medicinal plants.


Plant Roots , Plants, Medicinal , Rhizosphere , Soil Microbiology , Plants, Medicinal/metabolism , Plants, Medicinal/microbiology , Plants, Medicinal/chemistry , Plants, Medicinal/growth & development , Plant Roots/microbiology , Plant Roots/metabolism , Plant Roots/growth & development , Bacteria/metabolism , Bacteria/classification , Plant Exudates/metabolism , Plant Exudates/chemistry
18.
Sci Total Environ ; 934: 172955, 2024 Jul 15.
Article En | MEDLINE | ID: mdl-38719045

Biomass is an important indicator of the ability of tropical forests to deliver ecosystem services, but little attention has been given to belowground biomass and its drivers in human-modified landscapes. Here, we investigated the belowground biomass and nutrient concentration/stocks (C, P, and N) across regenerating forest stands with varying ages (10-76 years old) and old-growth forests in the Caatinga dry forest (northeastern Brazil) in the context of slash-and-burn agriculture. Belowground biomass ranged from 1.89 ± 0.33 Mg ha-1 to 17.53 ± 2.28 Mg ha-1 (mean ± SE) across regenerating forest stands and averaged 8.33 ± 1.59 Mg ha-1, with no differences compared to old-growth stands. However, regenerating stands exhibited a higher root/shoot ratio with biomass concentrated in the superficial soil layer and in large-sized roots, regardless of the successional stage. Root nutrient concentration and stocks were highly variable across forest stands with fine roots supporting a higher concentration of N and P, while regenerating stands supported lower nutrient stocks as compared to old-growth forests. Finally, precipitation and chronic disturbance emerged as the most important drivers of belowground biomass and nutrient concentrations/stocks, while aboveground biomass played a negligible role. Our results indicate that, in human-modified landscapes of tropical dry forests, belowground biomass and nutrients play important roles in ecosystem functions in regenerated forests after slash-and-burn agriculture. Forest resilience and provision of ecosystem services (e.g., nutrient cycling) appear to be very sensitive to increased aridity and exploitation of forest resources.


Agriculture , Biomass , Forests , Plant Roots , Tropical Climate , Agriculture/methods , Plant Roots/growth & development , Plant Roots/physiology , Brazil , Humans , Conservation of Natural Resources/methods , Nutrients
19.
Physiol Plant ; 176(3): e14315, 2024.
Article En | MEDLINE | ID: mdl-38693794

Rapeseed (Brassica napus L.) is an oil-containing crop of great economic value but with considerable nitrogen requirement. Breeding root systems that efficiently absorb nitrogen from the soil could be a driver to ensure genetic gains for more sustainable rapeseed production. The aim of this study is to identify genomic regions that regulate root morphology in response to nitrate availability. The natural variability offered by 300 inbred lines was screened at two experimental locations. Seedlings grew hydroponically with low or elevated nitrate levels. Fifteen traits related to biomass production and root morphology were measured. On average across the panel, a low nitrate level increased the root-to-shoot biomass ratio and the lateral root length. A large phenotypic variation was observed, along with important heritability values and genotypic effects, but low genotype-by-nitrogen interactions. Genome-wide association study and bulk segregant analysis were used to identify loci regulating phenotypic traits. The first approach nominated 319 SNPs that were combined into 80 QTLs. Three QTLs identified on the A07 and C07 chromosomes were stable across nitrate levels and/or experimental locations. The second approach involved genotyping two groups of individuals from an experimental F2 population created by crossing two accessions with contrasting lateral root lengths. These individuals were found in the tails of the phenotypic distribution. Co-localized QTLs found in both mapping approaches covered a chromosomal region on the A06 chromosome. The QTL regions contained some genes putatively involved in root organogenesis and represent selection targets for redesigning the root morphology of rapeseed.


Brassica napus , Nitrogen , Phenotype , Plant Roots , Quantitative Trait Loci , Plant Roots/genetics , Plant Roots/anatomy & histology , Plant Roots/growth & development , Plant Roots/metabolism , Nitrogen/metabolism , Quantitative Trait Loci/genetics , Brassica napus/genetics , Brassica napus/growth & development , Brassica napus/anatomy & histology , Brassica napus/metabolism , Genotype , Genome-Wide Association Study , Polymorphism, Single Nucleotide/genetics , Biomass , Nitrates/metabolism , Chromosome Mapping , Genetic Variation
20.
Glob Chang Biol ; 30(5): e17310, 2024 May.
Article En | MEDLINE | ID: mdl-38747174

Enhanced rock weathering (ERW) has been proposed as a measure to enhance the carbon (C)-sequestration potential and fertility of soils. The effects of this practice on the soil phosphorus (P) pools and the general mechanisms affecting microbial P cycling, as well as plant P uptake are not well understood. Here, the impact of ERW on soil P availability and microbial P cycling functional groups and root P-acquisition traits were explored through a 2-year wollastonite field addition experiment in a tropical rubber plantation. The results show that ERW significantly increased soil microbial carbon-use efficiency and total P concentrations and indirectly increased soil P availability by enhancing organic P mobilization and mineralization of rhizosheath carboxylates and phosphatase, respectively. Also, ERW stimulated the activities of P-solubilizing (gcd, ppa and ppx) and mineralizing enzymes (phoADN and phnAPHLFXIM), thus contributing to the inorganic P solubilization and organic P mineralization. Accompanying the increase in soil P availability, the P-acquisition strategy of the rubber fine roots changed from do-it-yourself acquisition by roots to dependence on mycorrhizal collaboration and the release of root exudates. In addition, the direct effects of ERW on root P-acquisition traits (such as root diameter, specific root length, and mycorrhizal colonization rate) may also be related to changes in the pattern of belowground carbon investments in plants. Our study provides a new insight that ERW increases carbon-sequestration potential and P availability in tropical forests and profoundly affects belowground plant resource-use strategies.


Phosphorus , Plant Roots , Silicates , Soil Microbiology , Soil , Phosphorus/metabolism , Soil/chemistry , Plant Roots/metabolism , Plant Roots/growth & development , Silicates/metabolism , Mycorrhizae/physiology , Calcium Compounds , Carbon/metabolism
...