Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 39
Filter
Add more filters










Publication year range
1.
Int J Mol Sci ; 25(13)2024 Jun 27.
Article in English | MEDLINE | ID: mdl-39000188

ABSTRACT

Premature leaf senescence significantly reduces rice yields. Despite identifying numerous factors influencing these processes, the intricate genetic regulatory networks governing leaf senescence demand further exploration. We report the characterization of a stably inherited, ethyl methanesulfonate(EMS)-induced rice mutant with wilted leaf tips from seedling till harvesting, designated lts2. This mutant exhibits dwarfism and early senescence at the leaf tips and margins from the seedling stage when compared to the wild type. Furthermore, lts2 displays a substantial decline in both photosynthetic activity and chlorophyll content. Transmission electron microscopy revealed the presence of numerous osmiophilic granules in chloroplast cells near the senescent leaf tips, indicative of advanced cellular senescence. There was also a significant accumulation of H2O2, alongside the up-regulation of senescence-associated genes within the leaf tissues. Genetic mapping situated lts2 between SSR markers Q1 and L12, covering a physical distance of approximately 212 kb in chr.1. No similar genes controlling a premature senescence leaf phenotype have been identified in the region, and subsequent DNA and bulk segregant analysis (BSA) sequencing analyses only identified a single nucleotide substitution (C-T) in the exon of LOC_Os01g35860. These findings position the lts2 mutant as a valuable genetic model for elucidating chlorophyll metabolism and for further functional analysis of the gene in rice.


Subject(s)
Chlorophyll , Mutation , Oryza , Plant Leaves , Oryza/genetics , Oryza/metabolism , Oryza/growth & development , Plant Leaves/genetics , Plant Leaves/metabolism , Chlorophyll/metabolism , Plant Senescence/genetics , Chromosome Mapping , Phenotype , Gene Expression Regulation, Plant , Photosynthesis/genetics , Genes, Plant , Hydrogen Peroxide/metabolism
2.
BMC Plant Biol ; 24(1): 734, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39085786

ABSTRACT

BACKGROUND: Isopentenyltransferases (IPT) serve as crucial rate-limiting enzyme in cytokinin synthesis, playing a vital role in plant growth, development, and resistance to abiotic stress. RESULTS: Compared to the wild type, transgenic creeping bentgrass exhibited a slower growth rate, heightened drought tolerance, and improved shade tolerance attributed to delayed leaf senescence. Additionally, transgenic plants showed significant increases in antioxidant enzyme levels, chlorophyll content, and soluble sugars. Importantly, this study uncovered that overexpression of the MtIPT gene not only significantly enhanced cytokinin and auxin content but also influenced brassinosteroid level. RNA-seq analysis revealed that differentially expressed genes (DEGs) between transgenic and wild type plants were closely associated with plant hormone signal transduction, steroid biosynthesis, photosynthesis, flavonoid biosynthesis, carotenoid biosynthesis, anthocyanin biosynthesis, oxidation-reduction process, cytokinin metabolism, and wax biosynthesis. And numerous DEGs related to growth, development, and stress tolerance were identified, including cytokinin signal transduction genes (CRE1, B-ARR), antioxidase-related genes (APX2, PEX11, PER1), Photosynthesis-related genes (ATPF1A, PSBQ, PETF), flavonoid synthesis genes (F3H, C12RT1, DFR), wax synthesis gene (MAH1), senescence-associated gene (SAG20), among others. CONCLUSION: These findings suggest that the MtIPT gene acts as a negative regulator of plant growth and development, while also playing a crucial role in the plant's response to abiotic stress.


Subject(s)
Agrostis , Alkyl and Aryl Transferases , Cytokinins , Droughts , Plant Leaves , Plant Senescence , Plants, Genetically Modified , Agrostis/genetics , Agrostis/physiology , Agrostis/metabolism , Alkyl and Aryl Transferases/genetics , Alkyl and Aryl Transferases/metabolism , Plants, Genetically Modified/genetics , Plant Senescence/genetics , Plant Leaves/genetics , Plant Leaves/physiology , Cytokinins/metabolism , Gene Expression Regulation, Plant , Plant Growth Regulators/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Stress, Physiological/genetics , Photosynthesis/genetics , Genes, Plant , Drought Resistance
3.
Physiol Plant ; 176(3): e14374, 2024.
Article in English | MEDLINE | ID: mdl-38837422

ABSTRACT

Heat stress substantially reduces tomato (Solanum lycopersicum) growth and yield globally, thereby jeopardizing food security. DnaJ proteins, constituents of the heat shock protein system, protect cells from diverse environmental stresses as HSP-70 molecular co-chaperones. In this study, we demonstrated that AdDjSKI, a serine-rich DnaJ III protein induced by pathogens, plays an important role in stabilizing photosystem II (PSII) in response to heat stress. Our results revealed that transplastomic tomato plants expressing the AdDjSKI gene exhibited increased levels of total soluble proteins, improved growth and chlorophyll content, reduced malondialdehyde (MDA) accumulation, and diminished PSII photoinhibition under elevated temperatures when compared with wild-type (WT) plants. Intriguingly, these transplastomic plants maintained higher levels of D1 protein under elevated temperatures compared with the WT plants, suggesting that overexpression of AdDjSKI in plastids is crucial for PSII protection, likely due to its chaperone activity. Furthermore, the transplastomic plants displayed lower accumulation of superoxide radical (O2 •─) and H2O2, in comparison with the WT plants, plausibly attributed to higher superoxide dismutase (SOD) and ascorbate peroxidase (APX) activities. This also coincides with an enhanced expression of corresponding genes, including SlCuZnSOD, SlFeSOD, SlAPX2, and SltAPX, under heat stress. Taken together, our findings reveal that chloroplastic expression of AdDjSKI in tomatoes plays a critical role in fruit yield, primarily through a combination of delayed senescence and stabilizing PSII under heat stress.


Subject(s)
Fruit , Heat-Shock Response , Photosystem II Protein Complex , Plant Leaves , Plant Proteins , Plastids , Solanum lycopersicum , Solanum lycopersicum/genetics , Solanum lycopersicum/physiology , Solanum lycopersicum/growth & development , Solanum lycopersicum/metabolism , Photosystem II Protein Complex/metabolism , Photosystem II Protein Complex/genetics , Heat-Shock Response/genetics , Fruit/genetics , Fruit/growth & development , Fruit/physiology , Fruit/metabolism , Plant Proteins/metabolism , Plant Proteins/genetics , Plant Leaves/genetics , Plant Leaves/physiology , Plant Leaves/metabolism , Plastids/metabolism , Plastids/genetics , Chlorophyll/metabolism , HSP40 Heat-Shock Proteins/metabolism , HSP40 Heat-Shock Proteins/genetics , Plants, Genetically Modified , Plant Senescence/genetics , Gene Expression Regulation, Plant , Malondialdehyde/metabolism
4.
BMC Genomics ; 25(1): 621, 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38898417

ABSTRACT

BACKGROUND: Whole plant senescence represents the final stage in the life cycle of annual plants, characterized by the decomposition of aging organs and transfer of nutrients to seeds, thereby ensuring the survival of next generation. However, the transcriptomic profile of vegetative organs during this death process remains to be fully elucidated, especially regarding the distinctions between natural programmed death and artificial sudden death induced by herbicide. RESULTS: Differential genes expression analysis using RNA-seq in leaves and roots of Arabidopsis thaliana revealed that natural senescence commenced in leaves at 45-52 days after planting, followed by roots initiated at 52-60 days. Additionally, both organs exhibited similarities with artificially induced senescence by glyphosate. Transcription factors Rap2.6L and WKRY75 appeared to serve as central mediators of regulatory changes during natural senescence, as indicated by co-expression networks. Furthermore, the upregulation of RRTF1, exclusively observed during natural death, suggested its role as a regulator of jasmonic acid and reactive oxygen species (ROS) responses, potentially triggering nitrogen recycling in leaves, such as the glutamate dehydrogenase (GDH) shunt. Root senescence was characterized by the activation of AMT2;1 and GLN1;3, facilitating ammonium availability for root-to-shoot translocation, likely under the regulation of PDF2.1. CONCLUSIONS: Our study offers valuable insights into the transcriptomic interplay between phytohormones and ROS during whole plant senescence. We observed distinct regulatory networks governing nitrogen utilization in leaf and root senescence processes. Furthermore, the efficient allocation of energy from vegetative organs to seeds emerges as a critical determinant of population sustainability of annual Arabidopsis.


Subject(s)
Arabidopsis , Gene Expression Profiling , Gene Expression Regulation, Plant , Herbicides , Plant Senescence , Arabidopsis/genetics , Arabidopsis/growth & development , Arabidopsis/drug effects , Arabidopsis/metabolism , Herbicides/pharmacology , Herbicides/toxicity , Gene Expression Regulation, Plant/drug effects , Plant Senescence/genetics , Plant Leaves/drug effects , Plant Leaves/genetics , Plant Leaves/metabolism , Plant Leaves/growth & development , Plant Roots/growth & development , Plant Roots/drug effects , Plant Roots/metabolism , Plant Roots/genetics , Transcriptome , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Reactive Oxygen Species/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism
5.
Plant Physiol Biochem ; 213: 108805, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38861819

ABSTRACT

Transcription factors play crucial roles in almost all physiological processes including leaf senescence. Cell death is a typical symptom appearing in senescing leaves, which is also classified as developmental programmed cell death (PCD). However, the link between PCD and leaf senescence still remains unclear. Here, we found a WRKY transcription factor WRKY47 positively modulates age-dependent leaf senescence in Arabidopsis (Arabidopsis thaliana). WRKY47 was expressed preferentially in senescing leaves. A subcellular localization assay indicated that WRKY47 was exclusively localized in nuclei. Overexpression of WRKY47 showed precocious leaf senescence, with less chlorophyll content and higher electrolyte leakage, but loss-of-function mutants of WRKY47 delayed this biological process. Through qRT-PCR and dual luciferase reporter assays, we found that WRKY47 could activate the expression of senescence-associated genes (SAGs) and PCD-associated genes to regulate leaf senescence. Furthermore, through electrophoretic mobility shift assay (EMSA) and chromatin immunoprecipitation (ChIP)-qPCR, WRKY47 was found to bind to W-box fragments in promoter regions of BFN1 (Bifunctional Nuclease 1) and MC6 (Metacaspase 6) directly. In general, our research revealed that WRKY47 regulates age-dependent leaf senescence by activating the transcription of two PCD-associated genes.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Gene Expression Regulation, Plant , Plant Leaves , Plant Senescence , Transcription Factors , Apoptosis/genetics , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Plant Leaves/metabolism , Plant Leaves/genetics , Plant Senescence/genetics , Promoter Regions, Genetic/genetics , Transcription Factors/metabolism , Transcription Factors/genetics
6.
Plant Mol Biol ; 114(3): 63, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38805152

ABSTRACT

Senescence is a multifaceted and dynamic developmental phase pivotal in the plant's lifecycle, exerting significant influence and involving intricate regulatory mechanisms marked by a variety of structural, biochemical and molecular alterations. Biochemical changes, including reactive oxygen species (ROS) generation, membrane deterioration, nucleic acid degradation and protein degradation, characterize flower senescence. The progression of senescence entails a meticulously orchestrated network of interconnected molecular mechanisms and signalling pathways, ensuring its synchronized and efficient execution. Within flowering plants, petal senescence emerges as a crucial aspect significantly impacting flower longevity and postharvest quality, emphasizing the pressing necessity of unravelling the underlying signalling cascades orchestrating this process. Understanding the complex signalling pathways regulating petal senescence holds paramount importance, not only shedding light on the broader phenomenon of plant senescence but also paving the way for the development of targeted strategies to enhance the postharvest longevity of cut flowers. Various signalling pathways participate in petal senescence, encompassing hormone signalling, calcium signalling, protein kinase signalling and ROS signalling. Among these, the ethylene signalling pathway is extensively studied, and the manipulation of genes associated with ethylene biosynthesis or signal transduction has demonstrated the potential to enhance flower longevity. A thorough understanding of these complex pathways is critical for effectively delaying flower senescence, thereby enhancing postharvest quality and ornamental value. Therefore, this review adopts a viewpoint that combines fundamental research into the molecular intricacies of senescence with a practical orientation towards developing strategies for improving the postharvest quality of cut flowers. The innovation of this review is to shed light on the pivotal signalling cascades underpinning flower senescence and offer insights into potential approaches for modulating these pathways to postpone petal senescence in ornamental plants.


Subject(s)
Cell Death , Flowers , Reactive Oxygen Species , Signal Transduction , Flowers/genetics , Flowers/physiology , Flowers/growth & development , Reactive Oxygen Species/metabolism , Ethylenes/metabolism , Plant Senescence/genetics , Gene Expression Regulation, Plant , Plant Growth Regulators/metabolism , Plant Proteins/metabolism , Plant Proteins/genetics
7.
BMC Plant Biol ; 24(1): 419, 2024 May 18.
Article in English | MEDLINE | ID: mdl-38760728

ABSTRACT

BACKGROUND: Rice (Oryza sativa L.) is one of the most important food crops in the world and the application of nitrogen fertilizer is an effective means of ensuring stable and high rice yields. However, excessive application of nitrogen fertilizer not only causes a decline in the quality of rice, but also leads to a series of environmental costs. Nitrogen reutilization is closely related to leaf senescence, and nitrogen deficiency will lead to early functional leaf senescence, whereas moderate nitrogen application will help to delay leaf senescence and promote the production of photosynthetic assimilation products in leaves to achieve yield increase. Therefore, it is important to explore the mechanism by which nitrogen affects rice senescence, to search for genes that are tolerant to low nitrogen, and to delay the premature senescence of rice functional leaves. RESULTS: The present study was investigated the transcriptional changes in flag leaves between full heading and mature grain stages of rice (O. sativa) sp. japonica 'NanGeng 5718' under varying nitrogen (N) application: 0 kg/ha (no nitrogen; 0N), 240 kg/ha (moderate nitrogen; MN), and 300 kg/ha (high nitrogen; HN). Compared to MN condition, a total of 10427 and 8177 differentially expressed genes (DEGs) were detected in 0N and HN, respectively. We selected DEGs with opposite expression trends under 0N and HN conditions for GO and KEGG analyses to reveal the molecular mechanisms of nitrogen response involving DEGs. We confirmed that different N applications caused reprogramming of plant hormone signal transduction, glycolysis/gluconeogenesis, ascorbate and aldarate metabolism and photosynthesis pathways in regulating leaf senescence. Most DEGs of the jasmonic acid, ethylene, abscisic acid and salicylic acid metabolic pathways were up-regulated under 0N condition, whereas DEGs related to cytokinin and ascorbate metabolic pathways were induced in HN. Major transcription factors include ERF, WRKY, NAC and bZIP TF families have similar expression patterns which were induced under N starvation condition. CONCLUSION: Our results revealed that different nitrogen levels regulate rice leaf senescence mainly by affecting hormone levels and ascorbic acid biosynthesis. Jasmonic acid, ethylene, abscisic acid and salicylic acid promote early leaf senescence under low nitrogen condition, ethylene and ascorbate delay senescence under high nitrogen condition. In addition, ERF, WRKY, NAC and bZIP TF families promote early leaf senescence. The relevant genes can be used as candidate genes for the regulation of senescence. The results will provide gene reference for further genomic studies and new insights into the gene functions, pathways and transcription factors of N level regulates leaf senescence in rice, thereby improving NUE and reducing the adverse effects of over-application of N.


Subject(s)
Gene Expression Profiling , Nitrogen , Oryza , Plant Leaves , Transcription Factors , Oryza/genetics , Oryza/growth & development , Oryza/metabolism , Oryza/physiology , Nitrogen/metabolism , Plant Leaves/genetics , Plant Leaves/metabolism , Plant Leaves/growth & development , Transcription Factors/genetics , Transcription Factors/metabolism , Plant Senescence/genetics , Gene Expression Regulation, Plant , Biosynthetic Pathways/genetics , Transcriptome , Fertilizers , Genes, Plant
9.
J Integr Plant Biol ; 66(6): 1242-1260, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38656698

ABSTRACT

Leaf senescence is an essential physiological process related to grain yield potential and nutritional quality. Green leaf duration (GLD) after anthesis directly reflects the leaf senescence process and exhibits large genotypic differences in common wheat; however, the underlying gene regulatory mechanism is still lacking. Here, we identified TaNAM-A1 as the causal gene of the major loci qGLD-6A for GLD during grain filling by map-based cloning. Transgenic assays and TILLING mutant analyses demonstrated that TaNAM-A1 played a critical role in regulating leaf senescence, and also affected spike length and grain size. Furthermore, the functional divergences among the three haplotypes of TaNAM-A1 were systematically evaluated. Wheat varieties with TaNAM-A1d (containing two mutations in the coding DNA sequence of TaNAM-A1) exhibited a longer GLD and superior yield-related traits compared to those with the wild type TaNAM-A1a. All three haplotypes were functional in activating the expression of genes involved in macromolecule degradation and mineral nutrient remobilization, with TaNAM-A1a showing the strongest activity and TaNAM-A1d the weakest. TaNAM-A1 also modulated the expression of the senescence-related transcription factors TaNAC-S-7A and TaNAC016-3A. TaNAC016-3A enhanced the transcriptional activation ability of TaNAM-A1a by protein-protein interaction, thereby promoting the senescence process. Our study offers new insights into the fine-tuning of the leaf functional period and grain yield formation for wheat breeding under various geographical climatic conditions.


Subject(s)
Edible Grain , Gene Expression Regulation, Plant , Haplotypes , Plant Leaves , Plant Proteins , Triticum , Triticum/genetics , Triticum/physiology , Triticum/growth & development , Triticum/metabolism , Plant Leaves/genetics , Plant Leaves/metabolism , Plant Leaves/physiology , Plant Proteins/metabolism , Plant Proteins/genetics , Haplotypes/genetics , Edible Grain/genetics , Edible Grain/growth & development , Plant Senescence/genetics , Genes, Plant , Genetic Variation , Phenotype
10.
Plant Cell Rep ; 43(5): 125, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38647720

ABSTRACT

KEY MESSAGE: The interaction network and pathway map uncover the potential crosstalk between sugar and hormone metabolisms as a possible reason for leaf senescence in P. ternata. Pinellia ternata, an environmentally sensitive medicinal plant, undergoes leaf senescence twice a year, affecting its development and yield. Understanding the potential mechanism that delays leaf senescence could theoretically decrease yield losses. In this study, a typical senescent population model was constructed, and an integrated analysis of transcriptomic and metabolomic profiles of P. ternata was conducted using two early leaf senescence populations and two stay-green populations. The result showed that two key gene modules were associated with leaf senescence which were mainly enriched in sugar and hormone signaling pathways, respectively. A network constructed by unigenes and metabolisms related to the obtained two pathways revealed that several compounds such as D-arabitol and 2MeScZR have a higher significance ranking. In addition, a total of 130 hub genes in this network were categorized into 3 classes based on connectivity. Among them, 34 hub genes were further analyzed through a pathway map, the potential crosstalk between sugar and hormone metabolisms might be an underlying reason of leaf senescence in P. ternata. These findings address the knowledge gap regarding leaf senescence in P. ternata, providing candidate germplasms for molecular breeding and laying theoretical basis for the realization of finely regulated cultivation in future.


Subject(s)
Gene Expression Regulation, Plant , Metabolomics , Pinellia , Plant Growth Regulators , Plant Leaves , Transcriptome , Plant Leaves/genetics , Plant Leaves/metabolism , Plant Leaves/growth & development , Pinellia/genetics , Pinellia/metabolism , Pinellia/physiology , Pinellia/growth & development , Plant Growth Regulators/metabolism , Transcriptome/genetics , Plant Senescence/genetics , Gene Expression Profiling , Sugars/metabolism , Metabolome/genetics , Gene Regulatory Networks , Carbohydrate Metabolism/genetics
11.
Sheng Wu Gong Cheng Xue Bao ; 40(4): 1065-1075, 2024 Apr 25.
Article in Chinese | MEDLINE | ID: mdl-38658149

ABSTRACT

Autophagy plays an essential role in recycling/re-utilizing nutrients and in adaptions to numerous stresses. However, the roles of autophagy in soybean have not been investigated extensively. In this study, a virus-induced gene silencing approach mediated by bean pod mottle virus (BPMV) was used to silence autophagy-related gene 5 (ATG5) genes in soybean (referred to as GmATG5). Our results showed that ATG8 proteins were massively accumulated in the dark-treated leaves of the GmATG5-silenced plants relative to the vector control plants (BPMV-0), indicating that autophagy pathway is impaired in the GmATG5-silenced plants. Consistent with the impaired autophagy, an accelerated senescence phenotype was observed on the leaves of the dark-treated GmATG5-silenced plants, which was not shown on the leaves of the dark-treated BPMV-0 plants. In addition, the accumulation levels of both reactive oxygen species (ROS) and salicylic acid (SA) were significantly induced in the GmATG5-silenced plants compared with that of the vector control plants (BPMV-0), indicating an activated immunity. Accordingly, the GmATG5-silenced plants exhibited significantly enhanced resistance against Pseudomonas syringae pv. glycinea (Psg) in comparison with the BPMV-0 plants. Nevertheless, the activated immunity observed in the GmATG5-silenced plant was independent of the activation of mitogen-activated protein kinase (MAPK).


Subject(s)
Autophagy , Comovirus , Disease Resistance , Gene Silencing , Glycine max , Plant Diseases , Glycine max/genetics , Glycine max/microbiology , Glycine max/immunology , Disease Resistance/genetics , Plant Diseases/genetics , Plant Diseases/microbiology , Plant Diseases/immunology , Plant Diseases/virology , Autophagy/genetics , Comovirus/genetics , Plant Senescence/genetics , Reactive Oxygen Species/metabolism , Plant Proteins/genetics , Salicylic Acid/metabolism , Autophagy-Related Protein 5/genetics , Plants, Genetically Modified/genetics
12.
J Integr Plant Biol ; 66(6): 1126-1147, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38629459

ABSTRACT

Most mechanistic details of chronologically ordered regulation of leaf senescence are unknown. Regulatory networks centered on AtWRKY53 are crucial for orchestrating and integrating various senescence-related signals. Notably, AtWRKY53 binds to its own promoter and represses transcription of AtWRKY53, but the biological significance and mechanism underlying this self-repression remain unclear. In this study, we identified the VQ motif-containing protein AtVQ25 as a cooperator of AtWRKY53. The expression level of AtVQ25 peaked at mature stage and was specifically repressed after the onset of leaf senescence. AtVQ25-overexpressing plants and atvq25 mutants displayed precocious and delayed leaf senescence, respectively. Importantly, we identified AtWRKY53 as an interacting partner of AtVQ25. We determined that interaction between AtVQ25 and AtWRKY53 prevented AtWRKY53 from binding to W-box elements on the AtWRKY53 promoter and thus counteracted the self-repression of AtWRKY53. In addition, our RNA-sequencing data revealed that the AtVQ25-AtWRKY53 module is related to the salicylic acid (SA) pathway. Precocious leaf senescence and SA-induced leaf senescence in AtVQ25-overexpressing lines were inhibited by an SA pathway mutant, atsid2, and NahG transgenic plants; AtVQ25-overexpressing/atwrky53 plants were also insensitive to SA-induced leaf senescence. Collectively, we demonstrated that AtVQ25 directly attenuates the self-repression of AtWRKY53 during the onset of leaf senescence, which is substantially helpful for understanding the timing of leaf senescence onset modulated by AtWRKY53.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Gene Expression Regulation, Plant , Plant Leaves , Plant Senescence , Salicylic Acid , Transcription Factors , Salicylic Acid/metabolism , Plant Leaves/genetics , Plant Leaves/metabolism , Arabidopsis/genetics , Arabidopsis/physiology , Arabidopsis/metabolism , Arabidopsis Proteins/metabolism , Arabidopsis Proteins/genetics , Transcription Factors/metabolism , Transcription Factors/genetics , Plant Senescence/genetics , Promoter Regions, Genetic/genetics , DNA-Binding Proteins
13.
Plant J ; 118(6): 1747-1759, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38477703

ABSTRACT

Abscisic acid (ABA) is a phytohormone that promotes leaf senescence in response to environmental stress. We previously identified methyl CpG-binding domain 10 (MBD10) as a phosphoprotein that becomes differentially phosphorylated after ABA treatment in Arabidopsis. ABA-induced leaf senescence was delayed in mbd10 knockout plants but accelerated in MBD10-overexpressing plants, suggesting that MBD10 positively regulates ABA-induced leaf senescence. ABA-induced phosphorylation of MBD10 occurs in planta on Thr-89, and our results demonstrated that Thr-89 phosphorylation is essential for MBD10's function in leaf senescence. The in vivo phosphorylation of Thr-89 in MBD10 was significantly downregulated in a quadruple mutant of group C MAPKs (mpk1/2/7/14), and group C MAPKs directly phosphorylated MBD10 in vitro. Furthermore, mpk1/2/7/14 showed a similar phenotype as seen in mbd10 for ABA-induced leaf senescence, suggesting that group C MAPKs are the cognate kinases of MBD10 for Thr-89. Because group C MAPKs have been reported to function downstream of SnRK2s, our results indicate that group C MAPKs and MBD10 constitute a regulatory pathway for ABA-induced leaf senescence.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Mitogen-Activated Protein Kinases , Plant Leaves , Plant Senescence , Abscisic Acid/metabolism , Abscisic Acid/pharmacology , Arabidopsis/genetics , Arabidopsis/physiology , Arabidopsis Proteins/metabolism , Arabidopsis Proteins/genetics , Gene Expression Regulation, Plant , Mitogen-Activated Protein Kinases/metabolism , Mitogen-Activated Protein Kinases/genetics , Phosphorylation , Plant Growth Regulators/metabolism , Plant Leaves/genetics , Plant Leaves/physiology , Plant Leaves/metabolism , Plant Senescence/genetics , Plants, Genetically Modified
14.
Plant Physiol ; 195(3): 1925-1940, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38427921

ABSTRACT

Leaf senescence is a vital aspect of plant physiology and stress responses and is induced by endogenous factors and environmental cues. The plant-specific NAC (NAM, ATAF1/2, CUC2) transcription factor family influences growth, development, and stress responses in Arabidopsis (Arabidopsis thaliana) and other species. However, the roles of NACs in tobacco (Nicotiana tabacum) leaf senescence are still unclear. Here, we report that NtNAC56 regulates leaf senescence in tobacco. Transgenic plants overexpressing NtNAC56 (NtNAC56-OE) showed induction of senescence-related genes and exhibited early senescence and lower chlorophyll content compared to wild-type (WT) plants and the Ntnac56-19 mutant. In addition, root development and seed germination were inhibited in the NtNAC56-OE lines. Transmission electron microscopy observations accompanied by physiological and biochemical assays revealed that NtNAC56 overexpression triggers chloroplast degradation and reactive oxygen species accumulation in tobacco leaves. Transcriptome analysis demonstrated that NtNAC56 activates leaf senescence-related genes and jasmonic acid (JA) biosynthesis pathway genes. In addition, the JA content of NtNAC56-OE plants was higher than in WT plants, and JA treatment induced NtNAC56 expression. We performed DNA affinity purification sequencing to identify direct targets of NtNAC56, among which we focused on LIPOXYGENASE 5 (NtLOX5), a key gene in JA biosynthesis. A dual-luciferase reporter assay and a yeast one-hybrid assay confirmed that NtNAC56 directly binds to the TTTCTT motif in the NtLOX5 promoter. Our results reveal a mechanism whereby NtNAC56 regulates JA-induced leaf senescence in tobacco and provide a strategy for genetically manipulating leaf senescence and plant growth.


Subject(s)
Cyclopentanes , Gene Expression Regulation, Plant , Nicotiana , Oxylipins , Plant Leaves , Plant Proteins , Plant Senescence , Plants, Genetically Modified , Transcription Factors , Nicotiana/genetics , Nicotiana/physiology , Nicotiana/drug effects , Nicotiana/growth & development , Oxylipins/metabolism , Oxylipins/pharmacology , Cyclopentanes/metabolism , Cyclopentanes/pharmacology , Plant Leaves/metabolism , Plant Leaves/genetics , Plant Leaves/physiology , Plant Senescence/genetics , Transcription Factors/metabolism , Transcription Factors/genetics , Plant Proteins/metabolism , Plant Proteins/genetics , Reactive Oxygen Species/metabolism , Chlorophyll/metabolism , Chloroplasts/metabolism , Chloroplasts/ultrastructure , Promoter Regions, Genetic/genetics
16.
Plant Physiol ; 195(3): 2176-2194, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38423969

ABSTRACT

Leaf senescence is a combined response of plant cells stimulated by internal and external signals. Sugars acting as signaling molecules or energy metabolites can influence the progression of leaf senescence. Both sugar starvation and accumulation can promote leaf senescence with diverse mechanisms that are reported in different species. Sugars Will Eventually be Exported Transporters (SWEETs) are proposed to play essential roles in sugar transport, but whether they have roles in senescence and the corresponding mechanism are unclear. Here, we functionally characterized a sugar transporter, OsSWEET1b, which transports sugar and promotes senescence in rice (Oryza sativa L.). OsSWEET1b could import glucose and galactose when heterologously expressed in Xenopus oocytes and translocate glucose and galactose from the extracellular apoplast into the intracellular cytosol in rice. Loss of function of OsSWEET1b decreased glucose and galactose accumulation in leaves. ossweet1b mutants showed accelerated leaf senescence under natural and dark-induced conditions. Exogenous application of glucose and galactose complemented the defect of OsSWEET1b deletion-promoted senescence. Moreover, the senescence-activated transcription factor OsWRKY53, acting as a transcriptional repressor, genetically functions upstream of OsSWEET1b to suppress its expression. OsWRKY53-overexpressing plants had attenuated sugar accumulation, exhibiting a similar phenotype as the ossweet1b mutants. Our findings demonstrate that OsWRKY53 downregulates OsSWEET1b to impair its influx transport activity, leading to compromised sugar accumulation in the cytosol of rice leaves where sugar starvation promotes leaf senescence.


Subject(s)
Gene Expression Regulation, Plant , Oryza , Plant Leaves , Plant Proteins , Oryza/genetics , Oryza/physiology , Oryza/growth & development , Oryza/metabolism , Plant Leaves/genetics , Plant Leaves/metabolism , Plant Leaves/physiology , Plant Proteins/genetics , Plant Proteins/metabolism , Glucose/metabolism , Plant Senescence/genetics , Galactose/metabolism , Sugars/metabolism , Gene Deletion , Biological Transport
17.
Plant Commun ; 5(6): 100848, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38379284

ABSTRACT

The phytohormone ethylene is a major regulator of plant adaptive responses to flooding. In flooded plant tissues, ethylene quickly increases to high concentrations owing to its low solubility and diffusion rates in water. Ethylene accumulation in submerged plant tissues makes it a reliable cue for triggering flood acclimation responses, including metabolic adjustments to cope with flood-induced hypoxia. However, persistent ethylene accumulation also accelerates leaf senescence. Stress-induced senescence hampers photosynthetic capacity and stress recovery. In submerged Arabidopsis, senescence follows a strict age-dependent pattern starting with the older leaves. Although mechanisms underlying ethylene-mediated senescence have been uncovered, it is unclear how submerged plants avoid indiscriminate breakdown of leaves despite high systemic ethylene accumulation. We demonstrate that although submergence triggers leaf-age-independent activation of ethylene signaling via EIN3 in Arabidopsis, senescence is initiated only in old leaves. EIN3 stabilization also leads to overall transcript and protein accumulation of the senescence-promoting transcription factor ORESARA1 (ORE1) in both old and young leaves during submergence. However, leaf-age-dependent senescence can be explained by ORE1 protein activation via phosphorylation specifically in old leaves, independent of the previously identified age-dependent control of ORE1 via miR164. A systematic analysis of the roles of the major flooding stress cues and signaling pathways shows that only the combination of ethylene and darkness is sufficient to mimic submergence-induced senescence involving ORE1 accumulation and phosphorylation. Hypoxia, most often associated with flooding stress in plants, appears to have no role in these processes. Our results reveal a mechanism by which plants regulate the speed and pattern of senescence during environmental stresses such as flooding. Age-dependent ORE1 activity ensures that older, expendable leaves are dismantled first, thus prolonging the life of younger leaves and meristematic tissues that are vital to whole-plant survival.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Ethylenes , Floods , Plant Leaves , Signal Transduction , Transcription Factors , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis/physiology , Ethylenes/metabolism , Arabidopsis Proteins/metabolism , Arabidopsis Proteins/genetics , Plant Leaves/metabolism , Plant Leaves/genetics , Phosphorylation , Transcription Factors/metabolism , Transcription Factors/genetics , Plant Senescence/genetics , Gene Expression Regulation, Plant
18.
Plant Cell ; 36(5): 1736-1754, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38315889

ABSTRACT

Roses are among the most popular ornamental plants cultivated worldwide for their great economic, symbolic, and cultural importance. Nevertheless, rapid petal senescence markedly reduces rose (Rosa hybrida) flower quality and value. Petal senescence is a developmental process tightly regulated by various phytohormones. Ethylene accelerates petal senescence, while gibberellic acid (GA) delays this process. However, the molecular mechanisms underlying the crosstalk between these phytohormones in the regulation of petal senescence remain largely unclear. Here, we identified SENESCENCE-ASSOCIATED F-BOX (RhSAF), an ethylene-induced F-box protein gene encoding a recognition subunit of the SCF-type E3 ligase. We demonstrated that RhSAF promotes degradation of the GA receptor GIBBERELLIN INSENSITIVE DWARF1 (RhGID1) to accelerate petal senescence. Silencing RhSAF expression delays petal senescence, while suppressing RhGID1 expression accelerates petal senescence. RhSAF physically interacts with RhGID1s and targets them for ubiquitin/26S proteasome-mediated degradation. Accordingly, ethylene-induced RhGID1C degradation and RhDELLA3 accumulation are compromised in RhSAF-RNAi lines. Our results demonstrate that ethylene antagonizes GA activity through RhGID1 degradation mediated by the E3 ligase RhSAF. These findings enhance our understanding of the phytohormone crosstalk regulating petal senescence and provide insights for improving flower longevity.


Subject(s)
Ethylenes , F-Box Proteins , Flowers , Gene Expression Regulation, Plant , Gibberellins , Plant Proteins , Rosa , Ethylenes/metabolism , Ethylenes/pharmacology , Gibberellins/metabolism , Gibberellins/pharmacology , F-Box Proteins/metabolism , F-Box Proteins/genetics , Plant Proteins/metabolism , Plant Proteins/genetics , Rosa/genetics , Rosa/drug effects , Rosa/metabolism , Flowers/genetics , Flowers/drug effects , Flowers/growth & development , Gene Expression Regulation, Plant/drug effects , Plant Growth Regulators/metabolism , Plant Growth Regulators/pharmacology , Plant Senescence/genetics , Proteasome Endopeptidase Complex/metabolism , Receptors, Cell Surface/metabolism , Receptors, Cell Surface/genetics
19.
New Phytol ; 242(6): 2541-2554, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38197194

ABSTRACT

In potato, maturity is assessed by leaf senescence, which, in turn, affects yield and tuber quality traits. Previously, we showed that the CYCLING DOF FACTOR1 (StCDF1) locus controls leaf maturity in addition to the timing of tuberization. Here, we provide evidence that StCDF1 controls senescence onset separately from senescence progression and the total life cycle duration. We used molecular-biological approaches (DNA-Affinity Purification Sequencing) to identify a direct downstream target of StCDF1, named ORESARA1 (StORE1S02), which is a NAC transcription factor acting as a positive senescence regulator. By overexpressing StORE1S02 in the long life cycle genotype, early onset of senescence was shown, but the total life cycle remained long. At the same time, StORE1S02 knockdown lines have a delayed senescence onset. Furthermore, we show that StORE1 proteins play an indirect role in sugar transport from source to sink by regulating expression of SWEET sugar efflux transporters during leaf senescence. This study clarifies the important link between tuber formation and senescence and provides insight into the molecular regulatory network of potato leaf senescence onset. We propose a complex role of StCDF1 in the regulation of potato plant senescence.


Subject(s)
Gene Expression Regulation, Plant , Plant Proteins , Plant Senescence , Solanum tuberosum , Transcription Factors , Biological Transport , Plant Leaves/genetics , Plant Leaves/metabolism , Plant Proteins/metabolism , Plant Proteins/genetics , Plant Senescence/genetics , Plant Tubers/genetics , Plant Tubers/growth & development , Plant Tubers/physiology , Plants, Genetically Modified , Solanum tuberosum/genetics , Solanum tuberosum/growth & development , Sugars/metabolism , Time Factors , Transcription Factors/metabolism , Transcription Factors/genetics
20.
Elife ; 122023 10 11.
Article in English | MEDLINE | ID: mdl-37819030

ABSTRACT

Experiments on tropical trees suggest that new mutations in plants are driven by age rather than number of cell divisions during growth.


Subject(s)
Mutation , Plant Senescence , Trees , Mutation/genetics , Mutation/physiology , Plants/genetics , Trees/genetics , Trees/physiology , Plant Physiological Phenomena/genetics , Tropical Climate , Cell Division/genetics , Plant Senescence/genetics
SELECTION OF CITATIONS
SEARCH DETAIL