Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters











Language
Publication year range
1.
Infect Genet Evol ; 98: 105230, 2022 03.
Article in English | MEDLINE | ID: mdl-35104683

ABSTRACT

As preconized by the One Health concept, the intimate relationship between pets and owners is a common source for the trade of microorganisms with zoonotic potential, and with them, antimicrobial resistance genes. In this work, we evaluated the presence of antimicrobial resistance genes, that are usually within mobile genetic elements, in a laboratory collection of 79 canine Staphylococcus strains, mostly Staphylococcus pseudintermedius and Staphylococcus coagulans. Resistance to tetracycline was observed in 34% of the strains, followed by resistance to erythromycin (21%) and gentamicin (19%). These phenotypes were partially correlated with the presence of the tetracycline resistance genes tet(M) and tet(K) in 64% and 44% of all strains, respectively; erythromycin resistance genes erm(A) and erm(C) in 53% and 23%; and gentamicin resistance gene aac(6')-aph(2″) in 26% of the strains. At least 45% of the strains harbored high- and/or low-molecular weight plasmids, whose transfer may be facilitated by their widespread biofilm-forming capacity, and absence of restrictive CRISPR systems. We selected eight plasmid-bearing and multidrug resistant strains, which were submitted to plasmid curing by stress with SDS. No strain lost resistance during stressing cultivation but, by conjugation experiments, the S. pseudintermedius strain 27 transferred its plasmid-borne resistance to gentamicin, conferred by the aac(6')-aph(2″) gene, to Staphylococcus aureus. The frequent empirical use of gentamicin to treat skin and ear infections in domestic dogs is likely to select resistant strains. Also, as demonstrated by our study, these strains can serve as gene reservoirs for human pathogens, such as S. aureus.


Subject(s)
Anti-Bacterial Agents/pharmacology , Drug Resistance, Multiple, Bacterial , Gentamicins/pharmacology , Plasmids/radiation effects , Staphylococcus aureus/drug effects , Staphylococcus/drug effects , Animals , Dogs
2.
Braz J Med Biol Res ; 48(10): 929-38, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26445337

ABSTRACT

Low-intensity lasers are used for prevention and management of oral mucositis induced by anticancer therapy, but the effectiveness of treatment depends on the genetic characteristics of affected cells. This study evaluated the survival and induction of filamentation of Escherichia coli cells deficient in the nucleotide excision repair pathway, and the action of T4endonuclease V on plasmid DNA exposed to low-intensity red and near-infrared laser light. Cultures of wild-type (strain AB1157) E. coli and strain AB1886 (deficient in uvrA protein) were exposed to red (660 nm) and infrared (808 nm) lasers at various fluences, powers and emission modes to study bacterial survival and filamentation. Also, plasmid DNA was exposed to laser light to study DNA lesions produced in vitro by T4endonuclease V. Low-intensity lasers:i) had no effect on survival of wild-type E. coli but decreased the survival of uvrA protein-deficient cells,ii) induced bacterial filamentation, iii) did not alter the electrophoretic profile of plasmids in agarose gels, andiv) did not alter the electrophoretic profile of plasmids incubated with T4 endonuclease V. These results increase our understanding of the effects of laser light on cells with various genetic characteristics, such as xeroderma pigmentosum cells deficient in nucleotide excision pathway activity in patients with mucositis treated by low-intensity lasers.


Subject(s)
DNA Repair/radiation effects , DNA, Bacterial/radiation effects , Escherichia coli/radiation effects , Infrared Rays/adverse effects , Lasers/adverse effects , DNA, Bacterial/metabolism , Deoxyribonuclease (Pyrimidine Dimer)/metabolism , Electrophoresis, Agar Gel , Escherichia coli/classification , Escherichia coli/physiology , Plasmids/radiation effects , Viral Proteins/metabolism
3.
Rev. bras. pesqui. méd. biol ; Braz. j. med. biol. res;48(10): 929-938, Oct. 2015. tab, ilus
Article in English | LILACS | ID: lil-761599

ABSTRACT

Low-intensity lasers are used for prevention and management of oral mucositis induced by anticancer therapy, but the effectiveness of treatment depends on the genetic characteristics of affected cells. This study evaluated the survival and induction of filamentation of Escherichia coli cells deficient in the nucleotide excision repair pathway, and the action of T4endonuclease V on plasmid DNA exposed to low-intensity red and near-infrared laser light. Cultures of wild-type (strain AB1157) E. coli and strain AB1886 (deficient in uvrA protein) were exposed to red (660 nm) and infrared (808 nm) lasers at various fluences, powers and emission modes to study bacterial survival and filamentation. Also, plasmid DNA was exposed to laser light to study DNA lesions produced in vitro by T4endonuclease V. Low-intensity lasers:i) had no effect on survival of wild-type E. coli but decreased the survival of uvrA protein-deficient cells,ii) induced bacterial filamentation, iii) did not alter the electrophoretic profile of plasmids in agarose gels, andiv) did not alter the electrophoretic profile of plasmids incubated with T4 endonuclease V. These results increase our understanding of the effects of laser light on cells with various genetic characteristics, such as xeroderma pigmentosum cells deficient in nucleotide excision pathway activity in patients with mucositis treated by low-intensity lasers.


Subject(s)
DNA Repair/radiation effects , DNA, Bacterial/radiation effects , Escherichia coli/radiation effects , Infrared Rays/adverse effects , Lasers/adverse effects , DNA, Bacterial/metabolism , Deoxyribonuclease (Pyrimidine Dimer)/metabolism , Electrophoresis, Agar Gel , Escherichia coli/classification , Escherichia coli/physiology , Plasmids/radiation effects , Viral Proteins/metabolism
4.
Lasers Med Sci ; 27(1): 121-30, 2012 Jan.
Article in English | MEDLINE | ID: mdl-21556926

ABSTRACT

Low-level laser therapy is used in the treatment of many diseases based on its biostimulative effect. However, the photobiological basis for its mechanism of action and adverse effects are not well understood. The aim of this study, using experimental models, was to evaluate the effects of laser on bacterial plasmids in alkaline agarose gel electrophoresis and Escherichia coli cultures. The electrophoretic profile of bacterial plasmids in alkaline agarose gels were used for studying lesions in DNA exposed to infrared laser. Transformation efficiency and survival of Escherichia coli AB1157 (wild-type), BH20 (fpg/mutM(-)), BW9091 (xth(-)), and DH5αF'Iq (recA(-)) cells harboring pBSK plasmids were used as experimental models to assess the effect of laser on plasmid DNA outside and inside of cells. Data indicate low-level laser: (1) altered the electrophoretic profile of plasmids in alkaline gels at 2,500-Hz pulsed-emission mode but did not alter at continuous wave, 2.5- and 250-Hz pulsed-emission mode; (2) altered the transformation efficiency of plasmids in wild-type and fpg/mutM(-) E. coli cells; (3) altered the survival fpg/mutM(-), xthA(-) and recA(-) E. coli cultures harboring pBSK plasmids. Low-level infrared laser with therapeutic fluencies at high frequency in pulsed-emission modes have effects on bacterial plasmids. Infrared laser action can differently affect the survival of plasmids in E. coli cells proficient and deficient in DNA repair mechanisms, therefore, laser therapy protocol should take into account fluencies, frequencies and wavelength of laser, as well as tissue conditions and genetic characteristics of cells before beginning treatment.


Subject(s)
Low-Level Light Therapy/adverse effects , Plasmids/radiation effects , DNA , DNA Damage , DNA Repair , DNA-Formamidopyrimidine Glycosylase/genetics , Electrophoresis, Agar Gel , Escherichia coli/genetics , Escherichia coli Proteins/genetics , Plasmids/genetics , Rec A Recombinases/genetics , Transformation, Bacterial/radiation effects
5.
Int J Radiat Biol ; 76(9): 1289-94, 2000 Sep.
Article in English | MEDLINE | ID: mdl-10993640

ABSTRACT

PURPOSE: To investigate the mechanism of methylene blue-induced radiosensitization in Escherichia coli cells. MATERIALS AND METHODS: Bacteriophage lambda15 was irradiated with X-rays in the presence or absence of methylene blue (MB) and infected into bacteria with different repair capabilities preincubated with or without MB. The survival of the bacteriophage in each bacterial strain was used to quantify MB-induced radiosensitization. DNA repair in bacteria irradiated with X-rays and incubated with or without MB was examined by alkaline and neutral sucrose gradients. An in vitro repair system of pBR322 plasmid DNA irradiated with X-rays was designed to determine the repair enzyme targeted by MB. CONCLUSIONS: MB impairs the repair activity of the polymerase 1 enzyme in E. coli cells, sensitizing these bacteria to the lethal effects of ionizing radiation. Since MB accumulates preferentially in some malignant tumours, it will be of interest to investigate its effects on the repair of irradiated human cells.


Subject(s)
DNA Polymerase I/antagonists & inhibitors , Enzyme Inhibitors/pharmacology , Escherichia coli/drug effects , Escherichia coli/radiation effects , Methylene Blue/pharmacology , Radiation Tolerance , Centrifugation, Density Gradient , DNA/drug effects , DNA/radiation effects , DNA Damage/drug effects , DNA Damage/radiation effects , DNA Repair/drug effects , DNA Repair/radiation effects , Dose-Response Relationship, Radiation , Plasmids/drug effects , Plasmids/radiation effects , X-Rays
SELECTION OF CITATIONS
SEARCH DETAIL