Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 375
Filter
1.
Malar J ; 23(1): 207, 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-38997728

ABSTRACT

BACKGROUND: Plasmodium falciparum is the dominant malaria species in the sub-Saharan Africa and the main cause of severe disease and death. Notwithstanding, severe malaria and death due to non-falciparum infections have been reported, but at much lower rates than P. falciparum infections. Following increasing use of molecular detection techniques in epidemiological studies, a higher prevalence of non-falciparum species has been reported in the region than previously thought. This article reviews the literature on the prevalence of non-falciparum malaria species in Uganda and the clinical figures of their severe diseases. It aims to elucidate the extent to which mono non-falciparum malaria infections in a highly malaria-endemic country contribute to malaria mortality and outline its policy implications on malaria case management. METHODS: The available English-language published peer-reviewed literature up to March 2024 was sought via PubMed and Google Scholar. The keywords used were severe malaria, AND P. falciparum, P. malariae, P. vivax, P. ovale spp., mixed infections AND Uganda. The review encompassed 53 articles. Articles using molecular diagnosis methods were accounted for analysis. RESULTS: The literature reported a substantial prevalence of non-falciparum infections in Uganda. Plasmodium malariae and Plasmodium ovale spp. were the second and third most prevalent reported malaria species respectively after P. falciparum as dominant species. Non-falciparum malaria infections often occur as mixed infections rather than mono-infections. Besides, molecular diagnostics revealed that 21% of initially reported mono-infections of P. falciparum were, in fact, mixed infections. No article was found on the prevalence of severe malaria or case fatality rate due to mixed or non-falciparum infections. CONCLUSION: A critical knowledge gap exists regarding the impact of mixed and non-falciparum species on severe malaria and death in Uganda. Robust evidence on prevalence, recurrent parasitaemia, and severe clinical manifestations of mixed and non-falciparum malaria infections is crucial for evidence-based and effective policymaking regarding malaria case management.


Subject(s)
Malaria , Uganda/epidemiology , Humans , Malaria/epidemiology , Malaria/parasitology , Prevalence , Plasmodium ovale/isolation & purification , Plasmodium malariae/isolation & purification
2.
Article in English | MEDLINE | ID: mdl-38747850

ABSTRACT

This study reports a challenging diagnosis of Plasmodium ovale malaria in a Colombian citizen returning from Cameroon. Initial microscopy screenings conducted at two private hospitals yielded conflicting results, with the first showing negative smears and the second diagnosing P. vivax. Subsequent microscopy examinations at two government laboratories identified P. ovale, although the routine species-specific PCR strategy was negative. PCR confirmation was finally obtained when P. ovale wallikeri primers were used. Although P. ovale is not frequently found in Colombia, there is a clear need to include both P. ovale curtisi and P. ovale wallikeri in the molecular diagnostic strategy. Such need stems primarily from their extended latency period, which affects travelers, the increasing number of African migrants, and the importance of accurately mapping the distribution of Plasmodium species in Colombia.


Subject(s)
Malaria , Plasmodium ovale , Polymerase Chain Reaction , Plasmodium ovale/genetics , Plasmodium ovale/isolation & purification , Humans , Malaria/diagnosis , Colombia , Travel , Male , DNA, Protozoan/analysis , Adult , Cameroon
3.
Malar J ; 23(1): 149, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38750583

ABSTRACT

BACKGROUND: Malaria elimination in Senegal requires accurate diagnosis of all Plasmodium species. Plasmodium falciparum is the most prevalent species in Senegal, although Plasmodium malariae, Plasmodium ovale, and recently Plasmodium vivax have also been reported. Nonetheless, most malaria control tools, such as Histidine Rich Protein 2 rapid diagnosis test (PfHRP2-RDT,) can only diagnose P. falciparum. Thus, PfHRP2-RDT misses non-falciparum species and P. falciparum infections that fall below the limit of detection. These limitations can be addressed using highly sensitive Next Generation Sequencing (NGS). This study assesses the burden of the four different Plasmodium species in western and eastern regions of Senegal using targeted PCR amplicon sequencing. METHODS: Three thousand samples from symptomatic and asymptomatic individuals in 2021 from three sites in Senegal (Sessene, Diourbel region; Parcelles Assainies, Kaolack region; Gabou, Tambacounda region) were collected. All samples were tested using PfHRP2-RDT and photoinduced electron transfer polymerase chain reaction (PET-PCR), which detects all Plasmodium species. Targeted sequencing of the nuclear 18S rRNA and the mitochondrial cytochrome B genes was performed on PET-PCR positive samples. RESULTS: Malaria prevalence by PfHRP2-RDT showed 9.4% (94/1000) and 0.2% (2/1000) in Diourbel (DBL) and Kaolack (KL), respectively. In Tambacounda (TAM) patients who had malaria symptoms and had a negative PfHRP2-RDT were enrolled. The PET-PCR had a positivity rate of 23.5% (295/1255) overall. The PET-PCR positivity rate was 37.6%, 12.3%, and 22.8% in Diourbel, Kaolack, and Tambacounda, respectively. Successful sequencing of 121/295 positive samples detected P. falciparum (93%), P. vivax (2.6%), P. malariae (4.4%), and P. ovale wallikeri (0.9%). Plasmodium vivax was co-identified with P. falciparum in thirteen samples. Sequencing also detected two PfHRP2-RDT-negative mono-infections of P. vivax in Tambacounda and Kaolack. CONCLUSION: The findings demonstrate the circulation of P. vivax in western and eastern Senegal, highlighting the need for improved malaria control strategies and accurate diagnostic tools to better understand the prevalence of non-falciparum species countrywide.


Subject(s)
Malaria, Vivax , Plasmodium vivax , Senegal/epidemiology , Humans , Adolescent , Adult , Young Adult , Child , Middle Aged , Male , Female , Plasmodium vivax/genetics , Plasmodium vivax/isolation & purification , Child, Preschool , Malaria, Vivax/epidemiology , Malaria, Vivax/parasitology , Prevalence , Aged , Infant , Polymerase Chain Reaction , Plasmodium ovale/genetics , Plasmodium ovale/isolation & purification
4.
Lancet Microbe ; 5(7): 669-678, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38761813

ABSTRACT

BACKGROUND: Mutations in the Plasmodium falciparum dhfr gene confer resistance to pyrimethamine, which is widely used for malaria chemoprevention in Africa. We aimed to evaluate the frequency and evolution of dhfr mutations in Plasmodium ovale spp in Africa and their functional consequences, which are incompletely characterised. METHODS: We analysed dhfr mutations and their frequencies in P ovale spp isolates collected between Feb 1, 2004, and Aug 31, 2023, from the French National Malaria Reference Centre collection and from field studies in Benin, Gabon, and Kenya. Genetic patterns of positive selection were investigated. Full-length recombinant wild-type and mutant DHFR enzymes from both P ovale curtisi and P ovale wallikeri were expressed in bacteria to test whether the most common mutations reduced pyrimethamine susceptibility. FINDINGS: We included 518 P ovale spp samples (314 P ovale curtisi and 204 P ovale wallikeri). In P ovale curtisi, Ala15Ser-Ser58Arg was the most common dhfr mutation (39%; 124 of 314 samples). In P ovale wallikeri, dhfr mutations were less frequent, with Phe57Leu-Ser58Arg reaching 17% (34 of 204 samples). These two mutants were the most prevalent in central and east Africa and were fixed in Kenyan isolates. We detected six and four other non-synonymous mutations, representing 8% (24 isolates) and 2% (five isolates) of the P ovale curtisi and P ovale wallikeri isolates, respectively. Whole-genome sequencing and microsatellite analyses revealed reduced genetic diversity around the mutant pocdhfr and powdhfr genes. The mutant DHFR proteins showed structural changes at the pyrimethamine binding site in-silico, confirmed by a 4-times increase in pyrimethamine half-maximal inhibitory concentration in an Escherichia coli growth assay for the Phe57Leu-Ser58Arg mutant and 50-times increase for the Ala15Ser-Ser58Arg mutant, compared with the wild-type counterparts. INTERPRETATION: The widespread use of sulfadoxine-pyrimethamine for malaria chemoprevention might have exerted fortuitous selection pressure for dhfr mutations in P ovale spp. This calls for closer monitoring of dhfr and dhps mutations in P ovale spp. FUNDING: French Ministry of Health, Agence Nationale de la Recherche, and Global Emerging Infections Surveillance branch of the Armed Forces Health Surveillance Division.


Subject(s)
Antimalarials , Drug Resistance , Malaria , Mutation , Plasmodium ovale , Pyrimethamine , Tetrahydrofolate Dehydrogenase , Tetrahydrofolate Dehydrogenase/genetics , Tetrahydrofolate Dehydrogenase/metabolism , Pyrimethamine/pharmacology , Pyrimethamine/therapeutic use , Drug Resistance/genetics , Antimalarials/pharmacology , Antimalarials/therapeutic use , Plasmodium ovale/genetics , Plasmodium ovale/drug effects , Humans , Malaria/epidemiology , Retrospective Studies , Africa South of the Sahara/epidemiology , Protozoan Proteins/genetics , Kenya/epidemiology
5.
Malar J ; 23(1): 93, 2024 Apr 04.
Article in English | MEDLINE | ID: mdl-38575935

ABSTRACT

BACKGROUND: Plasmodium ovale malaria is usually considered a tropical infectious disease associated with low morbidity and mortality. However, severe disease and death have previously been reported. CASE PRESENTATION: A case of severe P. ovale malaria in a healthy Caucasian man with a triangle splenic infarction and clinical progression towards Acute Respiratory Distress Syndrome was reported despite a rapid response to oral chloroquine treatment with 24-h parasitaemia clearance. CONCLUSION: Plasmodium ovale malaria is generally considered as a benign disease, with low parasitaemia. However, severe disease and death have occasionally been reported. It is important to be aware that occasionally it can progress to serious illness and death even in immunocompetent individuals.


Subject(s)
Antimalarials , Malaria , Plasmodium ovale , Respiratory Distress Syndrome , Splenic Infarction , Male , Humans , Antimalarials/therapeutic use , Splenic Infarction/diagnosis , Splenic Infarction/complications , Splenic Infarction/drug therapy , Malaria/complications , Malaria/diagnosis , Malaria/drug therapy , Respiratory Distress Syndrome/diagnosis , Respiratory Distress Syndrome/etiology , Italy
6.
Sci Rep ; 14(1): 3843, 2024 02 15.
Article in English | MEDLINE | ID: mdl-38360879

ABSTRACT

Despite Plasmodium ovale curtisi (Poc) and wallikeri (Pow) being important human-infecting malaria parasites that are widespread across Africa and Asia, little is known about their genome diversity. Morphologically identical, Poc and Pow are indistinguishable and commonly misidentified. Recent rises in the incidence of Poc/Pow infections have renewed efforts to address fundamental knowledge gaps in their biology, and to develop diagnostic tools to understand their epidemiological dynamics and malaria burden. A major roadblock has been the incompleteness of available reference assemblies (PocGH01, PowCR01; ~ 33.5 Mbp). Here, we applied multiple sequencing platforms and advanced bioinformatics tools to generate new reference genomes, Poc221 (South Sudan; 36.0 Mbp) and Pow222 (Nigeria; 34.3 Mbp), with improved nuclear genome contiguity (> 4.2 Mbp), annotation and completeness (> 99% Plasmodium spp., single copy orthologs). Subsequent sequencing of 6 Poc and 15 Pow isolates from Africa revealed a total of 22,517 and 43,855 high-quality core genome SNPs, respectively. Genome-wide levels of nucleotide diversity were determined to be 2.98 × 10-4 (Poc) and 3.43 × 10-4 (Pow), comparable to estimates for other Plasmodium species. Overall, the new reference genomes provide a robust foundation for dissecting the biology of Poc/Pow, their population structure and evolution, and will contribute to uncovering the recombination barrier separating these species.


Subject(s)
Malaria , Parasites , Plasmodium ovale , Animals , Humans , Parasites/genetics , Sequence Analysis, DNA , Malaria/parasitology , Nigeria
9.
Acta Parasitol ; 69(1): 541-548, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38225530

ABSTRACT

PURPOSE: Microscopic diagnosis of Giemsa-stained thick and thin blood films remained the gold standard laboratory method for the diagnosis of malaria. In this context, we felt it was important to conduct this evaluation with 40 public medical biology laboratories (MBLs) in the Abidjan 1 health region that perform blood parasitology tests to improve their implementation process. METHODS: This descriptive and analytical study took place in July 2020 and involved participating laboratories (PLs) from the public sector in Abidjan. A set of 3 blood smear slides of variable parasite densities (PDs) with assigned values (AVs) of parasite densities and assigned Plasmodium species was used. The criterion for establishing the parasite density compliance interval was assigned values of ± 25%, and the performance rates were compared to the 80% recommended by the WHO for the African region. RESULTS: Nearly a quarter (11/40) of the participating laboratories had a compliance rate greater than 80%, including 10 with a performance of 100% for the ability to identify parasites. Regarding identifying plasmodial species, a concordance rate of 100% was obtained for slide 1 for Plasmodium falciparum, while this rate was 20% for slide 2 for Plasmodium ovale. For parasite densities < 200/µl, 87.5% of the participating laboratories (PLs) had a performance rate lower than 80%, while 95% of these PLs had a performance rate higher than 80% for parasitaemia > 2000/µl. CONCLUSIONS: There is a need to strengthen adapted to low parasitaemia, to improve the biological confirmation of malaria in Côte d'Ivoire.


Subject(s)
Malaria , Microscopy , Cote d'Ivoire/epidemiology , Microscopy/methods , Humans , Malaria/diagnosis , Malaria/parasitology , Health Facilities , Laboratories/standards , Plasmodium falciparum/isolation & purification , Public Health , Plasmodium ovale/isolation & purification , Plasmodium/isolation & purification , Plasmodium/classification
10.
Trends Parasitol ; 40(1): 21-27, 2024 01.
Article in English | MEDLINE | ID: mdl-38040603

ABSTRACT

Plasmodium ovale was the last of the exclusively human malaria parasites to be described, in 1922, and has remained the least well studied. Beginning in 1995, two divergent forms of the parasite, later termed 'classic' and 'variant', were described. By 2010, it was realised that these forms are two closely related, but genetically distinct and non-recombining species; they were given the names Plasmodium ovale curtisi and Plasmodium ovale wallikeri. Since then, substantial additional data have confirmed that the two parasites are indeed separate species, but the trinomial nomenclature has often led to confusion about their status, with many authors describing them as subspecies. We hereby formally name them Plasmodium ovalecurtisi and Plasmodium ovalewallikeri.


Subject(s)
Malaria , Parasites , Plasmodium ovale , Animals , Humans , Plasmodium ovale/genetics , Malaria/parasitology
12.
PLoS Negl Trop Dis ; 17(12): e0011274, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38064489

ABSTRACT

Plasmodium ovale curtisi (Poc) and Plasmodium ovale wallikeri (Pow) represent distinct non-recombining Plasmodium species that are increasing in prevalence in sub-Saharan Africa. Though they circulate sympatrically, co-infection within human and mosquito hosts has rarely been described. Separate 18S rRNA real-time PCR assays that detect Poc and Pow were modified to allow species determination in parallel under identical cycling conditions. The lower limit of detection was 0.6 plasmid copies/µL (95% CI 0.4-1.6) for Poc and 4.5 plasmid copies/µL (95% CI 2.7-18) for Pow, or 0.1 and 0.8 parasites/µL, respectively, assuming 6 copies of 18s rRNA per genome. However, the assays showed cross-reactivity at concentrations greater than 103 plasmid copies/µL (roughly 200 parasites/µL). Mock mixtures were used to establish criteria for classifying mixed Poc/Pow infections that prevented false-positive detection while maintaining sensitive detection of the minority ovale species down to 100 copies/µL (<1 parasite/µL). When the modified real-time PCR assays were applied to field-collected blood samples from Tanzania and Cameroon, species identification by real-time PCR was concordant with nested PCR in 19 samples, but additionally detected two mixed Poc/Pow infections where nested PCR detected a single Po species. When real-time PCR was applied to oocyst-positive Anopheles midguts saved from mosquitoes fed on P. ovale-infected persons, mixed Poc/Pow infections were detected in 11/14 (79%). Based on these results, 8/9 P. ovale carriers transmitted both P. ovale species to mosquitoes, though both Po species could only be detected in the blood of two carriers. The described real-time PCR approach can be used to identify the natural occurrence of mixed Poc/Pow infections in human and mosquito hosts and reveals that such co-infections and co-transmission are likely more common than appreciated.


Subject(s)
Anopheles , Malaria , Plasmodium ovale , Animals , Humans , Real-Time Polymerase Chain Reaction/methods , Plasmodium ovale/genetics , RNA, Ribosomal, 18S/genetics , Nucleic Acid Amplification Techniques , Anopheles/genetics , Malaria/diagnosis , Malaria/epidemiology
13.
J Med Case Rep ; 17(1): 509, 2023 Dec 12.
Article in English | MEDLINE | ID: mdl-38082342

ABSTRACT

BACKGROUND: Plasmodium ovale malaria, which was previously endemic to tropical Africa and the Southwest Pacific islands is now being reported from parts of Asia. In Sri Lanka, the indigenous transmission of malaria has not been documented since October 2012. Since then, there have been several imported cases of malaria, including P. ovale, which have been detected sporadically. The reporting case of P. ovale was imported and detected incidentally in 2021, with several atypical presentations. CASE PRESENTATION: A 40-year-old Sri Lankan medical doctor developed continuous fever with chills, rigors, and dysuria a day following removal of a large lipoma at the root of the neck under general anaesthesia. When the fever has been responding to antibiotics, on the 4th postoperative day a mild thrombocytopenia on complete blood count was detected. A blood smear which was done on the 5th postoperative day incidentally found a malaria parasite and confirmed as Plasmodium ovale with a density of 6535 parasites/microliter on the same day. He never had malaria in the past, but he had worked in South Sudan 1 year ago and visited India six months ago. On the 6th postoperative day, he was treated with chloroquine, and hyperparasitemia reduced rapidly by the next day. As the fever recurred with clinical deterioration, he was treated with different antibiotics. During the course of the illness, he did not develop pallor, or icterus except for a palpable soft spleen. The parasite count was zero on the 9th postoperative day and his fever subsided on the next day. Further, he was treated with primaquine to prevent future relapse and transmission. CONCLUSION: A long incubation period, incidental detection of P ovale in a blood smear, and hyperparasitaemia are the atypical presentations of this case. Postoperative bacterial infection and stress may have reactivated the dormant malaria (hyponozoites) in this patient with an unusual picture. Coinfection of malaria with bacterial sepsis is a challenge in the management of the patient. As the Anopheles mosquito vector exists in Sri Lanka, the risk of indigenous transmission is high from such imported cases of P. ovale.


Subject(s)
Malaria , Plasmodium ovale , Male , Animals , Humans , Adult , Sri Lanka , Neoplasm Recurrence, Local , Malaria/complications , Malaria/diagnosis , Malaria/drug therapy , Fever/etiology , Anti-Bacterial Agents/therapeutic use
14.
Nat Commun ; 14(1): 6618, 2023 10 19.
Article in English | MEDLINE | ID: mdl-37857597

ABSTRACT

Reports suggest non-falciparum species are an underappreciated cause of malaria in sub-Saharan Africa but their epidemiology is ill-defined, particularly in highly malaria-endemic regions. We estimated incidence and prevalence of PCR-confirmed non-falciparum and Plasmodium falciparum malaria infections within a longitudinal study conducted in Kinshasa, Democratic Republic of Congo (DRC) between 2015-2017. Children and adults were sampled at biannual household surveys and routine clinic visits. Among 9,089 samples from 1,565 participants, incidences of P. malariae, P. ovale spp., and P. falciparum infections by 1-year were 7.8% (95% CI: 6.4%-9.1%), 4.8% (95% CI: 3.7%-5.9%) and 57.5% (95% CI: 54.4%-60.5%), respectively. Non-falciparum prevalences were higher in school-age children, rural and peri-urban sites, and P. falciparum co-infections. P. falciparum remains the primary driver of malaria in the DRC, though non-falciparum species also pose an infection risk. As P. falciparum interventions gain traction in high-burden settings, continued surveillance and improved understanding of non-falciparum infections are warranted.


Subject(s)
Malaria, Falciparum , Malaria , Plasmodium ovale , Child , Adult , Humans , Plasmodium ovale/genetics , Plasmodium malariae , Democratic Republic of the Congo/epidemiology , Longitudinal Studies , Malaria, Falciparum/epidemiology , Malaria/epidemiology , Prevalence , Plasmodium falciparum/genetics
15.
Am J Trop Med Hyg ; 109(3): 608-610, 2023 09 06.
Article in English | MEDLINE | ID: mdl-37580024

ABSTRACT

We report the first known case of hemophagocytic lymphohistiocytosis (HLH) secondary to imported Plasmodium ovale wallikeri infection in a 58-year-old white woman. A delayed diagnosis of malaria and HLH was made after protracted fever and pancytopenia failed to respond adequately to antimalarial treatment, which required intravenous methylprednisolone and gamma-globulin therapy to resolve.


Subject(s)
Antimalarials , Lymphohistiocytosis, Hemophagocytic , Malaria , Pancytopenia , Plasmodium ovale , Female , Humans , Middle Aged , Lymphohistiocytosis, Hemophagocytic/complications , Lymphohistiocytosis, Hemophagocytic/diagnosis , Lymphohistiocytosis, Hemophagocytic/drug therapy , Malaria/complications , Malaria/diagnosis , Malaria/drug therapy , Antimalarials/therapeutic use
16.
Parasit Vectors ; 16(1): 269, 2023 Aug 08.
Article in English | MEDLINE | ID: mdl-37553591

ABSTRACT

BACKGROUND: Infections with Plasmodium ovale are widely distributed but rarely investigated, and the resulting burden of disease has been underestimated. Plasmodium ovale curtisi Duffy binding protein domain region II (PocDBP-RII) is an essential ligand for reticulocyte recognition and host cell invasion by P. ovale curtisi. However, the genomic variation, antigenicity and immunogenicity of PocDBP-RII remain major knowledge gaps. METHODS: A total of 93 P. ovale curtisi samples were collected from migrant workers who returned to China from 17 countries in Africa between 2012 and 2016. The genetic polymorphism, natural selection and copy number variation (CNV) were investigated by sequencing and real-time PCR. The antigenicity and immunogenicity of the recombinant PocDBP-RII (rPocDBP-RII) protein were further examined, and the humoral and cellular responses of immunized mice were assessed using protein microarrays and flow cytometry. RESULTS: Efficiently expressed and purified rPocDBP-RII (39 kDa) was successfully used as an antigen for immunization in mice. The haplotype diversity (Hd) of PocDBP-RII gene was 0.105, and the nucleotide diversity index (π) was 0.00011. No increased copy number was found among the collected isolates of P. ovale curtisi. Furthermore, rPocDBP-RII induced persistent antigen-specific antibody production with a serum IgG antibody titer of 1: 16,000. IFN-γ-producing T cells, rather than IL-10-producing cells, were activated in response to the stimulation of rPocDBP-RII. Compared to PBS-immunized mice (negative control), there was a higher percentage of CD4+CD44highCD62L- T cells (effector memory T cells) and CD8+CD44highCD62L+ T cells (central memory T cells) in rPocDBP-RII­immunized mice. CONCLUSIONS: PocDBP-RII sequences were highly conserved in clinical isolates of P. ovale curtisi. rPocDBP-RII protein could mediate protective blood-stage immunity through IFN-γ-producing CD4+ and CD8+ T cells and memory T cells, in addition to inducing specific antibodies. Our results suggested that rPocDBP-RII protein has potential as a vaccine candidate to provide assessment and guidance for malaria control and elimination activities.


Subject(s)
Malaria , Plasmodium ovale , Animals , Mice , Plasmodium ovale/genetics , Interferon-gamma/genetics , CD8-Positive T-Lymphocytes , DNA Copy Number Variations , Protein Domains , Malaria/prevention & control
17.
Malar J ; 22(1): 211, 2023 Jul 19.
Article in English | MEDLINE | ID: mdl-37468917

ABSTRACT

BACKGROUND: Malaria is a major public health problem, particularly in the tropical regions of America, Africa and Asia. Plasmodium falciparum is not only the most widespread but also the most deadly species. The share of Plasmodium infections caused by the other species (Plasmodium ovale and Plasmodium malariae) is clearly underestimated. The objective of the study was to determine the molecular epidemiology of plasmodial infection due to P. malariae and P. ovale in Côte d'Ivoire. METHODS: The study was cross-sectional. The study participants were recruited from Abengourou, San Pedro and Grand-Bassam. Sample collection took place from May 2015 to April 2016. Questionnaires were administered and filter paper blood samples were collected for parasite DNA extraction. The molecular analysis was carried out from February to March 2021. A nested PCR was used for species diagnosis. The data was presented in frequencies and proportions. RESULTS: A total of 360 patients were recruited, including 179 men (49,7%) for 181 women (50,3%). The overall Plasmodium positive rate was 72.5% (261/360). The specific index was 77.4% and 1.5% for P. falciparum and P. malariae in mono-infection, respectively. There was also 15% P. falciparum and P. malariae co-infection, 3.4% P. falciparum and P. ovale co-infection and 2.3% P. falciparum, P. malariae and P. ovale triple-infection. Typing of P. ovale subspecies showed a significant predominance of P. ovale curtisi (81.2% of cases). CONCLUSION: Plasmodium falciparum remains the most prevalent malaria species in Côte d'Ivoire, but P. malariae and P. ovale are also endemic mostly in co-infection. Malaria elimination requires a better understanding of the specific epidemiological characteristics of P. malariae and P. ovale with a particular emphasis on the identification of asymptomatic carriers.


Subject(s)
Coinfection , Malaria, Falciparum , Malaria , Plasmodium ovale , Male , Humans , Female , Plasmodium falciparum/genetics , Cote d'Ivoire/epidemiology , Molecular Epidemiology , Coinfection/epidemiology , Coinfection/parasitology , Cross-Sectional Studies , Prevalence , Malaria, Falciparum/epidemiology , Malaria, Falciparum/parasitology , Malaria/epidemiology , Malaria/parasitology , Plasmodium ovale/genetics , Plasmodium malariae/genetics
18.
Front Public Health ; 11: 1203095, 2023.
Article in English | MEDLINE | ID: mdl-37448654

ABSTRACT

Background: This study aimed at exploring the epidemiological pattern of imported malaria in China before malaria elimination in 2021, to provide evidence-based data for preventing malaria re-establishment in China. Methods: Nine-year surveillance data on imported malaria in four provincial-level administrative divisions (PLADs) (Anhui, Chongqing, Guangxi, and Zhejiang) between 2011 and 2019 were thoroughly collected and analyzed. Results: A quite stable trend in imported malaria cases between 2011 and 2019 was observed. In total, 6,064 imported patients were included. Plasmodium falciparum was the most frequently reported species (4,575, 75.6%). Cases of malaria were most frequently imported from Western Africa (54.4%). We identified an increasing trend in P. ovale and a persistence of P. vivax infections among the cases of malaria imported from Western Africa. Most patients (97.5%) were 20-50 years old. Among imported malaria infections, the main purposes for traveling abroad were labor export (4,914/6,064, 81.0%) and business trips (649, 10.7%). Most patients (2,008/6,064, 33.1%) first visited county-level medical institutions when they sought medical help in China. More patients were diagnosed within 3 days after visiting Centers for Disease Control and Prevention (CDCs) or entry-exit quarantine facilities (EQFs) (1,147/1609, 71.3%) than after visiting medical institutions (2,182/3993, 54.6%). Conclusion: Imported malaria still poses a threat to the malaria-free status of China. County-level institutions are the primary targets in China to improve the sensitivity of the surveillance system and prevent the re-establishment of malaria. Health education should focus on exported labors, especially to Western and Central Africa. Increasing trend in P. ovale and persistence of P. vivax infections indicated their underestimations in Western Africa. Efficient diagnostic tools and sensitive monitoring systems are required to identify Plasmodium species in Africa.


Subject(s)
Malaria , Plasmodium ovale , Humans , Young Adult , Adult , Middle Aged , Plasmodium vivax , Incidence , China/epidemiology , Malaria/epidemiology , Malaria/prevention & control
19.
Malar J ; 22(1): 209, 2023 Jul 13.
Article in English | MEDLINE | ID: mdl-37443070

ABSTRACT

BACKGROUND: The global battle against malaria is facing formidable challenges, particularly in controlling Plasmodium vivax and Plasmodium ovale, whose cases have not been reduced as effectively as Plasmodium falciparum because of their relapse. This study investigates the current situation and underlying factors contributing to relapse or recrudescence of imported cases of P. vivax and P. ovale, and seeks to provide a reference for reducing relapse or recrudescence in malaria-free areas and offers a scientific basis for designing strategies to prevent imported re-transmission. METHODS: This study analysed imported P. vivax and P. ovale in Anhui, Zhejiang, Henan, Hubei, and Guangxi provinces during 2014-2021 by retrospective analysis. A case-control study was conducted on patients who experienced relapse or recrudescence. RESULTS: From 2014 to 2021, 306 cases of P.vivax and 896 cases of P.ovale were included in the study, while 75 cases had relapse or recrudescence, including 49 cases of P. ovale (65.33%) and 26 cases of P. vivax (34.67%). Within less than 5 weeks after returning to the country, 122 cases of P. vivax (39.87%, 122/306) and 265 cases of P. ovale (29.58%, 265/896) occurred. Within less than 53 weeks, the ratio of P. vivax was 94.77% (290/306), and that of P. ovale was 89.96% (806/896). Among the cases experiencing relapse or recrudescence, only 1 case of P. vivax (1/26 3.85%) and 3 cases of P. ovale (3/49 6.12%) occurred within less than 5 weeks after the first onset, whereas 21 cases of P. vivax (21/26 80.77%) and 42 cases of P. ovale (42/49 85.71%) occurred within less than 53 weeks after the first onset. The difference in relapse or recrudescence due to different drugs and medication regimens and medical activities at various levels of medical institutions was statistically significant. CONCLUSION: In areas where malaria has been eliminated, routine health screening in a scientific time frame for people returning from at-risk areas can effectively improve the efficiency of preventing re-transmission, thereby reducing prevention costs and disease burden. Preventing patients from self-treating and strengthening medication regulations in health facilities are key measures to reduce relapse or recrudescence.


Subject(s)
Malaria, Vivax , Malaria , Plasmodium ovale , Humans , Plasmodium vivax , Case-Control Studies , Retrospective Studies , China/epidemiology , Malaria/prevention & control , Malaria, Vivax/epidemiology , Malaria, Vivax/drug therapy , Recurrence , Chronic Disease
20.
J Infect Dis ; 228(8): 1089-1098, 2023 10 18.
Article in English | MEDLINE | ID: mdl-37329228

ABSTRACT

Like Plasmodium vivax, both Plasmodium ovale curtisi and Plasmodium ovale wallikeri have the ability to cause relapse in humans, defined as recurring asexual parasitemia originating from liver-dormant forms subsequent to a primary infection. Here, we investigated relapse patterns in P ovale wallikeri infections from a cohort of travelers who were exposed to the parasite in sub-Saharan Africa and then experienced relapses after their return to France. Using a novel set of 8 highly polymorphic microsatellite markers, we genotyped 15 P ovale wallikeri relapses. For most relapses, the paired primary and relapse infections were highly genetically related (with 12 being homologous), an observation that was confirmed by whole-genome sequencing for the 4 relapses we further studied. This is, to our knowledge, the first genetic evidence of relapses in P ovale spp.


Subject(s)
Malaria , Plasmodium ovale , Humans , Plasmodium ovale/genetics , Malaria/parasitology , Plasmodium vivax/genetics , Recurrence , Microsatellite Repeats/genetics
SELECTION OF CITATIONS
SEARCH DETAIL