Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.376
Filter
1.
Water Environ Res ; 96(9): e11123, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39223713

ABSTRACT

Microplastics (MPs) severely threaten inland waterbodies due to the direct impact of human activities. In the present study, spatial and temporal patterns of MPs in a shallow tropical lake were assessed, describing their size, morphology, and polymer types. Water and sediment samples were collected from Lake Chapala during three seasons, and MPs were quantified with a stereomicroscope. The structure, elemental composition, and polymeric composition were determined via environmental scanning electron microscopy and Fourier transform infrared spectroscopy. The highest average concentration of microplastics in Lake Chapala was detected during the low-water period in April 2022 (2.35 items/L), exceeding the July 2022 rainy season concentration (1.8 items/L) by 0.25 items/L, and sediment concentrations were also higher in April 2022 (219 items/kg) compared to July 2022 (210 items/kg). This study highlights the significant pollution of Lake Chapala with microplastics, emphasizing the need for urgent measures to manage plastic waste and mitigate its environmental impact on aquatic ecosystems. PRACTITIONER POINTS: Microplastic contamination was evaluated in Lake Chapala. The distribution profiles of microplastics were different in each area. Heavy metals osmium, tellurium, and rhodium were found associated with the PMs. Polymers were found in this study.


Subject(s)
Environmental Monitoring , Geologic Sediments , Lakes , Microplastics , Water Pollutants, Chemical , Lakes/chemistry , Geologic Sediments/chemistry , Microplastics/analysis , Water Pollutants, Chemical/analysis , Environmental Monitoring/methods , Tropical Climate , Plastics/chemistry
2.
J Chromatogr A ; 1732: 465243, 2024 Sep 13.
Article in English | MEDLINE | ID: mdl-39128241

ABSTRACT

Plastics incorporate diverse additives, including primary antioxidants with a typical amount between 0.05 to 3 wt.%, to enhance plastics functionality and durability, preventing their oxidation and maintaining their mechanical properties. While these antioxidants offer substantial benefits, their degradation can significantly impact plastic pyrolysis by changing the pyrolysis oil product distribution. Understanding the intricate distribution of decomposition products resulting from pyrolysis is essential yet often overlooked. This study delved into the analysis of the decomposition of common primary antioxidants, namely, Irganox 1010, Irganox 1076, and butylated hydroxytoluene (BHT), utilizing both one-dimensional gas chromatography coupled with a quadruple mass spectrometer (GC-MS) and two-dimensional gas chromatography equipped with flame ionization detector and time-of-flight mass spectrometer (GC×GC-FID/TOF-MS). This study showed that GC×GC-FID/TOF-MS provided a more detailed characterization of the pyrolysis product distribution of primary antioxidants used in plastics in comparison to GC-MS. For each of the antioxidants, using the GC×GC-FID/TOF-MS analytical approach enhanced the identification of degradation products at least fivefold. Furthermore, GC×GC-FID/TOF-MS identified products of more chemical classes than GC-MS. For instance, compounds from 14 chemical classes were identified from GC×GC-FID/TOF-MS in the pyrolysis of Irganox 1010, whereas only 9 chemical classes were identified in GC-MS. Olefins were the major chemical class for both Irganox 1010 and Irganox 1076 in the decomposition process, accounting for 23.25 wt.% and 20.76 wt.%, respectively. Ketones were the major chemical class in the case of BHT, having a 6.68 wt.% yield. This research enhanced the understanding of the decomposition of primary antioxidant and their product distribution during pyrolysis and shed light on the potential necessity for using two-dimensional gas chromatography.


Subject(s)
Antioxidants , Butylated Hydroxytoluene , Gas Chromatography-Mass Spectrometry , Pyrolysis , Butylated Hydroxytoluene/analysis , Butylated Hydroxytoluene/chemistry , Butylated Hydroxytoluene/analogs & derivatives , Antioxidants/analysis , Antioxidants/chemistry , Gas Chromatography-Mass Spectrometry/methods , Plastics/chemistry , Chromatography, Gas/methods
3.
J Chromatogr A ; 1732: 465244, 2024 Sep 13.
Article in English | MEDLINE | ID: mdl-39142169

ABSTRACT

Plastic production has experienced a significant increase in the last sixty years due to its cost-efficiency and adaptable characteristics, leading to the extensive use of additives to improve its performance and longevity. Due to the high demand for plastic, plastic waste production has increased, contaminating the environment and living beings by leaching additives, among other substances. Pyrolysis stands out among recycling techniques because it can handle mixed polymer waste feedstock. However, understanding the pyrolyzates distribution of additives is fundamental to assessing pyrolysis process of plastic waste. This study investigated the pyrolysis product distributions of two commonly used antioxidants, namely, Irgafos 168 and zinc stearate (ZnSt), using one-dimensional gas chromatography equipped with a quadruple mass spectrometer (GC-MS) and two-dimensional gas chromatography coupled to flame ionization detector and time-of-flight mass spectrometer (GC×GC-FID/TOF-MS). While GC separation technique provided limited information on product distribution, GC×GC offered enhanced resolution and identification of the decomposition products. In the pyrolysis of Irgafos 168 at 550 °C, GC identified 18 products, while GC×GC identified 198 products, representing an increase of approximately 11-fold. Similarly, for ZnSt, GC identified 67 products, while GC×GC identified 434 products, representing a 6-fold increase. GC×GC identified decomposition products from 15 different chemical classes for Irgafos 168 and 16 chemical classes for ZnSt, compared to 4 and 11 chemical classes identified by GC, respectively. Phenols and their derivatives were the major chemical class in the decomposition products of Irgafos 168 with a yield of 9.51 wt.%. In contrast, olefinic products were the dominant ones for ZnSt, with a yield of 9.73 wt.%. The major decomposition product of Irgafos 168 and ZnSt was 2­tert­butyl­methylphenol (C11H16O) and C6 olefin (C6H12) with yields of 3.88 wt.%, and 1.13 wt.%, respectively. Utilizing the GC×GC separation method improved the ability to identify decomposition products, which can ultimately lead to a better understanding of antioxidant degradation that occurs during the pyrolysis process. GC×GC also provided thorough characterization of minor and co-eluted products along with major antioxidant degradation products. Additionally, the decomposition product distribution of Irgafos 168 and ZnSt was also compared with the primary antioxidants, Irganox 1010, Irganox 1076, and BHT, studied in part 1. The analysis indicated that the olefinic chemical class was the predominant one in Irganox 1010, Irganox 1076, and ZnSt, while ketones were the major chemical class in the decomposition of BHT and phenolics had the highest yield in Irgafos 168.


Subject(s)
Antioxidants , Gas Chromatography-Mass Spectrometry , Pyrolysis , Stearic Acids , Gas Chromatography-Mass Spectrometry/methods , Antioxidants/analysis , Antioxidants/chemistry , Stearic Acids/analysis , Stearic Acids/chemistry , Chromatography, Gas/methods , Plastics/chemistry
4.
PDA J Pharm Sci Technol ; 78(4): 514-515, 2024 Aug 23.
Article in English | MEDLINE | ID: mdl-39179388

ABSTRACT

Luer systems, for example Luer-needle hub with syringe's Luer cone tip and its Luer lock Adapter, are common interface on medical devices. One of the key questions in this application is about the safety guaranty and dose accuracy. It is then crucial to study the sealing between these elements. In this study we combine the use of Finite Element Analysis (FEA) and Multiscale Contact Mechanics (MCM) to analyze the connectivity and sealing performance of a glass syringe and a plastic needle Luer hub.This methodology has been applied before to the contact between glass and rubber and this is the first time that it is used for the contact between glass and plastic materials. The use of FEA allows to calculate the contact pressures and the nominal area of contact. The surface topographies of the two surfaces were measured, over a wide wavelength range (mm to nm). Subsequently, the air and liquid interfacial flow (leakage) is calculated using Persson's MCM theory which considers the roughness and elasto-plasticity of the interfacial surfaces. The theoretical predictions are compared to experimental leak measurements by pressure decay method. Further analysis is conducted, evidencing the key features that are responsible for a good sealing.


Subject(s)
Finite Element Analysis , Glass , Syringes , Glass/chemistry , Equipment Design , Surface Properties , Needles , Rubber/chemistry , Plastics/chemistry , Pressure
5.
Spectrochim Acta A Mol Biomol Spectrosc ; 323: 124919, 2024 Dec 15.
Article in English | MEDLINE | ID: mdl-39111033

ABSTRACT

Lignocellulosic bioplastics were produced using four different green wastes: hemp, parsley stem, pineapple leaves and walnut shell. Two different solutions were used to dissolve the green wastes: trifluoroacetic acid (TFA) and pure water. The changes in their natural structures and the solvent effect during the regeneration in biofilm formation were investigated by using Synchrotron FTIR Microspectroscopy (SR-µFTIR). The presence of cellulose, hemicellulose and lignin components in the water-based biofilms was confirmed. After dissolving in TFA, the spectra demonstrated some additional bands especially in the hemicellulose region. This is due to the hydrolysis of ester bonds and conversion to carboxylic acids. Principal component analysis showed grouping due to different solvents and polymer addition. Hemp-PVA (Polyvinyl Alcohol) composite biofilms were obtained by adding polyvinyl alcohol to the hemp solution to give extra strength to the hemp biofilms. It has been shown that water-based hemp-PVA biofilms do not cause any significant spectral changes, comparing with pure hemp and PVA spectra. However, after dissolving in TFA, unlike water-based biofilms, it appears that TFA molecules are retained by PVA through hydrogen bonds of TFA's carboxylic acid and hydroxyl groups and distinct spectral regions belong to TFA bands are clearly identified.


Subject(s)
Plastics , Synchrotrons , Spectroscopy, Fourier Transform Infrared/methods , Plastics/chemistry , Cannabis/chemistry , Waste Products/analysis , Lignin/chemistry , Biofilms/drug effects , Principal Component Analysis , Polyvinyl Alcohol/chemistry , Cellulose/chemistry , Polysaccharides
6.
Water Res ; 263: 122177, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-39111211

ABSTRACT

For the resource recovery of biomass waste, it is a challenge to simultaneously remove micro-/nano-plastics pollution but preserve organic resources. Wet oxidation is a promising technology for valorization of organic wastes through thermal hydrolysis and oxidation. This might in turn result in the degradation of microplastics in the presence of oxygen and high temperatures. Based on this hypothesis, this study quantified both microplastics and nanoplastics in an industrial-scale wet oxidation reactor from a full-size coverage perspective. Wet oxidation significantly reduced the size and mass of individual microplastics, and decreased total mass concentration of microplastics and nanoplastics by 94.8 % to 98.6 %. This technology also reduced the micro- and nanoplastic shapes and polymer types, resulting in a complete removal of fibers, clusters, polypropylene (PP) and poly(methyl methacrylate) (PMMA). The present study confirms that wet oxidation technology is effective in removing microplastics and nanoplastics while recovering organic waste.


Subject(s)
Microplastics , Oxidation-Reduction , Water Pollutants, Chemical/chemistry , Polypropylenes/chemistry , Plastics/chemistry , Polymethyl Methacrylate/chemistry
7.
Int J Pharm ; 663: 124577, 2024 Sep 30.
Article in English | MEDLINE | ID: mdl-39137820

ABSTRACT

This study investigates the impact of intravenous (IV) infusion protocols on the stability of Intravenous Immunoglobulin G (IVIG) and Rituximab, with a particular focus on subvisible particle generation. Infusion set based on peristaltic movement (Medifusion DI-2000 pump) was compared to a gravity-based infusion system (Accu-Drip) at different flow rates. The impacts of different diluents (0.9 % saline and 5.0 % dextrose) and plastic syringes with or without silicone oil (SO) were also investigated. The results from the aforementioned particular case demonstrated that peristaltic pumps generated high levels of subvisible particles (prominently < 25 µm), exacerbated by increasing flow rates, specifically in formulations lacking surfactants. Other factors, such as diluent type and syringe composition, also increased the number of subvisible particles. Strategies that can help overcome these complications include surfactant addition as well as the use of SO-free syringes and a gravity infusion system, which aid in reducing particle formation and preserving antibody monomer during administration. Altogether, these findings highlight the importance of the careful selection of formulations and infusion protocols to minimize particle generation during IV infusion both for patients' safety and treatment efficacy.


Subject(s)
Drug Stability , Immunoglobulins, Intravenous , Rituximab , Syringes , Rituximab/administration & dosage , Rituximab/chemistry , Infusions, Intravenous , Immunoglobulins, Intravenous/administration & dosage , Immunoglobulins, Intravenous/chemistry , Infusion Pumps , Surface-Active Agents/chemistry , Silicone Oils/chemistry , Drug Packaging , Plastics/chemistry , Glucose/chemistry , Humans
8.
ACS Nano ; 18(35): 24414-24425, 2024 Sep 03.
Article in English | MEDLINE | ID: mdl-39161983

ABSTRACT

Reckoning with the global environmental challenge of plastic pollution, particularly in terms of recycling and biodegradation of thermosetting plastics, sustainable alternatives are imperative. The rapidly growing and eco-friendly material bamboo has great potential as a sustainable resource; however, it lacks the inherent self-bonding and plasticity characteristics found in plastics. This study presents a feasible approach to enhance the plasticity of bamboo by selectively removing part of its lignin and disrupting the crystalline structure of cellulose. Concurrently, this process selectively transforms hydroxyl groups into highly reactive dialdehyde groups to increase the reactivity of bamboo. The resulting activated bamboo units undergo a hot-pressing process to transform them into a type of thermosetting plastic (ABTP). The ABTP is highly moldable, and its color can be precisely regulated by adjusting the lignin content. Additionally, it exhibits exceptional solvent and water resistance, along with notable mechanical properties, including a tensile strength of 50 MPa, flexural strength of 80 MPa, flexural modulus of 5 GPa, and Shore D hardness approaching 90. Furthermore, the bamboo-derived plastic exhibits exceptional reusability and biodegradability, presenting feasible and environmentally friendly alternatives to conventional plastics while harnessing the sustainable development potential of bamboo.


Subject(s)
Cell Wall , Cell Wall/chemistry , Sasa/chemistry , Tensile Strength , Temperature , Plastics/chemistry , Biodegradable Plastics/chemistry , Cellulose/chemistry , Water/chemistry , Lignin/chemistry , Biodegradation, Environmental
9.
PLoS One ; 19(8): e0307485, 2024.
Article in English | MEDLINE | ID: mdl-39172972

ABSTRACT

In this study, we present a novel approach to injection molding, focusing on the strength of weld lines in polyamide 6 (PA6) composite samples. By implementing a mold temperature significantly higher than the typical molding practice, which rarely exceeds 100°C, we assess the effects of advanced mold temperature management. The research introduces a newly engineered mold structure specifically designed for localized mold heating, distinguishing it as the 'novel cavity.' This innovative design is compared against traditional molding methods to highlight the improvements in weld line strength at elevated mold temperatures. To optimize the molding parameters, we apply an Artificial Neural Network (ANN) in conjunction with a Genetic Algorithm (GA). Our findings reveal that the optimal ultimate tensile strength (UTS) and elongation values are achieved with a filling time of 3.4 seconds, packing time of 0.8 seconds, melt temperature of 246°C, and a novel high mold temperature of 173°C. A specific sample demonstrated the best molding parameters at a filling time of 3.4 seconds, packing time of 0.4 seconds, melt temperature of 244°C, and mold temperature of 173°C, resulting in an elongation value of 582.6% and a UTS of 62.3 MPa. The most influential factor on the PA6 sample's UTS and elongation at the weld line was found to be the melt temperature, while the filling time had the least impact. SEM analysis of the fracture surfaces revealed ductile fractures with rough surfaces and grooves, indicative of the weld line areas' bonding quality. These insights pave the way for significant improvements in injection molding conditions, potentially revolutionizing the manufacturing process by enhancing the structural integrity of the weld lines in molded PA6 samples.


Subject(s)
Nylons , Nylons/chemistry , Temperature , Tensile Strength , Neural Networks, Computer , Gases/chemistry , Plastics/chemistry , Materials Testing , Caprolactam/chemistry , Caprolactam/analogs & derivatives , Algorithms , Polymers
10.
J Hazard Mater ; 478: 135512, 2024 Oct 05.
Article in English | MEDLINE | ID: mdl-39151361

ABSTRACT

Microplastics (MPs) and nanoplastics (NPs) present in wastewater can pose a negative impact to aerobic granular sludge (AGS). Herein, this study found that MPs and NPs (20 mg/L) deteriorated the sludge settleability and granule integrity, resulting in a 15.7 % and 21.9 % decrease in the total nitrogen removal efficiency of the AGS system, respectively. This was possibly due to the reduction of the extracellular polymeric substances (EPS) content. The subsequent analysis revealed that tyrosine, tryptophan, and humic acid-like substances in EPS exhibited a higher propensity for chemisorption and inhomogeneous multilayer adsorption onto NPs compared to MPs. The binding of EPS onto the surface of plastic particles increased the electronegativity of the MPs, but facilitated the aggregation of NPs through reducing the electrostatic repulsion, thereby mitigating the adverse effects of MPs/NPs on the AGS stability. Additionally, comprehensive analysis of the extended Derjaguin-Landau-Verwey-Overbeek theory indicated that the suppressed aggregation of microorganisms was the internal mechanisms contributing to the inadequate stability of AGS induced by MPs/NPs. This study provides novel insights into the detrimental mechanisms of MPs/NPs on the AGS stability, highlighting the key role of EPS in maintaining the structural stability of AGS when exposed to MPs/NPs.


Subject(s)
Extracellular Polymeric Substance Matrix , Microplastics , Sewage , Sewage/microbiology , Sewage/chemistry , Microplastics/toxicity , Microplastics/chemistry , Extracellular Polymeric Substance Matrix/chemistry , Extracellular Polymeric Substance Matrix/metabolism , Aerobiosis , Water Pollutants, Chemical/chemistry , Water Pollutants, Chemical/toxicity , Adsorption , Nitrogen/chemistry , Nanoparticles/chemistry , Nanoparticles/toxicity , Waste Disposal, Fluid/methods , Plastics/chemistry
11.
Anal Chem ; 96(35): 14142-14149, 2024 Sep 03.
Article in English | MEDLINE | ID: mdl-39172628

ABSTRACT

Cyclic olefin copolymers (COC; e.g., Zeonor, Topas, Arton, etc.) are materials with outstanding properties for developing point-of-care systems; however, the lack of functional groups in their native form makes their application challenging. This work evaluates different strategies to functionalize commercially available Zeonor substrates, including oxygen plasma treatment, photochemical grafting, and direct surface amination using an amino dextran-lipase conjugate (ADLC). The modified surfaces were characterized by contact angle measurements, Fourier transform infrared-attenuated total reflection analysis, and fluorescence assays based on evanescent wave excitation. The bioaffinity activation through the ADLC approach results in a fast, simple, and reproducible approach that can be used further to conjugate carboxylated small molecules (e.g., haptens). The usefulness of this approach has been demonstrated by the development of a heterogeneous fluorescence immunoassay to detect tacrolimus (FK506) immunosuppressant drug using an array biosensor platform based on evanescence wave laser excitation and Zeonor-ADLC substrates. Surface modification with ADLC-bearing FK506 provides a 3D layer that efficiently leads to a remarkably low limit of detection (0.02 ng/mL) and IC50 (0.9 ng/mL) together with a wide dynamic range (0.07-11.3 ng/mL).


Subject(s)
Immunosuppressive Agents , Tacrolimus , Tacrolimus/chemistry , Immunosuppressive Agents/chemistry , Immunoassay/methods , Biosensing Techniques/methods , Plastics/chemistry , Humans
12.
Microb Ecol ; 87(1): 105, 2024 Aug 12.
Article in English | MEDLINE | ID: mdl-39133233

ABSTRACT

Despite some effectiveness of wastewater treatment processes, microplastics accumulate in sewage sludge and their further use may contribute to the release of plastic microplastics into the environment. There is an urgent need to reduce the amount of microplastics in sewage sludge. Plastic particles serve as solid substrates for various microorganisms, promoting the formation of microbial biofilms with different metabolic activities. The biofilm environment associated with microplastics will determine the efficiency of treatment processes, especially biological methods, and the mechanisms of organic compound conversion. A significant source of microplastics is the land application of sewage sludge from wastewater treatment plants. The detrimental impact of microplastics affects soil enzymatic activity, soil microorganisms, flora, fauna, and plant production. This review article summarizes the development of research related to microplastics and discusses the issue of microplastic introduction from sewage sludge. Given that microplastics can contain complex composite polymers and form a plastisphere, further research is needed to understand their potential environmental impact, pathogenicity, and the characteristics of biofilms in wastewater treatment systems. The article also discusses the physicochemical properties of microplastics in wastewater treatment plants and their role in biofilm formation. Then, the article explained the impact of these properties on the possibility of the formation of biofilms on their surface due to the peculiar structure of microorganisms and also characterized what factors enable the formation of specific plastisphere in wastewater treatment plants. It highlights the urgent need to understand the basic information about microplastics to assess environmental toxicity more rationally, enabling better pollution control and the development of regulatory standards to manage microplastics entering the environment.


Subject(s)
Biofilms , Microbiota , Microplastics , Sewage , Wastewater , Microplastics/analysis , Wastewater/microbiology , Wastewater/chemistry , Sewage/microbiology , Sewage/chemistry , Waste Disposal, Fluid , Water Pollutants, Chemical/analysis , Bacteria/classification , Bacteria/metabolism , Plastics/chemistry
13.
J Hazard Mater ; 477: 135380, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-39088944

ABSTRACT

The enzymatic degradation of plastic offers a green, sustainable strategy and scalable circular carbon route for solving polyester waste. Among the earlies discovered plastic-degrading enzymes are PET hydrolase (PETase) and MHET hydrolase (MHETase), which act synergistically. To promote the adsorption of enzymes on PET surfaces, increase their robustness, and enable directly depolymerization, we designed hydrophobin HFBI fused-PETase and MHETase. A customized self-assembled synergistic biocatalyst (MC@CaZn-MOF) was further developed to promote the two-step depolymerization process. The tailored catalysts showed better adhesion to the PET surface and desirable durability, retaining over 70% relative activity after incubation at pH 8.0 and 60 °C for 120 h. Importantly, MC@CaZn-MOF could directly decompose untreated AGf-PET to generate 9.5 mM TPA with weight loss over 90%. The successful implementation of a bifunctional customized catalyst makes the large-scale biocatalytic degradation of PET feasible, contributing to polymer upcycling and environmental sustainability.


Subject(s)
Biocatalysis , Polymerization , Plastics/chemistry , Hydrolases/metabolism , Hydrolases/chemistry , Biodegradation, Environmental , Fungal Proteins/chemistry , Fungal Proteins/metabolism , Metal-Organic Frameworks/chemistry
14.
J Hazard Mater ; 477: 135406, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-39098198

ABSTRACT

Global release of plastics exerts various impacts on the ecological cycle, particularly on primary photosynthesis, while the impacts of plastic additives are unknown. As a carrier of fluorescent brightener, plastic particles co-modify Chlorella pyrenoidosa (C. pyrenoidosa) growth and its photosynthetic parameters. In general, adding to the oxidative damage induced by polystyrene, fluorescent brightener-doped polystyrene produces stronger visible light and the amount of negative charge is more likely to cause photodamage in C. pyrenoidosa leading to higher energy dissipation through conditioning than in the control group with a date of ETR (II) inhibition rate of 33 %, Fv/Fm inhibition rate of 8.3 % and Pm inhibition rate of 48.8 %. To elucidate the ecological effect of fluorescent brightener doping in plastic particles, a machine learning method is performed to establish a Gradient Boosting Machine model for predicting the impact of environmental factors on algal growth. Upon validation, the model achieved an average fitting degree of 88 %. Relative concentration of plastic particles and algae claimed the most significant factor by interpretability analysis of the machine learning. Additionally, both Gradient Boosting Machine prediction and experimental results indicate a matching result that plastic additives have an inhibitive effect on algal growth.


Subject(s)
Chlorella , Machine Learning , Photosynthesis , Chlorella/growth & development , Chlorella/drug effects , Chlorella/metabolism , Photosynthesis/drug effects , Plastics/chemistry , Plastics/toxicity , Polystyrenes/chemistry , Water Pollutants, Chemical/toxicity , Fluorescent Dyes/chemistry
15.
J Chem Inf Model ; 64(16): 6492-6505, 2024 Aug 26.
Article in English | MEDLINE | ID: mdl-39119989

ABSTRACT

We developed a Target Plastic Model (TPM) to estimate the critical plastic burden of organic toxicants in five types of plastics, namely, polydimethylsiloxane (PDMS), polyoxymethylene (POM), polyacrylate (PA), low-density polyethylene (LDPE), and polyurethane ester (PU), following the Target Lipid Model (TLM) framework. By substituting the lipid-water partition coefficient in the TLM with plastic-water partition coefficients to create TPM, we demonstrated that the biomimetic nature of these plastic phases allows for the calculation of critical plastic burdens of toxicants, similar to the notion of critical lipid burdens in TLM. Following this approach, the critical plastic burdens of baseline (n = 115), less-inert (n = 73), and reactive (n = 75) toxicants ranged from 0.17 to 51.33, 0.04 to 26.62, and 1.00 × 10-6 to 6.78 × 10-4 mmol/kg of plastic, respectively. Our study showed that PDMS, PA, POM, PE, and PU are similar to biomembranes in mimicking the passive exchange of chemicals with the water phase. Using the TPM, median lethal concentration (LC50) values for fish exposed to baseline toxicants were predicted, and the results agreed with experimental values, with RMSE ranging from 0.311 to 0.538 log unit. Similarly, for the same data set of baseline toxicants, other widely used models, including the TLM (RMSE: 0.32-0.34), ECOSAR (RMSE: 0.35), and the Abraham Solvation Model (ASM; RMSE: 0.31), demonstrated comparable agreement between experimental and predicted values. For less inert chemicals, predictions were within a factor of 5 of experimental values. Comparatively, ASM and ECOSAR showed predictions within a factor of 2 and 3, respectively. The TLM based on phospholipid had predictions within a factor of 3 and octanol within a factor of 4, indicating that the TPM's performance for less inert chemicals is comparable to these established models. Unlike these methods, the TPM requires only the knowledge of plastic bound concentration for a given plastic phase to calculate baseline toxic units, bypassing the need for extensive LC50 and plastic-water partition coefficient data, which are often limited for emerging chemicals. Taken together, the TPM can provide valuable insights into the toxicities of chemicals associated with environmental plastic phases, assisting in selecting the best polymeric phase for passive sampling and designing better passive dosing techniques for toxicity experiments.


Subject(s)
Plastics , Water Pollutants, Chemical , Plastics/chemistry , Plastics/toxicity , Water Pollutants, Chemical/toxicity , Water Pollutants, Chemical/chemistry , Water/chemistry , Animals
16.
Int J Mol Sci ; 25(16)2024 Aug 22.
Article in English | MEDLINE | ID: mdl-39201819

ABSTRACT

This paper examines the dosimetric uncertainty arising from the use of thermoplastic masks in the treatment of head and neck cancer through radiotherapy. This study was conducted through Monte Carlo simulations using the Monte Carlo N-Particle eXtended (MCNPX code), and the theoretical results are compared with radiochromic films. Using material characterization techniques, the compounds of the thermoplastic mask were identified, confirming that most of the material corresponds to the polymer C10H16O4. The theoretical results show increases ranging from 42% to 57.4% in the surface absorbed dose for 6 and 15 MV photon beams, respectively, compared to the absorbed dose without the mask. The experimental data corroborate these findings, showing dose increases ranging from 18.4% to 52.1% compared to the expected surface absorbed dose without the mask. These results highlight the need to consider the bolus effect induced by thermoplastic masks during the precise and safe planning and application of radiotherapy treatment in order to ensure its therapeutic efficacy and minimize the associated risks to patients.


Subject(s)
Head and Neck Neoplasms , Masks , Monte Carlo Method , Radiotherapy Dosage , Head and Neck Neoplasms/radiotherapy , Humans , Plastics/chemistry , Radiotherapy Planning, Computer-Assisted/methods , Radiometry/methods
17.
NanoImpact ; 35: 100525, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39134304

ABSTRACT

The ubiquitousness of microplastics (<5 mm) has become a pressing environmental concern globally due to the extensive use of plastics. Microplastics have been well-studied in aquatic environments but not well-characterized in soils. Present analytical processes to quantify microplastics accurately in soil samples are quite challenging and require improved and validated analytical steps to eliminate the obscurities and biases. We aimed to develop an effective method for the extraction and quantification of microplastics from soil samples. Different ratios of low-(NaCl) and high-density solutions (ZnCl2/ NaBr) were tested to determine the most efficient combination for density-dependent separation of microplastics from soil. The combination of low- (1:6) and high-density (1:3) solutions {as weight of soil(g)/volume of density solution(ml)} accounted for 95% recovery of the spiked microplastic particles from soil samples. Likewise, different soil-to-solution ratios of H2O2 were tested for the removal of soil organic matter with heating and non-heating steps. Prior removal of organic matter from soil samples achieved a clear supernatant that facilitated 99% recovery of microplastic particles. The validation of individually spiked microplastic particles of small (10-100 µm) and large scale (100-5000 µm) resulted in recovery ranging from 88 to 99%. A validated modified method with prior digestion followed by density-dependent separation was further tested using the field samples with microplastic contamination. The microplastics of different shapes, sizes, colours and polymeric compositions were reported efficiently and well characterized in the field-collected soil samples using this method.


Subject(s)
Microplastics , Soil Pollutants , Soil , Microplastics/analysis , Soil Pollutants/analysis , Soil Pollutants/isolation & purification , Soil/chemistry , Environmental Monitoring/methods , Hydrogen Peroxide/chemistry , Hydrogen Peroxide/analysis , Plastics/analysis , Plastics/chemistry
18.
Bioresour Technol ; 406: 131074, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38971393

ABSTRACT

The development of biodegradable antimicrobial bioplastics for food packaging holds great promise for solving the pollution and safety problems caused by petrochemical plastics and spoiled food. Herein, a natural active-bioplastic synthesized from citrus peel biomass is presented for perishable fruit preservation. These plastics are characterized by the nanoscale entanglement and recombinant hydrogen bonding between the endogenous pectin, polyphenols and cellulose micro/nanofibrils. They have attractive flexibility, tensile strength, gas barrier properties and antimicrobial activities, and can effectively extend the shelf life of perishable fruits such as banana and mango when used as food packaging. Cytotoxicity, degradability tests and life-cycle assessment show that these plastics had excellent nontoxicity and can be safely degraded or easily recycled. This work demonstrates a sustainable strategy for converting peel waste into eco-friendly bioplastics, providing a unique and novel insight into radically reducing the pollution and life-health threats posed by petrochemical plastics and spoiled food.


Subject(s)
Anti-Infective Agents , Fruit , Fruit/chemistry , Anti-Infective Agents/pharmacology , Biodegradable Plastics/pharmacology , Biodegradable Plastics/chemistry , Food Packaging/methods , Food Preservation/methods , Citrus/chemistry , Recycling , Plastics/chemistry , Plastics/pharmacology , Tensile Strength , Polyphenols/pharmacology , Polyphenols/chemistry , Biodegradation, Environmental
19.
J Sep Sci ; 47(14): e2400314, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39034893

ABSTRACT

In this work, a novel electrospun nanofiber (PAN/TpBD; 2,4,6-triformylphloroglucinol [Tp] and benzidine [BD]; polyacrylonitrile [PAN]) was fabricated via a facile electrospinning method and utilized as adsorbent in thin film microextraction (TFME) of phthalate esters (PAEs) (dimethyl phthalate, diethyl phthalate, diallyl phthalate, dibutyl phthalate, and dioctyl phthalate) in biodegradable plastics. The prepared PAN/TpBD combines the strong stability of nanofibers with increased exposure sites for covalent organic frameworks and enhanced interactions with the target, thus improving the enrichment effect on the target. The extraction efficiency of PAN/TpBD reached above 80%. Based on PAN/TpBD, a TFME-high-performance liquid chromatography method was established, and the experimental parameters were optimized. Under the optimal extraction conditions, the PAEs of this method varied linearly in the range of 10-10 000 µg/L with low detection limits (0.69-2.72 µg/L). The intra-day and inter-day relative standard deviation values of the PAEs were less than 8.04% and 8.73%, respectively. The adsorbent can achieve more than 80% recovery of the five targets after six times reuse. The developed method was successfully applied for the determination of trace PAEs in biodegradable plastics with recoveries ranging from 80.1% to 113.4% and relative standard deviations were less than 9.45%. The as-synthesized PAN/TpBD adsorbent exhibited great potential in PAE analysis.


Subject(s)
Esters , Nanofibers , Phthalic Acids , Nanofibers/chemistry , Phthalic Acids/isolation & purification , Phthalic Acids/chemistry , Phthalic Acids/analysis , Esters/chemistry , Esters/isolation & purification , Esters/analysis , Plastics/chemistry , Chromatography, High Pressure Liquid , Particle Size , Adsorption , Solid Phase Microextraction/methods , Surface Properties , Acrylic Resins
20.
Environ Sci Pollut Res Int ; 31(32): 44863-44884, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38954341

ABSTRACT

In this study, novel adsorbents were synthesized via the activation and magnetization of carbon spheres, graphene, and carbon nanotubes fabricated from plastics to improve their surface area and porosity and facilitate their separation from aqueous solutions. Fourier transform infrared spectroscopy "FTIR", X-ray diffraction "XRD", energy-dispersive X-ray spectroscopy "EDX", transmission electron microscope "TEM", and X-ray photoelectron spectroscopy "XPS" affirmed the successful activation and magnetization of the fabricated materials. Further, surface area analysis showed that the activation and magnetization enhanced the surface area. The weight loss ratio decreased from nearly 60% in the case of activated graphene to around 25% after magnetization, and the same trend was observed in the other materials confirming that magnetization improved the thermal stability of the fabricated materials. The prepared carbonaceous materials showed superparamagnetic properties according to the magnetic saturation values obtained from vibrating sample magnetometry analysis, where the magnetic saturation values were 33.77, 38.75, and 27.18 emu/g in the presence of magnetic activated carbon spheres, graphene, and carbon nanotubes, respectively. The adsorption efficiencies of methylene blue (MB) were 76.9%, 96.3%, and 74.8% in the presence of magnetic activated carbon spheres, graphene, and carbon nanotubes, respectively. This study proposes efficient adsorbents with low cost and high adsorption efficiency that can be applied on an industrial scale to remove emerging pollutants.


Subject(s)
Methylene Blue , Plastics , Methylene Blue/chemistry , Adsorption , Plastics/chemistry , Nanotubes, Carbon/chemistry , Water Pollutants, Chemical/chemistry , Spectroscopy, Fourier Transform Infrared , Graphite/chemistry , X-Ray Diffraction , Carbon/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL