Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 5.183
Filter
1.
Nature ; 631(8021): 627-634, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38987592

ABSTRACT

Fibroblasts are present throughout the body and function to maintain tissue homeostasis. Recent studies have identified diverse fibroblast subsets in healthy and injured tissues1,2, but the origins and functional roles of injury-induced fibroblast lineages remain unclear. Here we show that lung-specialized alveolar fibroblasts take on multiple molecular states with distinct roles in facilitating responses to fibrotic lung injury. We generate a genetic tool that uniquely targets alveolar fibroblasts to demonstrate their role in providing niches for alveolar stem cells in homeostasis and show that loss of this niche leads to exaggerated responses to acute lung injury. Lineage tracing identifies alveolar fibroblasts as the dominant origin for multiple emergent fibroblast subsets sequentially driven by inflammatory and pro-fibrotic signals after injury. We identify similar, but not completely identical, fibroblast lineages in human pulmonary fibrosis. TGFß negatively regulates an inflammatory fibroblast subset that emerges early after injury and stimulates the differentiation into fibrotic fibroblasts to elicit intra-alveolar fibrosis. Blocking the induction of fibrotic fibroblasts in the alveolar fibroblast lineage abrogates fibrosis but exacerbates lung inflammation. These results demonstrate the multifaceted roles of the alveolar fibroblast lineage in maintaining normal alveolar homeostasis and orchestrating sequential responses to lung injury.


Subject(s)
Acute Lung Injury , Cell Lineage , Fibroblasts , Pneumonia , Pulmonary Alveoli , Pulmonary Fibrosis , Animals , Female , Humans , Male , Mice , Acute Lung Injury/pathology , Acute Lung Injury/metabolism , Cell Differentiation , Fibroblasts/pathology , Fibroblasts/metabolism , Homeostasis , Pneumonia/pathology , Pneumonia/metabolism , Pulmonary Alveoli/pathology , Pulmonary Alveoli/cytology , Pulmonary Alveoli/metabolism , Pulmonary Fibrosis/pathology , Pulmonary Fibrosis/metabolism , Stem Cell Niche , Stem Cells/metabolism , Stem Cells/cytology , Stem Cells/pathology , Transforming Growth Factor beta/metabolism
2.
J Nanobiotechnology ; 22(1): 428, 2024 Jul 19.
Article in English | MEDLINE | ID: mdl-39030581

ABSTRACT

BACKGROUND: The increasing production and usage of copper oxide nanoparticles (Nano-CuO) raise human health concerns. Previous studies have demonstrated that exposure to Nano-CuO could induce lung inflammation, injury, and fibrosis. However, the potential underlying mechanisms are still unclear. Here, we proposed that matrix metalloproteinase-3 (MMP-3) might play an important role in Nano-CuO-induced lung inflammation, injury, and fibrosis. RESULTS: Exposure of mice to Nano-CuO caused acute lung inflammation and injury in a dose-dependent manner, which was reflected by increased total cell number, neutrophil count, macrophage count, lactate dehydrogenase (LDH) activity, and CXCL1/KC level in bronchoalveolar lavage fluid (BALF) obtained on day 3 post-exposure. The time-response study showed that Nano-CuO-induced acute lung inflammation and injury appeared as early as day 1 after exposure, peaked on day 3, and ameliorated over time. However, even on day 42 post-exposure, the LDH activity and macrophage count were still higher than those in the control group, suggesting that Nano-CuO caused chronic lung inflammation. The Nano-CuO-induced pulmonary inflammation was further confirmed by H&E staining of lung sections. Trichrome staining showed that Nano-CuO exposure caused pulmonary fibrosis from day 14 to day 42 post-exposure with an increasing tendency over time. Increased hydroxyproline content and expression levels of fibrosis-associated proteins in mouse lungs were also observed. In addition, Nano-CuO exposure induced MMP-3 overexpression and increased MMP-3 secretion in mouse lungs. Knocking down MMP-3 in mouse lungs significantly attenuated Nano-CuO-induced acute and chronic lung inflammation and fibrosis. Moreover, Nano-CuO exposure caused sustained production of cleaved osteopontin (OPN) in mouse lungs, which was also significantly decreased by knocking down MMP-3. CONCLUSIONS: Our results demonstrated that short-term Nano-CuO exposure caused acute lung inflammation and injury, while long-term exposure induced chronic pulmonary inflammation and fibrosis. Knocking down MMP-3 significantly ameliorated Nano-CuO-induced pulmonary inflammation, injury, and fibrosis, and also attenuated Nano-CuO-induced cleaved OPN level. Our study suggests that MMP-3 may play important roles in Nano-CuO-induced pulmonary inflammation and fibrosis via cleavage of OPN and may provide a further understanding of the mechanisms underlying Nano-CuO-induced pulmonary toxicity.


Subject(s)
Bronchoalveolar Lavage Fluid , Copper , Matrix Metalloproteinase 3 , Pneumonia , Pulmonary Fibrosis , Animals , Copper/toxicity , Matrix Metalloproteinase 3/metabolism , Mice , Pneumonia/chemically induced , Pneumonia/pathology , Pulmonary Fibrosis/chemically induced , Pulmonary Fibrosis/pathology , Bronchoalveolar Lavage Fluid/chemistry , Mice, Inbred C57BL , Lung/pathology , Lung/drug effects , Male , Metal Nanoparticles/toxicity , Metal Nanoparticles/chemistry
3.
Clin Transl Med ; 14(8): e1782, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39083563

ABSTRACT

BACKGROUND: Organising pneumonia (OP) is one of the most common and lethal diseases in the category of interstitial pneumonia, along with lung cancer. Reprogramming of lipid metabolism is a newly recognized hallmark of many diseases including cancer, cardiovascular disorders, as well as liver fibrosis and sclerosis. Increased levels of ceramides composed of sphingosine and fatty acid, are implicated in the development of both acute and chronic lung diseases. However, their pathophysiological significance in OP is unclear. The aim of this study was to investigate the role of lipid metabolism reprogramming in OP, focusing on inflammation and fibrosis. METHODS: Comprehensive multi-omics profiling approaches, including single-cell RNA sequencing, Visium CytAssist spatial transcriptomics, proteomics, metabolomics and mass spectrometry, were employed to analyze the tissues. OP mice model was utilized and molecular mechanisms were investigated in macrophages. RESULTS: The results revealed a significant association between OP and lipid metabolism reprogramming, characterized by an abnormal expression of several genes related to lipid metabolism, including CD36, SCD1, and CES1 mainly in macrophages. CD36 deficiency in alveolar macrophages, led to an increased expression of C16/24 ceramides that accumulated in mitochondria, resulting in mitophagy or mitochondrial dysfunction. The number of alveolar macrophages in OP was significantly reduced, which was probably due to the ferroptosis signaling pathway involving GSH/SLC3A2/GPX4 through CD36 downregulation in OP. Furthermore, macrophage secretion of DPP7 and FABP4 influenced epithelial cell fibrosis. CONCLUSIONS: CD36 inhibited the ferroptosis pathway involving SLC3A2/GPX4 in alveolar macrophages of OP tissue by regulating lipid metabolism, thus representing a new anti-ferroptosis and anti-fibrosis effect of CD36 mediated, at least in part, by ceramides. HIGHLIGHTS: Our findings reveal a significant association between organising pneumonia and lipid metabolism reprogramming and will make a substantial contribution to the understanding of the mechanism of organising pneumonia in patients.


Subject(s)
Lipid Metabolism , Animals , Mice , Lipid Metabolism/genetics , Disease Models, Animal , Humans , Pneumonia/metabolism , Pneumonia/genetics , Pneumonia/pathology , Mice, Inbred C57BL , Male , Organizing Pneumonia , Multiomics
4.
Cell Mol Life Sci ; 81(1): 287, 2024 Jul 06.
Article in English | MEDLINE | ID: mdl-38970705

ABSTRACT

Lung type 2 pneumocytes (T2Ps) and alveolar macrophages (AMs) play crucial roles in the synthesis, recycling and catabolism of surfactant material, a lipid/protein fluid essential for respiratory function. The liver X receptors (LXR), LXRα and LXRß, are transcription factors important for lipid metabolism and inflammation. While LXR activation exerts anti-inflammatory actions in lung injury caused by lipopolysaccharide (LPS) and other inflammatory stimuli, the full extent of the endogenous LXR transcriptional activity in pulmonary homeostasis is incompletely understood. Here, using mice lacking LXRα and LXRß as experimental models, we describe how the loss of LXRs causes pulmonary lipidosis, pulmonary congestion, fibrosis and chronic inflammation due to defective de novo synthesis and recycling of surfactant material by T2Ps and defective phagocytosis and degradation of excess surfactant by AMs. LXR-deficient T2Ps display aberrant lamellar bodies and decreased expression of genes encoding for surfactant proteins and enzymes involved in cholesterol, fatty acids, and phospholipid metabolism. Moreover, LXR-deficient lungs accumulate foamy AMs with aberrant expression of cholesterol and phospholipid metabolism genes. Using a house dust mite aeroallergen-induced mouse model of asthma, we show that LXR-deficient mice exhibit a more pronounced airway reactivity to a methacholine challenge and greater pulmonary infiltration, indicating an altered physiology of LXR-deficient lungs. Moreover, pretreatment with LXR agonists ameliorated the airway reactivity in WT mice sensitized to house dust mite extracts, confirming that LXR plays an important role in lung physiology and suggesting that agonist pharmacology could be used to treat inflammatory lung diseases.


Subject(s)
Homeostasis , Liver X Receptors , Macrophages, Alveolar , Pneumonia , Pulmonary Surfactants , Signal Transduction , Animals , Liver X Receptors/metabolism , Liver X Receptors/genetics , Pulmonary Surfactants/metabolism , Mice , Pneumonia/metabolism , Pneumonia/pathology , Macrophages, Alveolar/metabolism , Mice, Inbred C57BL , Mice, Knockout , Lung/metabolism , Lung/pathology , Alveolar Epithelial Cells/metabolism , Asthma/metabolism , Asthma/pathology , Asthma/genetics , Cholesterol/metabolism , Lipid Metabolism , Phagocytosis
5.
Sci Rep ; 14(1): 17137, 2024 Jul 25.
Article in English | MEDLINE | ID: mdl-39060280

ABSTRACT

To explore the role of bronchoscopy for the assessment of checkpoint inhibitor pneumonitis (CIP), a retrospective single-center study was conducted to assess patients diagnosed with CIP at grade 2 or above and also underwent bronchoscopy between January 2020 and December 2022. Clinical data and bronchoscopic findings were recorded. The treatment data and prognosis information were collected. Twenty-one patients who underwent bronchoscopy and were diagnosed with CIP were enrolled in this study. All patients underwent bronchoalveolar lavage fluid (BALF) analysis. Of them, T lymphocyte subsets of BALF were tested in 15 cases. Transbronchial cryobiopsy (TBCB) was performed in 8 patients, and transbronchial lung biopsy was performed in 5 patients. 3 patients developed pneumothorax after TBCB and all recovered without serious compilations.14 patients experienced grade 2 CIP, while 7 patients ≥ grade 3 CIP. Symptoms were improved in 19 (90.5%) patients after standard treatment adhering to CIP guidelines. However, 5 patients relapsed during steroid tapering. Factors related to the severity and recurrence of CIP were analyzed. Patients with previous interstitial lung disease (ILD) were more likely to develop high grade CIP than those without [83.3% (5/6) versus 15.4% (3/15), P = 0.011].The odds ratio (OR) was 32.5 (95% CI 2.284-443.145, P = 0.009). Increased BALF lymphocyte percentage was associated with high grade CIP, OR 1.095 (95% CI 1.001-1.197, P = 0.047), and higher possibility of CIP relapse, OR 1.123 (95% CI, 1.005-1.225, P = 0.040). Lymphocyte subsets were tested in 15 patients. CD4/CD8 > 1 was found in 80% (4/5) of relapsed patients and 20% (2/10) of patients without relapse (P = 0.047). The OR was 16.00 (95% CI 1.093-234.24, P = 0.043). In this retrospective study, patients with previous ILD was more likely to develop high grade CIP. Higher lymphocyte percentage in BALF was associated with high grade CIP and susceptibility to relapse during treatment of CIP. A CD4/CD8 ratio greater than 1 in lymphocyte subsets of BALF was associated with higher possibility of CIP relapse. We found that TBCB is a safe procedure in CIP patients.


Subject(s)
Bronchoalveolar Lavage Fluid , Bronchoscopy , Immune Checkpoint Inhibitors , Pneumonia , Humans , Immune Checkpoint Inhibitors/adverse effects , Immune Checkpoint Inhibitors/therapeutic use , Male , Female , Bronchoscopy/methods , Middle Aged , Aged , Pneumonia/immunology , Pneumonia/pathology , Pneumonia/etiology , Retrospective Studies , Bronchoalveolar Lavage Fluid/cytology , Bronchoalveolar Lavage Fluid/immunology , Recurrence , Severity of Illness Index , Adult , Prognosis , Lung Neoplasms/drug therapy , Lung Neoplasms/pathology , Lung Neoplasms/immunology
7.
PLoS Pathog ; 20(6): e1012222, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38838044

ABSTRACT

COVID-19 has affected more than half a billion people worldwide, with more than 6.3 million deaths, but the pathophysiological mechanisms involved in lethal cases and the host determinants that determine the different clinical outcomes are still unclear. In this study, we assessed lung autopsies of 47 COVID-19 patients and examined the inflammatory profiles, viral loads, and inflammasome activation. Additionally, we correlated these factors with the patient's clinical and histopathological conditions. Robust inflammasome activation was detected in the lungs of lethal cases of SARS-CoV-2. Experiments conducted on transgenic mice expressing hACE2 and infected with SARS-CoV-2 showed that Nlrp3-/- mice were protected from disease development and lethality compared to Nlrp3+/+ littermate mice, supporting the involvement of this inflammasome in disease exacerbation. An analysis of gene expression allowed for the classification of COVID-19 patients into two different clusters. Cluster 1 died with higher viral loads and exhibited a reduced inflammatory profile than Cluster 2. Illness time, mechanical ventilation time, pulmonary fibrosis, respiratory functions, histopathological status, thrombosis, viral loads, and inflammasome activation significantly differed between the two clusters. Our data demonstrated two distinct profiles in lethal cases of COVID-19, thus indicating that the balance of viral replication and inflammasome-mediated pulmonary inflammation led to different clinical outcomes. We provide important information to understand clinical variations in severe COVID-19, a process that is critical for decisions between immune-mediated or antiviral-mediated therapies for the treatment of critical cases of COVID-19.


Subject(s)
COVID-19 , Lung , SARS-CoV-2 , Viral Load , Virus Replication , COVID-19/virology , COVID-19/mortality , COVID-19/immunology , COVID-19/pathology , Animals , Humans , Mice , Female , Male , Lung/virology , Lung/pathology , Lung/immunology , Middle Aged , Inflammasomes/immunology , Inflammasomes/metabolism , Aged , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Mice, Transgenic , Pneumonia/virology , Pneumonia/mortality , Pneumonia/immunology , Pneumonia/pathology , Angiotensin-Converting Enzyme 2/metabolism , Angiotensin-Converting Enzyme 2/genetics , Mice, Knockout , Adult
8.
Bull Exp Biol Med ; 176(6): 731-735, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38904932

ABSTRACT

We studied the effectiveness of Xe/O2 mixture inhalation (30% Xe and 70% O2, 20 min for 5 days) in a model of experimental thromboplastin pneumonitis. Inhalation of the studied mixture decreased the intensity of the inflammatory process in the lung tissue assessed by the temperature response of animals, changed lung weight and lung weight coefficient. At acute stage of pneumonitis, an increase in xenon consumption was recorded due to its retention in the gas exchange zone and a natural decrease in oxygen consumption due to partial alveolar/capillary block. The formation of pneumonitis was accompanied by a pronounced procoagulant shift in the regulation system of the aggregate state of blood. The Xe/O2 inhalations ensured physiologically optimal levels of prothrombin and activated partial thromboplastin time against the background of a moderate decrease in fibrinogen level throughout the experiment. At the same time, the activity of the natural anticoagulant antithrombin III increased from day 5 to day 14.


Subject(s)
Oxygen , Pneumonia , Xenon , Animals , Pneumonia/blood , Pneumonia/pathology , Male , Oxygen/metabolism , Xenon/administration & dosage , Xenon/pharmacology , Hemostasis/drug effects , Administration, Inhalation , Fibrinogen/metabolism , Partial Thromboplastin Time , Lung/drug effects , Lung/metabolism , Antithrombin III/metabolism , Rats , Thromboplastin/metabolism , Prothrombin/metabolism , Oxygen Consumption/drug effects , Blood Coagulation/drug effects
9.
Respir Res ; 25(1): 257, 2024 Jun 22.
Article in English | MEDLINE | ID: mdl-38909206

ABSTRACT

BACKGROUND: Pulmonary fibrosis (PF) represents the pathologic end stage of several interstitial lung diseases (ILDs) associated with high morbidity and mortality rates. However, current treatments can only delay disease progression rather than provide a cure. The role of inflammation in PF progression is well-established, but new insights into immune regulation are fundamental for developing more efficient therapies. c-MET signaling has been implicated in the migratory capacity and effector functions of immune cells. Nevertheless, the role of this signaling pathway in the context of PF-associated lung diseases remains unexplored. METHODS: To determine the influence of c-MET in immune cells in the progression of pulmonary fibrosis, we used a conditional deletion of c-Met in immune cells. To induce pulmonary fibrosis mice were administered with bleomycin (BLM) intratracheally. Over the course of 21 days, mice were assessed for weight change, and after euthanasia at different timepoints, bronchoalveolar lavage fluid cells and lung tissue were assessed for inflammation and fibrosis. Furthermore, c-MET expression was assessed in cryobiopsy sections, bronchoalveolar lavage fluid cells samples and single cell RNA-sequencing dataset from human patients with distinct interstitial lung diseases. RESULTS: c-MET expression was induced in lung immune cells, specifically in T cells, interstitial macrophages, and neutrophils, during the inflammatory phase of BLM-induced PF mouse model. Deletion of c-Met in immune cells correlated with earlier weight recovery and improved survival of BLM-treated mice. Moreover, the deletion of c-Met in immune cells was associated with early recruitment of the immune cell populations, normally found to express c-MET, leading to a subsequent attenuation of the cytotoxic and proinflammatory environment. Consequently, the less extensive inflammatory response, possibly coupled with tissue repair, culminated in less exacerbated fibrotic lesions. Furthermore, c-MET expression was up-regulated in lung T cells from patients with fibrosing ILD, suggesting a potential involvement of c-MET in the development of fibrosing disease. CONCLUSIONS: These results highlight the critical contribution of c-MET signaling in immune cells to their enhanced uncontrolled recruitment and activation toward a proinflammatory and profibrotic phenotype, leading to the exacerbation of lung injury and consequent development of fibrosis.


Subject(s)
Mice, Inbred C57BL , Pneumonia , Proto-Oncogene Proteins c-met , Pulmonary Fibrosis , Animals , Female , Humans , Male , Mice , Bleomycin/toxicity , Disease Models, Animal , Lung/pathology , Lung/metabolism , Lung/immunology , Mice, Knockout , Pneumonia/chemically induced , Pneumonia/pathology , Pneumonia/metabolism , Pneumonia/immunology , Pneumonia/genetics , Proto-Oncogene Proteins c-met/metabolism , Proto-Oncogene Proteins c-met/genetics , Pulmonary Fibrosis/chemically induced , Pulmonary Fibrosis/pathology , Pulmonary Fibrosis/metabolism , Pulmonary Fibrosis/immunology , Pulmonary Fibrosis/genetics
10.
Sci Adv ; 10(25): eadm9817, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38896611

ABSTRACT

Precision management of fibrotic lung diseases is challenging due to their diverse clinical trajectories and lack of reliable biomarkers for risk stratification and therapeutic monitoring. Here, we validated the accuracy of CMKLR1 as an imaging biomarker of the lung inflammation-fibrosis axis. By analyzing single-cell RNA sequencing datasets, we demonstrated CMKLR1 expression as a transient signature of monocyte-derived macrophages (MDMφ) enriched in patients with idiopathic pulmonary fibrosis (IPF). Consistently, we identified MDMφ as the major driver of the uptake of CMKLR1-targeting peptides in a murine model of bleomycin-induced lung fibrosis. Furthermore, CMKLR1-targeted positron emission tomography in the murine model enabled quantification and spatial mapping of inflamed lung regions infiltrated by CMKLR1-expressing macrophages and emerged as a robust predictor of subsequent lung fibrosis. Last, high CMKLR1 expression by bronchoalveolar lavage cells identified an inflammatory endotype of IPF with poor survival. Our investigation supports the potential of CMKLR1 as an imaging biomarker for endotyping and risk stratification of fibrotic lung diseases.


Subject(s)
Idiopathic Pulmonary Fibrosis , Pneumonia , Animals , Humans , Mice , Idiopathic Pulmonary Fibrosis/diagnostic imaging , Idiopathic Pulmonary Fibrosis/pathology , Idiopathic Pulmonary Fibrosis/metabolism , Idiopathic Pulmonary Fibrosis/chemically induced , Pneumonia/metabolism , Pneumonia/diagnostic imaging , Pneumonia/pathology , Macrophages/metabolism , Macrophages/pathology , Biomarkers , Disease Models, Animal , Positron-Emission Tomography/methods , Pulmonary Fibrosis/diagnostic imaging , Pulmonary Fibrosis/pathology , Pulmonary Fibrosis/metabolism , Pulmonary Fibrosis/chemically induced , Bleomycin , Lung/pathology , Lung/diagnostic imaging , Lung/metabolism , Male , Female , Mice, Inbred C57BL
11.
Thorac Cancer ; 15(20): 1572-1581, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38828610

ABSTRACT

BACKGROUND: The efficacy of anti-CTLA-4 antibody (ipilimumab) plus anti-programmed cell death 1 antibody (nivolumab) in treating advanced non-small cell lung cancer (NSCLC) is impeded by an elevated risk of severe immune-related adverse events. However, our understanding of associations among pre-existing fibrosis, emphysematous changes, and objective indicators as predictive factors is limited for severe pneumonitis in NSCLC patients receiving this combination therapy. Thus, we retrospectively investigated these associations, including overall tumor burden, before treatment initiation in the Japanese population. METHODS: We focused on patients (n = 76) with pre-existing interstitial lung disease (ILD) to identify predictors of severe pneumonitis. Variables included age, sex, smoking status, programmed cell death ligand 1 expression, overall tumor burden, chest computed tomography-confirmed fibrosis, serum markers, and respiratory function test results. RESULTS: Severe pneumonitis was more frequent in patients with squamous cell carcinoma, fibrosis, low diffusing capacity for carbon monoxide (%DLCO), and high surfactant protein D (SP-D) level. Notably, squamous cell carcinoma, baseline %DLCO, and SP-D level were significant risk factors. Our findings revealed the nonsignificance of tumor burden (≥85 mm) in predicting severe pneumonitis, emphasizing the importance of pre-existing ILD. Conversely, in cases without pre-existing fibrosis, severe pneumonitis was not associated with %DLCO or SP-D level (93.2% vs. 91.9%, and 63.3 vs. 40.9 ng/mL, respectively) and was more common in patients with a large overall tumor burden (97.5 vs. 70.0 mm). CONCLUSION: Vigilant monitoring and early intervention are crucial for patients with squamous cell carcinoma, high SP-D level, or low %DLCO undergoing ipilimumab plus nivolumab therapy.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Ipilimumab , Lung Neoplasms , Nivolumab , Pneumonia , Humans , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/pathology , Carcinoma, Non-Small-Cell Lung/complications , Male , Nivolumab/adverse effects , Nivolumab/therapeutic use , Nivolumab/administration & dosage , Female , Lung Neoplasms/drug therapy , Lung Neoplasms/pathology , Ipilimumab/adverse effects , Ipilimumab/therapeutic use , Ipilimumab/administration & dosage , Aged , Risk Factors , Pneumonia/chemically induced , Pneumonia/pathology , Retrospective Studies , Middle Aged , Antineoplastic Combined Chemotherapy Protocols/adverse effects , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Aged, 80 and over
12.
Physiol Rep ; 12(12): e16115, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38923221

ABSTRACT

Pro-inflammatory fungal ß-d-glucan (BDG) polysaccharides cause respiratory pathology. However, specific immunological effects of unique BDG structures on pulmonary inflammation are understudied. We characterized the effect of four unique fungal BDGs with unique branching patterns, solubility, and molecular weights in murine airways. Scleroglucan (1 → 3)(1 → 6)-highly branched BDG, laminarin (1 → 3)(1 → 6)-branched BDG, curdlan (1 → 3)-linear BDG, and pustulan (1 → 6)-linear BDG were assessed by nuclear magnetic resonance spectroscopy. Each BDG was tested by inhalation model with C3HeB/FeJ mice and compared to saline-exposed control mice and unexposed sentinels (n = 3-19). Studies were performed ±heat-inactivation (1 h autoclave) to increase BDG solubility. Outcomes included bronchoalveolar lavage (BAL) differential cell counts (macrophages, neutrophils, lymphocytes, eosinophils), cytokines, serum IgE, and IgG2a (multiplex and ELISA). Ex vivo primary cells removed from lungs and plated at monolayer were stimulated (BDG, lipopolysaccharide (LPS), anti-CD3), and cytokines compared to unstimulated cells. Right lung histology was performed. Inhalation of BDGs with distinct branching patterns exhibited varying inflammatory potency and immunogenicity. Lichen-derived (1 → 6)-linear pustulan was the most pro-inflammatory BDG, increasing inflammatory infiltrate (BAL), serum IgE and IgG2a, and cytokine production. Primed lung cells responded to secondary LPS stimulation with a T-cell-specific response to pustulan. Glucan source and solubility should be considered in exposure and toxicological studies.


Subject(s)
Lung , beta-Glucans , Animals , Male , Mice , beta-Glucans/pharmacology , Lung/drug effects , Lung/pathology , Lung/immunology , Lung/metabolism , Pneumonia/immunology , Pneumonia/pathology , Pneumonia/metabolism , Pneumonia/chemically induced , Cytokines/metabolism , Bronchoalveolar Lavage Fluid/immunology , Bronchoalveolar Lavage Fluid/cytology , Bronchoalveolar Lavage Fluid/chemistry , Mice, Inbred C3H , Glucans/pharmacology
13.
PLoS Pathog ; 20(5): e1011669, 2024 May.
Article in English | MEDLINE | ID: mdl-38781259

ABSTRACT

The virus severe acute respiratory syndrome coronavirus 2, SARS-CoV-2, is the causative agent of the current COVID-19 pandemic. It possesses a large 30 kilobase (kb) genome that encodes structural, non-structural, and accessory proteins. Although not necessary to cause disease, these accessory proteins are known to influence viral replication and pathogenesis. Through the synthesis of novel infectious clones of SARS-CoV-2 that lack one or more of the accessory proteins of the virus, we have found that one of these accessory proteins, ORF8, is critical for the modulation of the host inflammatory response. Mice infected with a SARS-CoV-2 virus lacking ORF8 exhibit increased weight loss and exacerbated macrophage infiltration into the lungs. Additionally, infection of mice with recombinant SARS-CoV-2 viruses encoding ORF8 mutations found in variants of concern reveal that naturally occurring mutations in this protein influence disease severity. Our studies with a virus lacking this ORF8 protein and viruses possessing naturally occurring point mutations in this protein demonstrate that this protein impacts pathogenesis.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , SARS-CoV-2/genetics , COVID-19/virology , COVID-19/immunology , COVID-19/pathology , COVID-19/genetics , Mice , Humans , Disease Progression , Viral Proteins/genetics , Viral Proteins/metabolism , Lung/virology , Lung/pathology , Virus Replication , Pneumonia/virology , Pneumonia/pathology , Chlorocebus aethiops , Mutation , Vero Cells , Female
14.
BMC Pulm Med ; 24(1): 224, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38720270

ABSTRACT

BACKGROUND: Simvastatin (Sim), a hydroxy-methylglutaryl coenzyme A (HMG-CoA) reductase inhibitor, has been widely used in prevention and treatment of cardiovascular diseases. Studies have suggested that Sim exerts anti-fibrotic effects by interfering fibroblast proliferation and collagen synthesis. This study was to determine whether Sim could alleviate silica-induced pulmonary fibrosis and explore the underlying mechanisms. METHODS: The rat model of silicosis was established by the tracheal perfusion method and treated with Sim (5 or 10 mg/kg), AICAR (an AMPK agonist), and apocynin (a NOX inhibitor) for 28 days. Lung tissues were collected for further analyses including pathological histology, inflammatory response, oxidative stress, epithelial mesenchymal transformation (EMT), and the AMPK-NOX pathway. RESULTS: Sim significantly reduced silica-induced pulmonary inflammation and fibrosis at 28 days after administration. Sim could reduce the levels of interleukin (IL)-1ß, IL-6, tumor necrosis factor-α and transforming growth factor-ß1 in lung tissues. The expressions of hydroxyproline, α-SMA and vimentin were down-regulated, while E-cad was increased in Sim-treated rats. In addition, NOX4, p22pox, p40phox, p-p47phox/p47phox expressions and ROS levels were all increased, whereas p-AMPK/AMPK was decreased in silica-induced rats. Sim or AICAR treatment could notably reverse the decrease of AMPK activity and increase of NOX activity induced by silica. Apocynin treatment exhibited similar protective effects to Sim, including down-regulating of oxidative stress and inhibition of the EMT process and inflammatory reactions. CONCLUSIONS: Sim attenuates silica-induced pulmonary inflammation and fibrosis by downregulating EMT and oxidative stress through the AMPK-NOX pathway.


Subject(s)
AMP-Activated Protein Kinases , Pulmonary Fibrosis , Silicon Dioxide , Simvastatin , Animals , Male , Rats , Acetophenones/pharmacology , Aminoimidazole Carboxamide/analogs & derivatives , Aminoimidazole Carboxamide/pharmacology , AMP-Activated Protein Kinases/metabolism , Disease Models, Animal , Epithelial-Mesenchymal Transition/drug effects , Hydroxymethylglutaryl-CoA Reductase Inhibitors/pharmacology , Lung/pathology , Lung/drug effects , Lung/metabolism , NADPH Oxidase 4/metabolism , NADPH Oxidases/metabolism , Oxidative Stress/drug effects , Pneumonia/chemically induced , Pneumonia/prevention & control , Pneumonia/drug therapy , Pneumonia/metabolism , Pneumonia/pathology , Pulmonary Fibrosis/chemically induced , Pulmonary Fibrosis/drug therapy , Ribonucleotides/pharmacology , Signal Transduction/drug effects , Silicosis/drug therapy , Silicosis/pathology , Silicosis/metabolism , Simvastatin/pharmacology , Transforming Growth Factor beta1/metabolism
15.
Am J Physiol Lung Cell Mol Physiol ; 327(1): L40-L53, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38712443

ABSTRACT

Chorioamnionitis is a common antecedent of preterm birth and induces inflammation and oxidative stress in the fetal lungs. Reducing inflammation and oxidative stress in the fetal lungs may improve respiratory outcomes in preterm infants. Creatine is an organic acid with known anti-inflammatory and antioxidant properties. The objective of the study was to evaluate the efficacy of direct fetal creatine supplementation to reduce inflammation and oxidative stress in fetal lungs arising from an in utero proinflammatory stimulus. Fetal lambs (n = 51) were instrumented at 90 days gestation to receive a continuous infusion of creatine monohydrate (6 mg·kg-1·h-1) or saline for 17 days. Maternal chorioamnionitis was induced with intra-amniotic lipopolysaccharide (LPS; 1 mg, O55:H6) or saline 7 days before delivery at 110 days gestation. Tissue creatine content was assessed with capillary electrophoresis, and inflammatory markers were analyzed with Luminex Magpix and immunohistochemistry. Oxidative stress was measured as the level of protein thiol oxidation. The effects of LPS and creatine were analyzed using a two-way ANOVA. Fetal creatine supplementation increased lung creatine content by 149% (PCr < 0.0001) and had no adverse effects on lung morphology. LPS-exposed groups showed increased levels of interleukin-8 in the bronchoalveolar lavage (PLPS < 0.0001) and increased levels of CD45+ leukocytes (PLPS < 0.0001) and MPO+ (PLPS < 0.0001) cells in the lung parenchyma. Creatine supplementation significantly reduced the levels of CD45+ (PCr = 0.045) and MPO+ cells (PCr = 0.012) in the lungs and reduced thiol oxidation in plasma (PCr < 0.01) and lung tissue (PCr = 0.02). In conclusion, fetal creatine supplementation reduced markers of inflammation and oxidative stress in the fetal lungs arising from chorioamnionitis.NEW & NOTEWORTHY We evaluated the effect of antenatal creatine supplementation to reduce pulmonary inflammation and oxidative stress in the fetal lamb lungs arising from lipopolysaccharide (LPS)-induced chorioamnionitis. Fetal creatine supplementation increased lung creatine content and had no adverse effects on systemic fetal physiology and overall lung architecture. Importantly, fetuses that received creatine had significantly lower levels of inflammation and oxidative stress in the lungs, suggesting an anti-inflammatory and antioxidant benefit of creatine.


Subject(s)
Chorioamnionitis , Creatine , Dietary Supplements , Lipopolysaccharides , Lung , Oxidative Stress , Animals , Chorioamnionitis/drug therapy , Chorioamnionitis/metabolism , Chorioamnionitis/pathology , Creatine/pharmacology , Female , Oxidative Stress/drug effects , Pregnancy , Sheep , Lung/drug effects , Lung/metabolism , Lung/pathology , Pneumonia/metabolism , Pneumonia/prevention & control , Pneumonia/drug therapy , Pneumonia/pathology , Disease Models, Animal , Fetus/metabolism , Fetus/drug effects
16.
Inflamm Res ; 73(7): 1223-1237, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38789791

ABSTRACT

INTRODUCTION: Inflammation and oxidative stress are key factors in the development of pulmonary fibrosis (PF) by promoting the differentiation of fibroblasts through modulating various pathways including Wnt/ß-catenin, TGF-ß and mTOR signalling. OBJECTIVE AND METHODS: This study aimed to evaluate the effects and elucidate the mechanisms of vistusertib (VSB) in treating pulmonary inflammation/fibrosis, specifically by targeting the mTOR pathway using various in vitro and in vivo models. RESULTS: Lipopolysaccharide (LPS)-induced inflammation model in macrophages (RAW 264.7), epithelial (BEAS-2B) and endothelial (HMVEC-L) cells revealed that treatment with VSB significantly reduced the IL-6, TNF-α, CCL2, and CCL7 expression. TGF-ß induced differentiation was also significantly reduced upon VSB treatment in fibrotic cells (LL29 and DHLF). Further, bleomycin-induced inflammation and fibrosis models demonstrated that treatment with VSB significantly ameliorated the severe inflammation, and lung architectural distortion, by reducing the inflammatory markers expression/levels, inflammatory cells and oxidative stress indicators. Further, fibrosis model results exhibited that, VSB treatment significantly reduced the α-SMA, collagen and TGF-ß expressions, improved the lung architecture and restored lung functions. CONCLUSION: Overall, this study uncovers the anti-inflammatory/anti-fibrotic effects of VSB by modulating the mTOR activation. Although VSB was tested for lung fibrosis, it can be tested for other fibrotic disorders to improve the patient's survival and quality of life.


Subject(s)
Bleomycin , Lung , Oxidative Stress , Pneumonia , Pulmonary Fibrosis , Signal Transduction , TOR Serine-Threonine Kinases , Animals , TOR Serine-Threonine Kinases/metabolism , Oxidative Stress/drug effects , Mice , Pulmonary Fibrosis/chemically induced , Pulmonary Fibrosis/drug therapy , Pulmonary Fibrosis/metabolism , Humans , Signal Transduction/drug effects , Pneumonia/drug therapy , Pneumonia/metabolism , Pneumonia/chemically induced , Pneumonia/pathology , Lung/pathology , Lung/drug effects , Lung/metabolism , Mice, Inbred C57BL , Male , Lipopolysaccharides , Cytokines/metabolism , RAW 264.7 Cells , Cell Line , Anti-Inflammatory Agents/therapeutic use , Anti-Inflammatory Agents/pharmacology
17.
Am J Physiol Lung Cell Mol Physiol ; 327(2): L189-L202, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38810239

ABSTRACT

Children are susceptible to influenza infections and can experience severe disease presentation due to a lack of or limited pre-existing immunity. Despite the disproportionate impact influenza has on this population, there is a lack of focus on pediatric influenza research, particularly when it comes to identifying the pathogenesis of long-term outcomes that persist beyond the point of viral clearance. In this study, juvenile outbred male and female mice were infected with influenza and analyzed following viral clearance to determine how sex impacts the persistent inflammatory responses to influenza. It was found that females maintained a broader cytokine response in the lung following clearance of influenza, with innate, type I and type II cytokine signatures in almost all mice. Males, on the other hand, had higher levels of IL-6 and other macrophage-related cytokines, but no evidence of a type I or type II response. The immune landscape was similar in the lungs between males and females postinfection, but males had a higher regulatory T cell to TH1 ratio compared with female mice. Cytokine production positively correlated with the frequency of TH1 cells and exudate macrophages, as well as the number of cells in the bronchoalveolar lavage fluid. Furthermore, female lungs were enriched for metabolites involved in the glycolytic pathway, suggesting glycolysis is higher in female lungs compared with males after viral clearance. These data suggest juvenile female mice have persistent and excessive lung inflammation beyond the point of viral clearance, whereas juvenile males had a more immunosuppressive phenotype.NEW & NOTEWORTHY This study identifies sex-based differences in persistent lung inflammation following influenza infection in an outbred, juvenile animal model of pediatric infection. These findings indicate the importance of considering sex and age as variable in infectious disease research.


Subject(s)
Cytokines , Orthomyxoviridae Infections , Pneumonia , Sex Characteristics , Animals , Female , Male , Orthomyxoviridae Infections/immunology , Orthomyxoviridae Infections/virology , Orthomyxoviridae Infections/pathology , Orthomyxoviridae Infections/metabolism , Mice , Cytokines/metabolism , Pneumonia/virology , Pneumonia/pathology , Pneumonia/immunology , Pneumonia/metabolism , Lung/virology , Lung/pathology , Lung/immunology , Lung/metabolism , Macrophages/immunology , Macrophages/metabolism , Macrophages/pathology , Macrophages/virology , Sex Factors
19.
Int J Mol Sci ; 25(10)2024 May 17.
Article in English | MEDLINE | ID: mdl-38791530

ABSTRACT

Neutrophil-derived proteases are critical to the pathology of many inflammatory lung diseases, both chronic and acute. These abundant enzymes play roles in key neutrophil functions, such as neutrophil extracellular trap formation and reactive oxygen species release. They may also be released, inducing tissue damage and loss of tissue function. Historically, the neutrophil serine proteases (NSPs) have been the main subject of neutrophil protease research. Despite highly promising cell-based and animal model work, clinical trials involving the inhibition of NSPs have shown mixed results in lung disease patients. As such, the cutting edge of neutrophil-derived protease research has shifted to proteases that have had little-to-no research in neutrophils to date. These include the cysteine and serine cathepsins, the metzincins and the calpains, among others. This review aims to outline the previous work carried out on NSPs, including the shortcomings of some of the inhibitor-orientated clinical trials. Our growing understanding of other proteases involved in neutrophil function and neutrophilic lung inflammation will then be discussed. Additionally, the potential of targeting these more obscure neutrophil proteases will be highlighted, as they may represent new targets for inhibitor-based treatments of neutrophil-mediated lung inflammation.


Subject(s)
Neutrophils , Pneumonia , Humans , Neutrophils/metabolism , Neutrophils/enzymology , Neutrophils/immunology , Animals , Pneumonia/metabolism , Pneumonia/enzymology , Pneumonia/pathology , Serine Proteases/metabolism , Peptide Hydrolases/metabolism
20.
Eur Respir Rev ; 33(172)2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38811033

ABSTRACT

Recent breakthroughs in single-cell sequencing, advancements in cellular and tissue imaging techniques, innovations in cell lineage tracing, and insights into the epigenome collectively illuminate the enigmatic landscape of alveolar macrophages in the lung under homeostasis and disease conditions. Our current knowledge reveals the cellular and functional diversity of alveolar macrophages within the respiratory system, emphasising their remarkable adaptability. By synthesising insights from classical cell and developmental biology studies, we provide a comprehensive perspective on alveolar macrophage functional plasticity. This includes an examination of their ontology-related features, their role in maintaining tissue homeostasis under steady-state conditions and the distinct contribution of bone marrow-derived macrophages (BMDMs) in promoting tissue regeneration and restoring respiratory system homeostasis in response to injuries. Elucidating the signalling pathways within inflammatory conditions, the impact of various triggers on tissue-resident alveolar macrophages (TR-AMs), as well as the recruitment and polarisation of macrophages originating from the bone marrow, presents an opportunity to propose innovative therapeutic approaches aimed at modulating the equilibrium between phenotypes to induce programmes associated with a pro-regenerative or homeostasis phenotype of BMDMs or TR-AMs. This, in turn, can lead to the amelioration of disease outcomes and the attenuation of detrimental inflammation. This review comprehensively addresses the pivotal role of macrophages in the orchestration of inflammation and resolution phases after lung injury, as well as ageing-related shifts and the influence of clonal haematopoiesis of indeterminate potential mutations on alveolar macrophages, exploring altered signalling pathways and transcriptional profiles, with implications for respiratory homeostasis.


Subject(s)
Homeostasis , Lung , Macrophages, Alveolar , Phenotype , Signal Transduction , Humans , Macrophages, Alveolar/metabolism , Macrophages, Alveolar/immunology , Animals , Lung/metabolism , Lung/pathology , Lung/immunology , Pneumonia/metabolism , Pneumonia/genetics , Pneumonia/pathology , Pneumonia/immunology , Regeneration , Cell Plasticity , Inflammation Mediators/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL