Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 6.071
Filter
1.
Nat Commun ; 15(1): 5447, 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38992007

ABSTRACT

Air pollution has the potential to disrupt ecologically- and economically-beneficial services provided by invertebrates, including pollination and natural pest regulation. To effectively predict and mitigate this disruption requires an understanding of how the impacts of air pollution vary between invertebrate groups. Here we conduct a global meta-analysis of 120 publications comparing the performance of different invertebrate functional groups in unpolluted and polluted atmospheres. We focus on the pollutants ozone, nitrogen oxides, sulfur dioxide and particulate matter. We show that beneficial invertebrate performance is reduced by air pollution, whereas the performance of plant pest invertebrates is not significantly affected. Ozone pollution has the most detrimental impacts, and these occur at concentrations below national and international air quality standards. Changes in invertebrate performance are not dependent on air pollutant concentrations, indicating that even low levels of pollution are damaging. Predicted increases in tropospheric ozone could result in unintended consequences to global invertebrate populations and their valuable ecological services.


Subject(s)
Air Pollutants , Air Pollution , Invertebrates , Ozone , Particulate Matter , Animals , Air Pollution/adverse effects , Invertebrates/drug effects , Ozone/toxicity , Ozone/adverse effects , Air Pollutants/toxicity , Air Pollutants/adverse effects , Particulate Matter/adverse effects , Sulfur Dioxide/toxicity , Nitrogen Oxides/toxicity , Pollination
2.
Neotrop Entomol ; 53(4): 715-725, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38955944

ABSTRACT

Several crops depend on both managed and wild bees to produce fruits and/or seeds, and the efficiency of numerous wild bees is higher than that of some managed species. Therefore, knowing and understanding the required resources for wild bees could enabled the establishment of management practices to increase their populations. Here, we provide information about the nesting biology of Megachile (Chrysosarus) jenseni, a Faboideae-specialist bee species. Based on observations from two populations occurring in contrasting agroecosystems, this bivoltine species showed common behavioral features shared with other species of subgenus Chrysosarus, such as the use of petal pieces and mud as nesting materials and the utilization of pre-existing cavities. Both studied populations showed a bivoltine life cycle with a rapid early-summer generation and a second generation, with most individuals overwintering. Main causes of mortality were unknown diseases (or other factors), causing the death of preimaginal stages. Moreover, this species was attacked by a cleptoparasite megachilid (Coelioxys remissa), a parasitic eulophid wasp (Melittobia sp.), and a bee fly (Anthrax oedipus). Finally, we discussed the potential use of this leaf-cutter bee species for alfalfa pollination.


Subject(s)
Medicago sativa , Nesting Behavior , Pollination , Animals , Bees/physiology , Female , Wasps/physiology , Brazil , Seasons
3.
PeerJ ; 12: e17647, 2024.
Article in English | MEDLINE | ID: mdl-38948210

ABSTRACT

Background: Anthropogenic activities significantly impact natural ecosystems, leading to alterations in plant and pollinator diversity and abundance. These changes often result in shifts within interacting communities, potentially reshaping the structure of plant-pollinator interaction networks. Given the escalating human footprint on habitats, evaluating the response of these networks to anthropization is critical for devising effective conservation and management strategies. Methods: We conducted a comprehensive review of the plant-pollinator network literature to assess the impact of anthropization on network structure. We assessed network metrics such as nestedness measure based on overlap and decreasing fills (NODF), network specialization (H2'), connectance (C), and modularity (Q) to understand structural changes. Employing a meta-analytical approach, we examined how anthropization activities, such as deforestation, urbanization, habitat fragmentation, agriculture, intentional fires and livestock farming, affect both plant and pollinator richness. Results: We generated a dataset for various metrics of network structure and 36 effect sizes for the meta-analysis, from 38 articles published between 2010 and 2023. Studies assessing the impact of agriculture and fragmentation were well-represented, comprising 68.4% of all studies, with networks involving interacting insects being the most studied taxa. Agriculture and fragmentation reduce nestedness and increase specialization in plant-pollinator networks, while modularity and connectance are mostly not affected. Although our meta-analysis suggests that anthropization decreases richness for both plants and pollinators, there was substantial heterogeneity in this regard among the evaluated studies. The meta-regression analyses helped us determine that the habitat fragment size where the studies were conducted was the primary variable contributing to such heterogeneity. Conclusions: The analysis of human impacts on plant-pollinator networks showed varied effects worldwide. Responses differed among network metrics, signaling nuanced impacts on structure. Activities like agriculture and fragmentation significantly changed ecosystems, reducing species richness in both pollinators and plants, highlighting network vulnerability. Regional differences stressed the need for tailored conservation. Despite insights, more research is crucial for a complete understanding of these ecological relationships.


Subject(s)
Anthropogenic Effects , Ecosystem , Pollination , Animals , Agriculture , Biodiversity , Conservation of Natural Resources , Insecta/physiology , Plants
4.
Naturwissenschaften ; 111(4): 37, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38951237

ABSTRACT

Studies of reproductive biology and resources availability to floral visitors by plant species are important to understand the plant-pollinator interactions that drive species adaptation. We aim to understand the relationship between reproduction mechanisms of Deuterocohnia meziana (Bromeliaceae) and pollinators. The species occurs in Bolivia and Paraguay, and it is the only species of the genus found in Brazil, where it is restricted to ironstone outcrops. These areas are currently threatened by the iron mining industry. Additionally, they face risks from fire occurrence and grazing by cattle. We analyzed the floral biology, reproductive system, phenology, and pollination ecology of a natural population of Deuterocohnia meziana, from ironstone outcrops in Brazil. The species exhibits diurnal anthesis, with stigma receptive throughout anthesis, and 77% of pollen viability. Deuterocohnia meziana produces relatively large amounts of nectar, especially early in the morning (32.8 ± 9.4 µl), with a mean sugar concentration of 23.5 (± 3.2) ºBrix. It is self-incompatible with a peak flowering occurring in August (dry season), although flowers are observed continuously throughout the year. The species exhibits two types of inflorescences, young and mature, among which an average of 13.1 and 3.6 flowers open per day, respectively. Hummingbirds and bees are the effective pollinators, although butterflies and ants also visit D. meziana flowers. The species is reliant on exogenous pollen and pollinators for fruit set. The continuous conservation of D. meziana populations and their communities is essential for preserving plant-pollinator mutualism and the floral community adapted to ironstone outcrops.


Subject(s)
Bromeliaceae , Endangered Species , Pollination , Reproduction , Pollination/physiology , Brazil , Bromeliaceae/physiology , Animals , Reproduction/physiology , Flowers/physiology
5.
Am J Bot ; 111(7): e16375, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39004802

ABSTRACT

PREMISE: Cross-fertilization in most flowering plants is facilitated by mobile animals that transport pollen while foraging for floral rewards. The contributions of different visitors can vary widely, depending on the amount of pollen transferred during a single visit and on the frequency and timing of the visits of each pollinator taxon. METHODS: We used three approaches to measure the pollination value of bees that visit Mimulus ringens: pollinator interviews, field population observations, and caging studies. RESULTS: The single-visit effectiveness of small bees (primarily Halictidae) was only half that of larger bees (primarily Bombus) for pollen delivery and removal. In five field populations, we found substantial temporal and spatial variation in visitation and pollination. In most sites big bees were active before 08:00 hours, and by 10:00-11:00 hours, stigmas were usually fully pollinated and closed, and little pollen remained in anthers. Small bees seldom visited before 10:00 hours. Excluding big bees from plants confirmed that pollination is reduced and delayed in this ecological context. CONCLUSIONS: Big bees are the primary pollinators of M. ringens, accounting for at least 75% of seed production. Not only are they more effective per visit, in most situations they also visit before small bees become active. Although small bees are not usually important pollinators of M. ringens, they have the potential to partially replace them as a "fail-safe" pollinator in contexts where big bees are not abundant. In a world where pollinator abundance is declining, such backup pollinators may be important for maintaining plant reproduction.


Subject(s)
Mimulus , Pollination , Animals , Pollination/physiology , Bees/physiology , Mimulus/physiology , Flowers/physiology , Pollen/physiology , Time Factors
6.
PLoS One ; 19(7): e0301402, 2024.
Article in English | MEDLINE | ID: mdl-39042665

ABSTRACT

Bees play a pivotal role as pollinators in crops essential for human consumption. However, the global decline in bee populations poses a significant threat to pollination services and food security worldwide. The loss and degradation of habitats due to land use change are primary factors contributing to bee declines, particularly in tropical forests facing high deforestation rates. Here, we evaluate the pollination services provided to crops of watermelon (Citrullus lanatus) and green tomato (Physalis ixocarpa) in three municipalities in the state of Jalisco, Mexico, a place with Tropical Dry Forest, during years 2008, and 2014 to 2017. Both crops are cultivated in the dry season, approximately during the months of November to March. We describe the composition of the pollinator community and their visitation frequency (measured through the number of visits per flower per hour), and we assess the impact of pollinators on plant reproductive success and the level of pollinator dependence for each crop species (measured through the number of flowers that developed into fruits). We also evaluate how the landscape configuration (through the percentage of forest cover and distance to the forest) influences richness and abundance of pollinators (measured as number of species and individuals of pollinators per line of 50 m), and we use the model Integrated Valuation of Ecosystem Services and Tradeoffs (InVEST) to map and value the pollination service in both crops. InVEST Crop pollination model is a simulation focuses on wild pollinators providing the pollinator ecosystem service. Our findings indicate that Apis mellifera was the primary pollinator of both crops, one of the few abundant pollinators in the study region during the dry season. In experiments where pollinators were excluded from flowers, watermelon yielded no fruits, while green tomato experienced a 65% reduction in production. In the case of green tomato, fruit set showed a positive correlation with pollinator abundance. A positive association between forest cover and total pollinator abundance was observed in green tomato in 2008, but not in watermelon. Additionally, a positive relationship was observed between the abundance of bees predicted by the InVEST model and the abundance of bees observed in green tomato flowers in 2008. In the study region, green tomato and watermelon rely on pollinators for fruit production, with honeybees (from feral and managed colonies) acting as the primary provider of pollination services for these crops. Consequently, the conservation of natural areas is crucial to provide food and nesting resources for pollinators. By doing so, we can ensure the diversity and abundance of pollinators, which in turn will help secure food security. The findings of this study underscore the critical need for the conservation of natural areas to support pollinator populations. Policymakers should prioritize the protection and restoration of habitats, particularly tropical forests, which are essential for maintaining the diversity and abundance of pollinators.


Subject(s)
Citrullus , Crops, Agricultural , Pollination , Citrullus/physiology , Pollination/physiology , Animals , Mexico , Bees/physiology , Flowers/physiology , Ecosystem , Seasons
7.
J R Soc Interface ; 21(216): 20240156, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39044626

ABSTRACT

Animals, most notably insects, generally seem to accumulate electrostatic charge in nature. These electrostatic charges will exert forces on other charges in these animals' environments and therefore have the potential to attract or repel other objects, for example, pollen from flowers. Here, we show that butterflies and moths (Lepidoptera) accumulate electrostatic charge while in flight. Then, using finite element analysis, we demonstrate that when within millimetres of a flower, the electrostatic charge of a lepidopteran generates an electric field in excess of 5 kV m-1, and that an electric field of this magnitude is sufficient to elicit contactless pollen transfer from flowers across air gaps onto the body of a butterfly or moth. Furthermore, we see that phylogenetic variations exist in the magnitude and polarity of net charge between different species and families and Lepidoptera. These phylogenetic variations in electrostatic charging correlate with morphological, biogeographical and ecological differences between different clades. Such correlations with biogeographical and ecological differences may reflect evolutionary adaptations towards maximizing or minimizing charge accumulation, in relation to pollination, predation and parasitism, and thus we introduce the idea that electrostatic charging may be a trait upon which evolution can act.


Subject(s)
Butterflies , Moths , Pollination , Static Electricity , Animals , Butterflies/physiology , Pollination/physiology , Moths/physiology , Phylogeny
8.
Am J Bot ; 111(7): e16367, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38956979

ABSTRACT

PREMISE: Under pollinator limitations, specialized pollination syndromes may evolve toward contrasting responses: a generalized syndrome with increased pollinator attraction, pollinator reward, and pollen transfer capacity; or the selfing syndrome with increased self-pollen deposition, but reduced pollinator attraction and pollen transfer capacity. The buzz-pollination syndrome is specialized to explore female vibrating bees as pollinators. However, vibrating bees become less-active pollinators at montane areas of the Atlantic Forest (AF) domain. This study investigated whether the specialized buzz-pollination syndrome would evolve toward an alternative floral syndrome in montane areas of the AF domain, considering a generalized and the selfing syndromes as alternative responses. METHODS: We utilized a lineage within the buzz-pollinated Miconia as study system, contrasting floral traits between montane AF-endemic and non-endemic species. We measured and validated floral traits that were proxies for pollinator attraction, reward access, pollen transfer capacity, and self-pollen deposition. We inferred the evolution of floral trait via phylogenetic comparative methods. RESULTS: AF-endemic species have selectively evolved greater reward access and more frequently had generalist pollination. Nonetheless, AF-endemic species also have selectively evolved toward lower pollen transfer capacity and greater self pollination. These patterns indicated a complex evolutionary process that has jointly favored a generalized and the selfing syndromes. CONCLUSIONS: The buzz pollination syndrome can undergo an evolutionary disruption in montane areas of the AF domain. This floral syndrome is likely more labile than often assumed, allowing buzz-pollinated plants to reproduce in environments where vibrating bees are less-reliable pollinators.


Subject(s)
Biological Evolution , Flowers , Pollination , Animals , Bees/physiology , Flowers/physiology , Phylogeny , Pollen/physiology
9.
Nat Commun ; 15(1): 6308, 2024 Jul 26.
Article in English | MEDLINE | ID: mdl-39060266

ABSTRACT

Pollinator-driven evolution of floral traits is thought to be a major driver of angiosperm speciation and diversification. Ophrys orchids mimic female insects to lure male pollinators into pseudocopulation. This strategy, called sexual deception, is species-specific, thereby providing strong premating reproductive isolation. Identifying the genomic architecture underlying pollinator adaptation and speciation may shed light on the mechanisms of angiosperm diversification. Here, we report the 5.2 Gb chromosome-scale genome sequence of Ophrys sphegodes. We find evidence for transposable element expansion that preceded the radiation of the O. sphegodes group, and for gene duplication having contributed to the evolution of chemical mimicry. We report a highly differentiated genomic candidate region for pollinator-mediated evolution on chromosome 2. The Ophrys genome will prove useful for investigations into the repeated evolution of sexual deception, pollinator adaptation and the genomic architectures that facilitate evolutionary radiations.


Subject(s)
Orchidaceae , Pollination , Spiders , Animals , Orchidaceae/genetics , Orchidaceae/physiology , Pollination/genetics , Spiders/genetics , Spiders/physiology , Genome, Plant , Phylogeny , Flowers/genetics , Flowers/physiology , Adaptation, Physiological/genetics , DNA Transposable Elements/genetics , Male , Female , Evolution, Molecular , Gene Duplication , Reproductive Isolation , Biological Evolution
10.
PLoS One ; 19(7): e0306808, 2024.
Article in English | MEDLINE | ID: mdl-39046962

ABSTRACT

Vanilla planifolia is native to the Mexican tropics. Despite its worldwide economic importance as a source of vanilla for flavoring and other uses, almost all vanilla is produced by expensive hand-pollination, and minimal documentation exists for its natural pollination and floral visitors. There is a claim that vanilla is pollinated by Melipona stingless bees, but vanilla is more likely pollinated by orchid bees. Natural pollination has not been tested in the Yucatán region of Mexico, where both vanilla and potential native bee pollinators are endemic. We document for the first time the flowering process, nectar production and natural pollination of V. planiflora, using bagged flower experiments in a commercial planting. We also assessed the frequency and visitation rates of stingless bees and orchid bees on flowers. Our results showed low natural pollination rates of V. planifolia (~ 5%). Only small stingless bees (Trigona fulviventris and Nannotrigona perilampoides) were seen on flowers, but no legitimate visits were witnessed. We verified that there were abundant Euglossa and fewer Eulaema male orchid bees around the vanilla plants, but neither visited the flowers. The introduction of a colony of the stingless bee Melipona beecheii and the application of chemical lures to attract orchid bees failed to induce floral visitations. Melipona beecheii, and male orchid bees of Euglossa viridissima and E. dilemma may not be natural pollinators of vanilla, due to lack of attraction to flowers. It seems that the lack of nectar in V. planifolia flowers reduces the spectrum of potential pollinators. In addition, there may be a mismatch between the attractiveness of vanilla floral fragrances to the species of orchid bees registered in the studied area. Chemical studies with controlled experiments in different regions would be important to further elucidate the potential pollinators of vanilla in southern Mexico.


Subject(s)
Flowers , Pollination , Vanilla , Animals , Bees/physiology , Mexico , Flowers/physiology , Behavior, Animal/physiology , Plant Nectar
11.
Microb Ecol ; 87(1): 100, 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-39080099

ABSTRACT

Microbiota, the communities of microbes on and in organisms or organic matter, are essential for the functioning of ecosystems. How microbes are shared and transmitted delineates the formation of a microbiota. As pollinators forage, they offer a route to transfer microbes among the flowering plants, themselves, and their nests. To assess how the two components of the microbiota, bacteria and fungi, in pollination communities are shared and transferred, we focused on the honey bee Apis mellifera and collected honey bee, honey (representing the hive microbiota), and flower samples three times during the summer in Finland. We identified the bacteria and fungi by DNA metabarcoding. To determine the impact of honey bees' flower choices on the honey bee and hive microbiota, we identified also plant DNA in honey. The bacterial communities of honey bees, honey, and flowers all differ greatly from each other, while the fungal communities of honey bees and honey are very similar, yet different from flowers. The time of the summer and the sampling area influence all these microbiota. For flowers, the plant identity impacts both bacterial and fungal communities' composition the most. For the dispersal pathways of bacteria to honey bees, they are acquired directly from the honey and indirectly from flowers through the honey, while fungi are directly transmitted to honey bees from flowers. Overall, the distinctiveness of the microbiota of honey bees, honey, and the surrounding flowers suggests the sharing of microbes among them occurs but plays a minor role for the established microbiota.


Subject(s)
Bacteria , Flowers , Fungi , Honey , Microbiota , Bees/microbiology , Animals , Flowers/microbiology , Bacteria/classification , Bacteria/genetics , Bacteria/isolation & purification , Fungi/classification , Fungi/isolation & purification , Fungi/genetics , Honey/microbiology , Honey/analysis , Finland , Pollination , DNA Barcoding, Taxonomic , Seasons
12.
Environ Sci Pollut Res Int ; 31(34): 46898-46909, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38981968

ABSTRACT

The rapid increase in global plastic production and usage has led to global environmental contamination, with microplastics (MPs) emerging as a significant concern. Pollinators provide a crucial ecological service, while bee populations have been declining in recent years, and MPs have been recognized as a new risk factor contributing to their losses. Despite the pervasive distribution and persistence of MPs, understanding their risks to honey bees remains a critical knowledge gap. This review summarizes recent studies that investigate the toxicity of MPs on honey bee health from different perspectives. The findings revealed diverse and material-/size-/dosage-dependent outcomes, emphasizing the need for comprehensive assessments in the follow-up studies. MPs have been detected in honey and in bees' organs (e.g., gut and brain), posing potential threats to bee fitness, including altered behavior, cognitive abilities, compromised immunity, and dysfunction of the gut microbiota. It should be noticed that despite several laboratory studies suggesting the aforementioned adverse effects of MPs, field/semi-field experiments are still warranted. The synergistic toxicity of MPs with other environmental contaminants (pesticides, antibiotics, fungicides, heavy metals, etc.) still requires further investigation. Our review highlights the critical need to understand the relationships between MPs, pollinators, and the ecosystem to mitigate potential risks and ensure the sustainability of vital services provided by honey bees.


Subject(s)
Microplastics , Pollination , Bees/drug effects , Animals , Microplastics/toxicity , Environmental Pollutants/toxicity
13.
Sci Rep ; 14(1): 17458, 2024 Jul 29.
Article in English | MEDLINE | ID: mdl-39075087

ABSTRACT

Solar eclipse has remarkable effect on behavior of animals. South India experienced a 97% magnitude annular eclipse on December 26, 2019 during 08:04-11:04 h with the totality phase appeared during 09:25-09:30 h. We investigated whether the foraging activity of the bees was limited by the eclipse, what bees are affected most, and which part of the eclipse was critical for bee activities to understand how a group of insects that rely the Sun, the sunlight, and the sun rays for their navigation and vision behaves to the eclipse. We opted to watch the bees in their foraging ground, and selected the natural flower populations of Cleome rutidosperma, Hygrophila schulli, Mimosa pudica, and Urena sinuata-some of the bee-friendly plants-to record the visitor richness and visitation rate on the flowers on eclipse and non-eclipse days and during the hour of totality phase and partial phase of the eclipse. Fewer flower-visiting species were recorded on the eclipse day than on the non-eclipse days, but in the period of totality, very few bee species were active, and limited their activity to only one population of C. rutidosperma. Visits of honey bees and stingless bees were affected most, but not that badly of solitary bees and carpenter bees. Bees, particularly the social bees use Sun for navigation and deciphering information on forage sources to fellow workers. The eclipse, like for many other animals, might hamper bees' orientation, vision, and flight.


Subject(s)
Flowers , Sunlight , Animals , Bees/physiology , Pollination , India , Feeding Behavior
14.
Sci Rep ; 14(1): 15028, 2024 07 01.
Article in English | MEDLINE | ID: mdl-38951538

ABSTRACT

Honey bees are important insect pollinators that provide critical pollination services to fruit and nut crops in the US. They face challenges likely due to pressures associated with agricultural intensification related habitat loss. To better understand this, pollen preferences of foraging bees and the nutritional profile of pollen brought into hives by foraging bees in crop fields and nut orchards can provide valuable information. We trained bees to forage on bee-collected pollen from hives placed for pollination services in almond orchards, sunflower fields, or mixed species from inter-row plantings. Using bees trained to a certain kind of hive pollen, we applied a binary scoring system, to test preferences of these preconditioned foragers. We also performed metabolomic analyses of the hive pollen used for training and testing to elucidate their nutritional content. Irrespective of preconditioning, bees collected all the available choice pollen types, predominantly choosing hive-collected mixed species pollen (MSP), followed by almond orchard pollen. The hive-collected MSP was chemically diverse, richest in cholesterol, vitamins, and phytochemicals quercetin, kaempferol, coumarin, and quinine, but was not consistently high for essential amino acids and polyunsaturated fatty acids. Although diversity in chemical profiles may not directly relate to plant species diversity, our results suggest that foragers collect a variety of pollen types when available reiterating the importance of diverse floral resources.


Subject(s)
Nutrients , Pollen , Pollination , Bees/physiology , Animals , Nutrients/analysis , Nutrients/metabolism , Prunus dulcis , Feeding Behavior/physiology
15.
New Phytol ; 243(5): 2008-2020, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38952269

ABSTRACT

The diversity of plant-pollinator interactions is grounded in floral resources, with nectar considered one of the main floral rewards plants produce for pollinators. However, a global evaluation of the number of animal-pollinated nectar-producing angiosperms and their distribution world-wide remains elusive. We compiled a thorough database encompassing 7621 plant species from 322 families to estimate the number and proportion of nectar-producing angiosperms reliant on animal pollination. Through extensive sampling of plant communities, we also explored the interplay between nectar production, floral resource diversity, latitudinal and elevational gradients, contemporary climate, and environmental characteristics. Roughly 223 308 animal-pollinated angiosperms are nectar-producing, accounting for 74.4% of biotic-pollinated species. Global distribution patterns of nectar-producing plants reveal a distinct trend along latitudinal and altitudinal gradients, with increased proportions of plants producing nectar in high latitudes and altitudes. Conversely, tropical communities in warm and moist climates exhibit greater floral resource diversity and a lower proportion of nectar-producing plants. These findings suggest that ecological trends driven by climate have fostered the diversification of floral resources in warmer and less seasonal climates, reducing the proportion of solely nectar-producing plants. Our study provides a baseline for understanding plant-pollinator relationships, plant diversification, and the distribution of plant traits.


Subject(s)
Magnoliopsida , Plant Nectar , Pollination , Plant Nectar/metabolism , Pollination/physiology , Magnoliopsida/physiology , Animals , Altitude , Flowers/physiology , Climate , Geography
16.
Plant Signal Behav ; 19(1): 2383823, 2024 Dec 31.
Article in English | MEDLINE | ID: mdl-39066647

ABSTRACT

Sophora davidii is a cross-pollinated plant with important ecological protection and medicinal value in China, but its seed yield is low due to backward and nonstandard production technology. Therefore, we divide the flowering period of Sophora davidii into initial, full and final flowering period, measuring the floral morphology, pollen viability, stigma receptivity, nectar volume and nectar concentration, foraging behavior of pollinators, fertilization physiology, seed yield and quality through field observation and indoor testing to explore whether the flowering period affects the floral traits, pollinator behavior and seed production of plants. Our results revealed that the nectar volume, nectar concentration, pollen viability and stigma receptivity at full flowering period were the highest. The single visit time and visit time per flower of Chinese honey bees were the longest in the full flowering period, while the number of transfer, visit frequency and number of touching stigma were the least. The visiting number of the bees was the most and the most active in the full flowering period. The bees pollination not only improved the pollen amount, germination rate, pollen tube length and the ovule number of S. davidii, but also their effect was the most obvious in full flowering period. The principal component analysis showed that pollination by Chinese honey bees during the whole flowering period of S. davidii was the best way to produce seeds. We can conclude that flowering period affects flower traits, foraging behavior of pollinators, seed yield and quality of S. davidii.


Subject(s)
Flowers , Pollination , Seeds , Pollination/physiology , Flowers/physiology , Animals , Seeds/physiology , Seeds/growth & development , Bees/physiology , Plant Nectar/metabolism , Pollen/physiology
17.
PeerJ ; 12: e17655, 2024.
Article in English | MEDLINE | ID: mdl-38952981

ABSTRACT

The augmentation of pollination success in lemon (Citrus limon Eureka) flowers remains contingent on the involvement of bee pollinators. With wild bee pollinator populations declining in agroecosystems, meliponiculture has emerged as a potential option in Indonesia. This study aimed to investigate the effects of meliponicultural use of Tetragonula laeviceps on diversity, foraging behavior, and monthly population of bee pollinators, as well as lemon pollination efficacy with and without meliponiculture treatment during two periods. Using scan and focal sampling methods in first and second periods, the study found that the diversity of wild bee pollinators was six species (Apis cerana, Lasioglossum albescens, Megachile laticeps, Xylocopa confusa, Xylocopa latipes, and Xylocopa caerulea), and T. laeviceps when using meliponiculture. The relative abundance and daily foraging activity of wild bee pollinators were initially reduced in the first period (March-June) and then maintained in the second period (July-October). T. laeviceps foraged on the flowers, involving specific sequences for 72 s with highest visitation rate of 0.25 flowers/h from 10:00-13:00. Light intensity was observed to be the most influential factor for bee pollinator density. Pollination efficacy results showed that meliponiculture usage has greater benefit compared to meliponiculture absence across various parameters, including fruit sets, fruit weight, yield, and estimated productivity. The effects of meliponicultural use of T. laeviceps can enhance lemon pollination efficacy while preserving the diversity of wild insect pollinators. This suggests that meliponiculture stingless bees could be a beneficial practice in agroecosystems, especially in tropical regions where wild bee populations and diversity are declining.


Subject(s)
Citrus , Pollination , Animals , Bees/physiology , Indonesia , Flowers
18.
Am J Bot ; 111(7): e16377, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39010307

ABSTRACT

PREMISE: Evolution of cross-pollination efficiency depends on the genetic variation of flower traits, the pollen vector, and flower trait matching between pollen donors and recipients. Trait matching has been almost unexplored among nonheterostylous species, and we examined whether the match of anther length in pollen donors and stigma length in pollen recipients influences the efficiency of cross-pollination. To explore potential constraints for evolutionary response, we also quantified genetic variation and covariation among sepal length, petal length and width, stamen length, style length, and herkogamy. METHODS: We created 58 experimental arrays of Turnera velutina that varied in the extent of mismatch in the position of anthers and stigmas between single-flowered plants. Genetic variation and correlations among flower traits were estimated under greenhouse conditions. RESULTS: Style length, but not herkogamy, influenced the efficiency of cross-pollination. Plants with stamen length that matched the style length of other plants were more efficient pollen donors, whereas those with the style protruding above the stamens of other plants were more efficient pollen recipients. Significant broad-sense heritability (0.22 > hB 2 < 0.42) and moderate genetic correlations (0.33 > r < 0.85) among floral traits were detected. CONCLUSIONS: Our results demonstrated that anther-stigma mismatch between flowers contributed to variation in the efficiency of cross-pollination. The genetic correlations between stamen length and other floral traits suggests that any change in cross-pollination efficiency would be driven by changes in style rather than in stamen length.


Subject(s)
Flowers , Pollen , Pollination , Flowers/physiology , Flowers/anatomy & histology , Flowers/genetics , Pollen/physiology , Pollen/genetics , Genetic Variation , Phenotype
19.
Curr Biol ; 34(12): R564-R565, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38889675

ABSTRACT

Painted ladies are well-known migratory butterflies, but confirmation of the details of their swarming flights through Europe has evaded scientists until now. It was their role as pollinators, carrying pollen grains on their flights, that helped unlock the secrets of their migrations.


Subject(s)
Animal Migration , Butterflies , Pollen , Pollination , Animals , Butterflies/physiology , Animal Migration/physiology , Europe , Flight, Animal/physiology
20.
PLoS One ; 19(6): e0302283, 2024.
Article in English | MEDLINE | ID: mdl-38900825

ABSTRACT

Pollination biology in the widespread species Impatiens capensis Meerb. has only been studied in America, specifically in zones of the U.S.A. and Canada. In this study, we investigated the pollination biology of I. capensis using an integrative identification approach using morphological and molecular tools in four populations of Northwest Poland. We also determined and compared the functional characteristics of the pollinators of the introduced species from the study sites and the native ones reported, for the latter collecting information from bibliographic sources. Visitors were identified using standard morphological keys, including identifying and classifying insect mouthparts. Molecular identification was carried out using mitochondrial DNA's cytochrome oxidase subunit I (COI). We morphologically identified 20 species of visitors constituted by 17 pollinators and three nectar robbers. DNA barcoding of 59 individuals proved the identification of 18 species (also 18 BINs). The frequency of pollinator species was primarily made up of representatives of both Hymenoptera (75%) and Diptera (21%). The morphological traits, such as the chewing and sucking mouthparts, small and big body height, and robber and pollinator behavior explained mainly the native and introduced visitors' arrangements that allow pollination success. However, to understand the process comprehensively, further investigation of other causalities in pollination success and understanding the diversity of pollinators in outer native ranges are necessary.


Subject(s)
Impatiens , Introduced Species , Pollination , Pollination/physiology , Animals , Impatiens/physiology , Impatiens/genetics , Diptera/physiology , Diptera/anatomy & histology , Poland , DNA Barcoding, Taxonomic , Hymenoptera/physiology
SELECTION OF CITATIONS
SEARCH DETAIL