Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 6.244
Filter
1.
Cancer Discov ; 14(8): 1372-1374, 2024 Aug 02.
Article in English | MEDLINE | ID: mdl-39091202

ABSTRACT

PARP inhibitors (PARPi) are used as a first-line treatment option for cancers with BRCA1/2 mutations, yet a significant number of patients show a limited response to these agents. In the present study, Lei and colleagues demonstrate that PARPi promote increased ferroptosis sensitivity and this can be exploited therapeutically to improve the response to PARPi, marking an important therapeutic concept to exploit ferroptosis-based strategies in clinical settings. See related article by Lei et al., p. 1476 (2).


Subject(s)
Drug Resistance, Neoplasm , Ferroptosis , Iron , Poly(ADP-ribose) Polymerase Inhibitors , Humans , Poly(ADP-ribose) Polymerase Inhibitors/therapeutic use , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Ferroptosis/drug effects , Iron/metabolism , Neoplasms/drug therapy , Neoplasms/genetics , Neoplasms/metabolism
2.
Nat Commun ; 15(1): 6676, 2024 Aug 06.
Article in English | MEDLINE | ID: mdl-39107288

ABSTRACT

53BP1 nucleates the anti-end resection machinery at DNA double-strand breaks, thereby countering BRCA1 activity. Loss of 53BP1 leads to DNA end processing and homologous recombination in BRCA1-deficient cells. Consequently, BRCA1-mutant tumors, typically sensitive to PARP inhibitors (PARPi), become resistant in the absence of 53BP1. Here, we demonstrate that the 'leaky' DNA end resection in the absence of 53BP1 results in increased micronuclei and cytoplasmic double-stranded DNA, leading to activation of the cGAS-STING pathway and pro-inflammatory signaling. This enhances CD8+ T cell infiltration, activates macrophages and natural killer cells, and impedes tumor growth. Loss of 53BP1 correlates with a response to immune checkpoint blockade (ICB) and improved overall survival. Immunohistochemical assessment of 53BP1 in two malignancies, high grade serous ovarian cancer and pancreatic ductal adenocarcinoma, which are refractory to ICBs, reveals that lower 53BP1 levels correlate with an increased adaptive and innate immune response. Finally, BRCA1-deficient tumors that develop resistance to PARPi due to the loss of 53BP1 are susceptible to ICB. Therefore, we conclude that 53BP1 is critical for tumor immunogenicity and underpins the response to ICB. Our results support including 53BP1 expression as an exploratory biomarker in ICB trials for malignancies typically refractory to immunotherapy.


Subject(s)
Membrane Proteins , Nucleotidyltransferases , Ovarian Neoplasms , Pancreatic Neoplasms , Tumor Suppressor p53-Binding Protein 1 , Tumor Suppressor p53-Binding Protein 1/metabolism , Tumor Suppressor p53-Binding Protein 1/genetics , Female , Nucleotidyltransferases/metabolism , Nucleotidyltransferases/genetics , Membrane Proteins/metabolism , Membrane Proteins/genetics , Humans , Animals , Ovarian Neoplasms/immunology , Ovarian Neoplasms/genetics , Ovarian Neoplasms/pathology , Ovarian Neoplasms/metabolism , Pancreatic Neoplasms/immunology , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/pathology , Pancreatic Neoplasms/metabolism , Mice , Cell Line, Tumor , DNA Breaks, Double-Stranded , BRCA1 Protein/metabolism , BRCA1 Protein/genetics , Signal Transduction , CD8-Positive T-Lymphocytes/immunology , Immune Checkpoint Inhibitors/therapeutic use , Immune Checkpoint Inhibitors/pharmacology , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Poly(ADP-ribose) Polymerase Inhibitors/therapeutic use , Mice, Inbred C57BL , Killer Cells, Natural/immunology , Killer Cells, Natural/metabolism , Mice, Knockout , Carcinoma, Pancreatic Ductal/immunology , Carcinoma, Pancreatic Ductal/genetics , Carcinoma, Pancreatic Ductal/pathology , Immunity, Innate
3.
Nat Commun ; 15(1): 6755, 2024 Aug 08.
Article in English | MEDLINE | ID: mdl-39117659

ABSTRACT

Histone lysine methyltransferase 2D (KMT2D) is the most frequently mutated epigenetic modifier in head and neck squamous cell carcinoma (HNSCC). However, the role of KMT2D in HNSCC tumorigenesis and whether its mutations confer any therapeutic vulnerabilities remain unknown. Here we show that KMT2D deficiency promotes HNSCC growth through increasing glycolysis. Additionally, KMT2D loss decreases the expression of Fanconi Anemia (FA)/BRCA pathway genes under glycolytic inhibition. Mechanistically, glycolytic inhibition facilitates the occupancy of KMT2D to the promoter/enhancer regions of FA genes. KMT2D loss reprograms the epigenomic landscapes of FA genes by transiting their promoter/enhancer states from active to inactive under glycolytic inhibition. Therefore, combining the glycolysis inhibitor 2-DG with DNA crosslinking agents or poly (ADP-ribose) polymerase (PARP) inhibitors preferentially inhibits tumor growth of KMT2D-deficient mouse HNSCC and patient-derived xenografts (PDXs) harboring KMT2D-inactivating mutations. These findings provide an epigenomic basis for developing targeted therapies for HNSCC patients with KMT2D-inactivating mutations.


Subject(s)
Glycolysis , Squamous Cell Carcinoma of Head and Neck , Animals , Humans , Mice , Glycolysis/genetics , Squamous Cell Carcinoma of Head and Neck/genetics , Squamous Cell Carcinoma of Head and Neck/drug therapy , Squamous Cell Carcinoma of Head and Neck/metabolism , Squamous Cell Carcinoma of Head and Neck/pathology , Cell Line, Tumor , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/genetics , BRCA1 Protein/metabolism , BRCA1 Protein/genetics , BRCA1 Protein/deficiency , BRCA2 Protein/genetics , BRCA2 Protein/metabolism , BRCA2 Protein/deficiency , Histone-Lysine N-Methyltransferase/metabolism , Histone-Lysine N-Methyltransferase/genetics , Head and Neck Neoplasms/genetics , Head and Neck Neoplasms/metabolism , Head and Neck Neoplasms/drug therapy , Head and Neck Neoplasms/pathology , Fanconi Anemia/genetics , Fanconi Anemia/metabolism , Gene Expression Regulation, Neoplastic , Xenograft Model Antitumor Assays , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Female , Neoplasm Proteins/genetics , Neoplasm Proteins/metabolism , Signal Transduction , Promoter Regions, Genetic/genetics , Myeloid-Lymphoid Leukemia Protein
5.
Cancer Med ; 13(15): e70031, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39114948

ABSTRACT

BACKGROUND: GP-2250, a novel analog of taurultam (TRLT), has emerged as a potent anti-neoplastic drug; however, the mechanisms underlying its effects are not well understood. Here, we investigated the mechanism of action and the biological effects of GP-2250 using in vitro and in vivo models. METHODS: We carried out a series of in vitro (MTT assay, Annexin V/PI assay, colony formation assay, reverse-phase protein array [RPPA], and HRLC/IC analysis) to determine the biological activity of GP-2250 and investigate the mechanism of action. In vivo experiments were carried out to determine the therapeutic efficacy of GP-2250 alone and in combination with standard-of-care drugs (e.g., paclitaxel, cisplatin, topotecan, and poly ADP-ribose polymerase [PARP] inhibitors). RESULTS: We investigated the cytotoxic effect of GP-2250 in 10 ovarian cancer cell lines and found GP-2250 combined with a PARP inhibitor had the greatest synergy. RPPA revealed that GP-2250 inhibited hypoxia-inducible factor-1α, AKT, and mammalian target of rapamycin (mTOR) activation and expression. High-resolution mass spectrometry revealed that hexokinase2 activity and protein expression were significantly reduced by GP-2250 exposure. Furthermore, GP-2250 reduced glycolysis and ATP synthesis in cancer cells. An in vivo pharmacodynamic experiment using the OVCAR8 mouse model demonstrated that 500 mg/kg GP-2250 was effective in downregulating AKT and mTOR activation and expression. In the in vivo therapy experiment using an orthotopic mouse model, a combination of GP-2250 with either PARP inhibitors or bevacizumab showed a significant reduction of tumor weights and nodules compared to those treated with a vehicle, control IgG groups, or monotherapy groups. CONCLUSIONS: Taken together, our data indicate that GP-2250 exerts profound effects on tumor metabolism and, in combination with PARP inhibitors or bevacizumab, showed promising anti-tumor efficacy. These findings could have implications for the clinical development of GP-2250.


Subject(s)
Ovarian Neoplasms , Xenograft Model Antitumor Assays , Animals , Female , Ovarian Neoplasms/drug therapy , Ovarian Neoplasms/pathology , Ovarian Neoplasms/metabolism , Humans , Mice , Cell Line, Tumor , Antineoplastic Combined Chemotherapy Protocols/pharmacology , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Drug Synergism , Apoptosis/drug effects , Cell Proliferation/drug effects , Antineoplastic Agents/pharmacology , Disease Models, Animal , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , TOR Serine-Threonine Kinases/metabolism , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Poly(ADP-ribose) Polymerase Inhibitors/therapeutic use
6.
Dalton Trans ; 53(33): 13871-13889, 2024 Aug 20.
Article in English | MEDLINE | ID: mdl-39091221

ABSTRACT

Piperazine is an important functional unit of many clinically approved drugs, including chemotherapeutic agents. In the current study, methyl piperazine was incorporated and eight salicylaldehyde-derived piperazine-functionalized hydrazone ONN-donor ligands (L) and their Pt(II) complexes (L-PtCl) were prepared. The structures of all these ligands (L1-L8) and Pt(II) complexes (C1-C8) were determined using 1H and 13C NMR, UV-vis, FT-IR and HR-ESI MS analyses, whereas the structures of C1, C5, C6, C7 and C8 were determined in the solid state using single crystal X-ray diffraction analysis. Solution state stabilities of C3, C4, C5 and C6 were determined via time-dependent UV-vis spectroscopy. All these complexes (C1-C8) were studied for their anticancer effect in pancreatic ductal adenocarcinoma cells, including BxPC3, MIAPaCa-2 and PANC1 cells. C1-C8 displayed a potential cytotoxic effect in all these cancer cells, among which C5, C6 and C8 showed the strongest inhibitory effect in comparison with standard chemotherapeutic agents, including 5-fluorouracil (5-FU), cisplatin (CP), oxaliplatin and doxorubicin (DOX). C5, C6 and C8 suppressed the growth of pancreatic cancer cells in a dose-dependent manner. Moreover, C5, C6 and C8 inhibited clonogenic potential and invasion ability and induced apoptosis in PANC1 cells. Importantly, C5, C6 and C8 synergized the anticancer effect with PARP inhibitors, including olaparib, veliparib and niraparib, in pancreatic cancer cells, thus suggesting an important role of C5, C6 and C8 in induction of apoptosis in combination with PARP inhibitors. C5 combined with PARP inhibitors induced caspase3/7 activity and suppressed ATP production. Mechanistically, C5, C6 and C8 inhibited EZH2 protein expression to suppress EZH2-dependent tumorigenesis. Overall, these results highlighted the importance of these piperazine-functionalized Pt(II) complexes as potential anticancer agents to suppress pancreatic ductal adenocarcinoma tumorigenesis by targeting the EZH2-dependent pathway.


Subject(s)
Aldehydes , Antineoplastic Agents , Apoptosis , Enhancer of Zeste Homolog 2 Protein , Hydrazones , Pancreatic Neoplasms , Piperazine , Poly(ADP-ribose) Polymerase Inhibitors , Apoptosis/drug effects , Humans , Hydrazones/chemistry , Hydrazones/pharmacology , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/pathology , Pancreatic Neoplasms/metabolism , Ligands , Aldehydes/chemistry , Aldehydes/pharmacology , Piperazine/chemistry , Piperazine/pharmacology , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Poly(ADP-ribose) Polymerase Inhibitors/chemistry , Poly(ADP-ribose) Polymerase Inhibitors/chemical synthesis , Enhancer of Zeste Homolog 2 Protein/antagonists & inhibitors , Enhancer of Zeste Homolog 2 Protein/metabolism , Cell Line, Tumor , Carcinoma, Pancreatic Ductal/drug therapy , Carcinoma, Pancreatic Ductal/pathology , Carcinoma, Pancreatic Ductal/metabolism , Cell Proliferation/drug effects , Piperazines/pharmacology , Piperazines/chemistry , Drug Screening Assays, Antitumor , Drug Synergism , Coordination Complexes/pharmacology , Coordination Complexes/chemistry , Coordination Complexes/chemical synthesis , Organoplatinum Compounds/pharmacology , Organoplatinum Compounds/chemistry , Organoplatinum Compounds/chemical synthesis
7.
DNA Repair (Amst) ; 141: 103736, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39096699

ABSTRACT

Homologous recombination (HR) is a high-fidelity DNA double-strand break (DSB) repair pathway. Both familial and somatic loss of function mutation(s) in various HR genes predispose to a variety of cancer types, underscoring the importance of error-free repair of DSBs in human physiology. While environmental sources of DSBs have been known, more recent studies have begun to uncover the role of endogenous base damage in leading to these breaks. Base damage repair intermediates often consist of single-strand breaks, which if left unrepaired, can lead to DSBs as the replication fork encounters these lesions. This review summarizes various sources of endogenous base damage and how these lesions are repaired. We highlight how conversion of base repair intermediates, particularly those with 5'or 3' blocked ends, to DSBs can be a predominant source of genomic instability in HR-deficient cancers. We also discuss how endogenous base damage and ensuing DSBs can be exploited to enhance the efficacy of Poly (ADP-ribose) polymerase inhibitors (PARPi), that are widely used in the clinics for the regimen of HR-deficient cancers.


Subject(s)
DNA Breaks, Double-Stranded , Genomic Instability , Neoplasms , Humans , Neoplasms/genetics , Neoplasms/metabolism , Homologous Recombination , Recombinational DNA Repair , Animals , DNA Repair , DNA Damage , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology
8.
Int J Mol Sci ; 25(15)2024 Jul 30.
Article in English | MEDLINE | ID: mdl-39125873

ABSTRACT

The current focus of ovarian cancer (OC) research is the improvement of treatment options through maximising drug effectiveness. OC remains the fifth leading cause of cancer-induced mortality in women worldwide. In recent years, nanotechnology has revolutionised drug delivery systems. Nanoparticles may be utilised as carriers in gene therapy or to overcome the problem of drug resistance in tumours by limiting the number of free drugs in circulation and thereby minimising undesired adverse effects. Cell surface receptors, such as human epidermal growth factor 2 (HER2), folic acid (FA) receptors, CD44 (also referred to as homing cell adhesion molecule, HCAM), and vascular endothelial growth factor (VEGF) are highly expressed in ovarian cancer cells. Generation of active targeting nanoparticles involves modification with ligands that recognise cell surface receptors and thereby promote internalisation by cancer cells. Several poly(ADP-ribose) polymerase (PARP) inhibitors (PARPi) are currently used for the treatment of high-grade serous ovarian carcinomas (HGSOC) or platinum-sensitive relapsed OC. However, PARP resistance and poor drug bioavailability are common challenges, highlighting the urgent need to develop novel, effective strategies for ovarian cancer treatment. This review evaluates the utility of nanoparticles in ovarian cancer therapy, with a specific focus on targeted approaches and the use of PARPi nanocarriers to optimise treatment outcomes.


Subject(s)
Nanoparticles , Ovarian Neoplasms , Poly(ADP-ribose) Polymerase Inhibitors , Humans , Female , Ovarian Neoplasms/drug therapy , Ovarian Neoplasms/metabolism , Poly(ADP-ribose) Polymerase Inhibitors/therapeutic use , Poly(ADP-ribose) Polymerase Inhibitors/administration & dosage , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Nanoparticles/chemistry , Drug Carriers/chemistry , Drug Delivery Systems/methods , Antineoplastic Agents/administration & dosage , Antineoplastic Agents/therapeutic use , Antineoplastic Agents/pharmacology , Animals
9.
Mol Cancer ; 23(1): 158, 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-39103848

ABSTRACT

PARP inhibitor (PARPi) therapy has transformed outcomes for patients with homologous recombination DNA repair (HRR) deficient ovarian cancers, for example those with BRCA1 or BRCA2 gene defects. Unfortunately, PARPi resistance is common. Multiple resistance mechanisms have been described, including secondary mutations that restore the HR gene reading frame. BRCA1 splice isoforms △11 and △11q can contribute to PARPi resistance by splicing out the mutation-containing exon, producing truncated, partially functional proteins. However, the clinical impacts and underlying drivers of BRCA1 exon skipping are not fully understood.We analyzed nine ovarian and breast cancer patient derived xenografts (PDX) with BRCA1 exon 11 frameshift mutations for exon skipping and therapy response, including a matched PDX pair derived from a patient pre- and post-chemotherapy/PARPi. BRCA1 exon 11 skipping was elevated in PARPi resistant PDX tumors. Two independent PDX models acquired secondary BRCA1 splice site mutations (SSMs) that drive exon skipping, confirmed using qRT-PCR, RNA sequencing, immunoblotting and minigene modelling. CRISPR/Cas9-mediated disruption of splicing functionally validated exon skipping as a mechanism of PARPi resistance. SSMs were also enriched in post-PARPi ovarian cancer patient cohorts from the ARIEL2 and ARIEL4 clinical trials.Few PARPi resistance mechanisms have been confirmed in the clinical setting. While secondary/reversion mutations typically restore a gene's reading frame, we have identified secondary mutations in patient cohorts that hijack splice sites to enhance mutation-containing exon skipping, resulting in the overexpression of BRCA1 hypomorphs, which in turn promote PARPi resistance. Thus, BRCA1 SSMs can and should be clinically monitored, along with frame-restoring secondary mutations.


Subject(s)
BRCA1 Protein , Drug Resistance, Neoplasm , Exons , Ovarian Neoplasms , Poly(ADP-ribose) Polymerase Inhibitors , RNA Splice Sites , Humans , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Poly(ADP-ribose) Polymerase Inhibitors/therapeutic use , Drug Resistance, Neoplasm/genetics , BRCA1 Protein/genetics , Female , Animals , Mice , Ovarian Neoplasms/genetics , Ovarian Neoplasms/drug therapy , Ovarian Neoplasms/pathology , Mutation , Breast Neoplasms/genetics , Breast Neoplasms/drug therapy , Breast Neoplasms/pathology , Xenograft Model Antitumor Assays , Cell Line, Tumor
10.
Chem Commun (Camb) ; 60(67): 8892-8895, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-39086281

ABSTRACT

A biological nanoplatform (Gal-ANI@ZnAP NPs) was constructed based on a prodrug-skeletal metal-organic framework (MOF) using purine nucleobase analogue prodrug 6-allylthiopurine as a bioactive ligand, and functionalized with AIE fluorescent PARP inhibitor glycoconjugate for visualization therapy and synthetic lethal cancer therapy. This nanoplatform could actively target cancer cells, selectively release drugs in response to esterase/pH, and visualize drug uptake. In vitro studies revealed that Gal-ANI@ZnAP NPs increased the synthetic lethality in cancer cells by inducing DNA repair failure with the simultaneous targeting of PARP and nucleotide metabolism, thereby exhibiting a significant cancer-killing effect. The study presents a novel strategy to construct an AIE nanoplatform using pharmaceutical molecules for drug uptake visualization and boosting synthetic lethality in cancer.


Subject(s)
Antineoplastic Agents , Metal-Organic Frameworks , Poly(ADP-ribose) Polymerase Inhibitors , Humans , Metal-Organic Frameworks/chemistry , Metal-Organic Frameworks/pharmacology , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Poly(ADP-ribose) Polymerase Inhibitors/chemistry , Poly(ADP-ribose) Polymerase Inhibitors/chemical synthesis , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemical synthesis , Glycosylation , Prodrugs/chemistry , Prodrugs/pharmacology , Prodrugs/chemical synthesis , Cell Line, Tumor , Nanoparticles/chemistry , Drug Screening Assays, Antitumor , Cell Survival/drug effects
11.
Front Biosci (Landmark Ed) ; 29(7): 262, 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-39082357

ABSTRACT

BACKGROUND: The switching/sucrose non-fermentable (SWI/SNF) Related, Matrix Associated, Actin Dependent Regulator Of Chromatin, Subfamily A (SMARCA) member 2 and member 4 (SMARCA2/4) are paralogs and act as the key enzymatic subunits in the SWI/SNF complex for chromatin remodeling. However, the role of SMARCA2/4 in DNA damage response remains unclear. METHODS: Laser microirradiation assays were performed to examine the key domains of SMARCA2/4 for the relocation of the SWI/SNF complex to DNA lesions. To examine the key factors that mediate the recruitment of SMARCA2/4, the relocation of SMARCA2/4 to DNA lesions was examined in HeLa cells treated with inhibitors of Ataxia-telangiectasia-mutated (ATM), Ataxia telangiectasia and Rad3-related protein (ATR), CREB-binding protein (CBP) and its homologue p300 (p300/CBP), or Poly (ADP-ribose) polymerase (PARP) 1/2 as well as in H2AX-deficient HeLa cells. Moreover, by concomitantly suppressing SMARCA2/4 with the small molecule inhibitor FHD286 or Compound 14, the function of SMARCA2/4 in Radiation sensitive 51 (RAD51) foci formation and homologous recombination repair was examined. Finally, using a colony formation assay, the synergistic effect of PARP inhibitors and SMARCA2/4 inhibitors on the suppression of tumor cell growth was examined. RESULTS: We show that SMARCA2/4 relocate to DNA lesions in response to DNA damage, which requires their ATPase activities. Moreover, these ATPase activities are also required for the relocation of other subunits in the SWI/SNF complex to DNA lesions. Interestingly, the relocation of SMARCA2/4 is independent of γH2AX, ATM, ATR, p300/CBP, or PARP1/2, indicating that it may directly recognize DNA lesions as a DNA damage sensor. Lacking SMARCA2/4 prolongs the retention of γH2AX, Ring Finger Protein 8 (RNF8) and Breast cancer susceptibility gene 1 (BRCA1) at DNA lesions and impairs RAD51-dependent homologous recombination repair. Furthermore, the treatment of an SMARCA2/4 inhibitor sensitizes tumor cells to PARP inhibitor treatment. CONCLUSIONS: This study reveals SMARCA2/4 as a DNA damage repair factor for double-strand break repair.


Subject(s)
DNA Damage , DNA Helicases , DNA Repair , Nuclear Proteins , Transcription Factors , Humans , Transcription Factors/metabolism , Transcription Factors/genetics , DNA Helicases/metabolism , DNA Helicases/genetics , HeLa Cells , Nuclear Proteins/metabolism , Nuclear Proteins/genetics , Rad51 Recombinase/metabolism , Rad51 Recombinase/genetics , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Histones/metabolism , Ataxia Telangiectasia Mutated Proteins/metabolism , Ataxia Telangiectasia Mutated Proteins/genetics , Ataxia Telangiectasia Mutated Proteins/antagonists & inhibitors , BRCA1 Protein/metabolism , BRCA1 Protein/genetics
12.
Cell Rep ; 43(7): 114433, 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-38985679

ABSTRACT

ADP-ribosylation (ADPr) signaling plays a crucial role in DNA damage response. Inhibitors against the main enzyme catalyzing ADPr after DNA damage, poly(ADP-ribose) polymerase 1 (PARP1), are used to treat patients with breast cancer harboring BRCA1/2 mutations. However, resistance to PARP inhibitors (PARPi) is a major obstacle in treating patients. To understand the role of ADPr in PARPi sensitivity, we use liquid chromatography-tandem mass spectrometry (LC-MS/MS) to analyze ADPr in six breast cancer cell lines exhibiting different PARPi sensitivities. We identify 1,632 sites on 777 proteins across all cell lines, primarily on serine residues, with site-specific overlap of targeted residues across DNA-damage-related proteins across all cell lines, demonstrating high conservation of serine ADPr-signaling networks upon DNA damage. Furthermore, we observe site-specific differences in ADPr intensities in PARPi-sensitive BRCA mutants and unique ADPr sites in PARPi-resistant BRCA-mutant HCC1937 cells, which have low poly(ADP-ribose) glycohydrolase (PARG) levels and longer ADPr chains on PARP1.


Subject(s)
ADP-Ribosylation , BRCA1 Protein , Breast Neoplasms , DNA Damage , Serine , Humans , Female , Cell Line, Tumor , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Serine/metabolism , BRCA1 Protein/metabolism , BRCA1 Protein/genetics , BRCA2 Protein/metabolism , BRCA2 Protein/genetics , Mutation/genetics , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Glycoside Hydrolases/metabolism , Glycoside Hydrolases/genetics , Poly (ADP-Ribose) Polymerase-1/metabolism , Poly (ADP-Ribose) Polymerase-1/genetics
13.
Adv Ther ; 41(8): 3039-3058, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38958846

ABSTRACT

INTRODUCTION: Poly(ADP-ribose) polymerase inhibitors (PARPi) are a novel option to treat patients with metastatic castration-resistant prostate cancer (mCRPC). Niraparib plus abiraterone acetate and prednisone (AAP) is indicated for BRCA1/2 mutation-positive mCRPC. Niraparib plus AAP demonstrated safety and efficacy in the phase 3 MAGNITUDE trial (NCT03748641). In the absence of head-to-head studies comparing PARPi regimens, the feasibility of conducting indirect treatment comparisons (ITC) to inform decisions for patients with first-line BRCA1/2 mutation-positive mCRPC has been explored. METHODS: A systematic literature review was conducted to identify evidence from randomized controlled trials on relevant comparators to inform the feasibility of conducting ITCs via network meta-analysis (NMA) or population-adjusted indirect comparisons (PAIC). Feasibility was assessed based on network connectivity, data availability in the BRCA1/2 mutation-positive population, and degree of within- and between-study heterogeneity or bias. RESULTS: NMAs between niraparib plus AAP and other PARPi regimens (olaparib monotherapy, olaparib plus AAP, and talazoparib plus enzalutamide) were inappropriate due to the disconnected network, differences in trial populations related to effect modifiers, or imbalances within BRCA1/2 mutation-positive subgroups. The latter issue, coupled with the lack of a common comparator (except for olaparib plus AAP), also rendered anchored PAICs infeasible. Unanchored PAICs were either inappropriate due to lack of population overlap (vs. olaparib monotherapy) or were restricted by unmeasured confounders and small sample size (vs. olaparib plus AAP). PAIC versus talazoparib plus enzalutamide was not possible due to lack of published arm-level baseline characteristics and sufficient efficacy outcome data in the relevant population. CONCLUSION: The current randomized controlled trial evidence network does not permit robust comparisons between niraparib plus AAP and other PARPi regimens for patients with 1L BRCA-positive mCRPC. Decision-makers should scrutinize any ITC results in light of their limitations. Real-world evidence combined with clinical experience should inform treatment recommendations in this indication.


Subject(s)
Abiraterone Acetate , Antineoplastic Combined Chemotherapy Protocols , Feasibility Studies , Indazoles , Piperidines , Poly(ADP-ribose) Polymerase Inhibitors , Prostatic Neoplasms, Castration-Resistant , Humans , Prostatic Neoplasms, Castration-Resistant/drug therapy , Prostatic Neoplasms, Castration-Resistant/genetics , Poly(ADP-ribose) Polymerase Inhibitors/therapeutic use , Indazoles/therapeutic use , Male , Piperidines/therapeutic use , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Abiraterone Acetate/therapeutic use , Mutation , BRCA2 Protein/genetics , Randomized Controlled Trials as Topic , Phthalazines/therapeutic use , Phthalazines/administration & dosage , BRCA1 Protein/genetics , Network Meta-Analysis
14.
Cell Death Dis ; 15(7): 521, 2024 Jul 22.
Article in English | MEDLINE | ID: mdl-39039067

ABSTRACT

Occurrence of resistance to olaparib, a poly(ADP-ribose) polymerase (PARP) inhibitor (PARPi) approved in ovarian carcinoma, has already been shown in clinical settings. Identifying combination treatments to sensitize tumor cells and/or overcome resistance to olaparib is critical. Polo-like kinase 1 (PLK1), a master regulator of mitosis, is also involved in the DNA damage response promoting homologous recombination (HR)-mediated DNA repair and in the recovery from the G2/M checkpoint. We hypothesized that PLK1 inhibition could sensitize tumor cells to PARP inhibition. Onvansertib, a highly selective PLK1 inhibitor, and olaparib were tested in vitro and in vivo in BRCA1 mutated and wild-type (wt) ovarian cancer models, including patient-derived xenografts (PDXs) resistant to olaparib. The combination of onvansertib and olaparib was additive or synergic in different ovarian cancer cell lines, causing a G2/M block of the cell cycle, DNA damage, and apoptosis, much more pronounced in cells treated with the two drugs as compared to controls and single agents treated cells. The combined treatment was well tolerated in vivo and resulted in tumor growth inhibition and a statistically increased survival in olaparib-resistant-BRCA1 mutated models. The combination was also active, although to a lesser extent, in BRCA1 wt PDXs. Pharmacodynamic analyses showed an increase in mitotic, apoptotic, and DNA damage markers in tumor samples derived from mice treated with the combination versus vehicle. We could demonstrate that in vitro onvansertib inhibited both HR and non-homologous end-joining repair pathways and in vivo induced a decrease in the number of RAD51 foci-positive tumor cells, supporting its ability to induce HR deficiency and favoring the activity of olaparib. Considering that the combination was well tolerated, these data support and foster the clinical evaluation of onvansertib with PARPis in ovarian cancer, particularly in the PARPis-resistant setting.


Subject(s)
Drug Resistance, Neoplasm , Ovarian Neoplasms , Phthalazines , Piperazines , Poly(ADP-ribose) Polymerase Inhibitors , Female , Phthalazines/pharmacology , Phthalazines/therapeutic use , Piperazines/pharmacology , Humans , Ovarian Neoplasms/drug therapy , Ovarian Neoplasms/genetics , Ovarian Neoplasms/pathology , Ovarian Neoplasms/metabolism , Drug Resistance, Neoplasm/drug effects , Drug Resistance, Neoplasm/genetics , Animals , Cell Line, Tumor , Mice , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Cell Cycle Proteins/metabolism , Cell Cycle Proteins/genetics , Xenograft Model Antitumor Assays , Polo-Like Kinase 1 , Protein Serine-Threonine Kinases/metabolism , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/antagonists & inhibitors , Apoptosis/drug effects , Proto-Oncogene Proteins/metabolism , Proto-Oncogene Proteins/genetics , DNA Damage/drug effects , G2 Phase Cell Cycle Checkpoints/drug effects
15.
Curr Oncol ; 31(7): 3771-3782, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-39057150

ABSTRACT

BACKGROUND: Triple-negative breast cancer (TNBC) remains a clinically challenging subtype due to its aggressive nature and limited treatment options post-neoadjuvant failure. Historically, capecitabine has been the cornerstone of adjuvant therapy for TNBC patients not achieving a pathological complete response (pCR). However, the integration of new modalities such as immunotherapy and PARP inhibitors has prompted a re-evaluation of traditional post-neoadjuvant approaches. METHODS: This review synthesizes data from pivotal clinical trials and meta-analyses to evaluate the efficacy of emerging therapies in the post-neoadjuvant setting. We focus on the role of immune checkpoint inhibitors (ICIs), PARP inhibitors (PARPis), and antibody-drug conjugates (ADCs) alongside or in place of capecitabine in TNBC treatment paradigms. RESULTS: The addition of ICIs like pembrolizumab to neoadjuvant regimens has shown increased pCR rates and improved event-free survival, posing new questions about optimal post-neoadjuvant therapies. Similarly, PARPis have demonstrated efficacy in BRCA-mutated TNBC populations, with significant improvements in disease-free survival (DFS) and overall survival (OS). Emerging studies on ADCs further complicate the adjuvant landscape, offering potentially efficacious alternatives to capecitabine, especially in patients with residual disease after neoadjuvant therapy. DISCUSSION: The challenge remains to integrate these new treatments into clinical practice effectively, considering factors such as drug resistance, patient-specific characteristics, and socio-economic barriers. This review discusses the implications of these therapies and suggests a future direction focused on personalized medicine approaches in TNBC. CONCLUSIONS: As the treatment landscape for TNBC evolves, the role of capecitabine is being critically examined. While it remains a viable option for certain patient groups, the introduction of ICIs, PARPis, and ADCs offers promising alternatives that could redefine adjuvant therapy standards. Ongoing and future trials will be pivotal in determining the optimal therapeutic strategies for TNBC patients with residual disease post-neoadjuvant therapy.


Subject(s)
Capecitabine , Neoadjuvant Therapy , Triple Negative Breast Neoplasms , Humans , Triple Negative Breast Neoplasms/drug therapy , Capecitabine/therapeutic use , Neoadjuvant Therapy/methods , Immune Checkpoint Inhibitors/therapeutic use , Female , Poly(ADP-ribose) Polymerase Inhibitors/therapeutic use
16.
Nat Commun ; 15(1): 6343, 2024 Jul 27.
Article in English | MEDLINE | ID: mdl-39068174

ABSTRACT

Clinical success with poly (ADP-ribose) polymerase inhibitors (PARPi) is impeded by inevitable resistance and associated cytotoxicity. Depletion of Amplified in Liver Cancer 1 (ALC1), a chromatin-remodeling enzyme, can overcome these limitations by hypersensitizing BReast CAncer genes 1/2 (BRCA1/2) mutant cells to PARPi. Here, we demonstrate that PARPi hypersensitivity upon ALC1 loss is reliant on its role in promoting the repair of chromatin buried abasic sites. We show that ALC1 enhances the ability of the abasic site processing enzyme, Apurinic/Apyrimidinic endonuclease 1 (APE1) to cleave nucleosome-occluded abasic sites. However, unrepaired abasic sites in ALC1-deficient cells are readily accessed by APE1 at the nucleosome-free replication forks. APE1 cleavage leads to fork breakage and trapping of PARP1/2 upon PARPi treatment, resulting in hypersensitivity. Collectively, our studies reveal how cells overcome the chromatin barrier to repair abasic lesions and uncover cleavage of abasic sites as a mechanism to overcome limitations of PARPi.


Subject(s)
BRCA1 Protein , BRCA2 Protein , DNA Repair , DNA-(Apurinic or Apyrimidinic Site) Lyase , Poly(ADP-ribose) Polymerase Inhibitors , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Humans , Cell Line, Tumor , BRCA1 Protein/metabolism , BRCA1 Protein/genetics , BRCA1 Protein/deficiency , DNA-(Apurinic or Apyrimidinic Site) Lyase/metabolism , DNA-(Apurinic or Apyrimidinic Site) Lyase/genetics , BRCA2 Protein/metabolism , BRCA2 Protein/genetics , BRCA2 Protein/deficiency , DNA Repair/drug effects , Poly (ADP-Ribose) Polymerase-1/metabolism , Poly (ADP-Ribose) Polymerase-1/genetics , Female , Chromatin/metabolism , Mutation , DNA Damage/drug effects , Breast Neoplasms/genetics , Breast Neoplasms/drug therapy , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , DNA Replication/drug effects , Nucleosomes/metabolism , DNA Helicases , DNA-Binding Proteins
19.
Oncologist ; 29(8): 725-730, 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-39036962

ABSTRACT

BACKGROUND: Isocitrate dehydrogenase 1 (IDH1) missense mutations occur at a frequency of 10%-15% in intrahepatic cholangiocarcinoma (iCCA). IDH1 mutations result in accumulation of (R)-2-hydroxyglutarate, an oncometabolite that leads to DNA hypermethylation and impairment of homologous recombination (HR). Impairment of HR results in a "BRCAness" phenotype which may confer sensitivity to poly(ADP ribose) polymerase (PARP) inhibition. METHODS: We conducted a retrospective cohort review to identify patients with advanced, IDH1 mutated iCCA treated with a PARP inhibitor (PARPi) at the University of Michigan between 2018 and 2023. Patients are described with respect to prior lines of therapy, response to platinum-based chemotherapy, and progression-free survival (PFS) and overall survival (OS) from the time of PARPi initiation. RESULTS: Between 2018 and 2023 we identified 40 patients with IDH1 mutated iCCA of which 6 patients were treated with a PARPi as monotherapy or in combination with an ATR inhibitor or anti-PD-1 immune checkpoint inhibitor. Majority of patients (n = 5) carried an IDH1 R132C mutation per tissue-based next generation sequencing. All patients had previously received at least one line of cisplatin-based systemic therapy for advanced disease prior to treatment with PARPi. PFS and OS from time of PARPi initiation ranged from 1.4 to 18.5 months and 2.8 to 42.4 months, respectively. Best response on PARPi therapy included 2 partial responses. CONCLUSION: This is the first case series to describe PARPi treatment in IDH1 mutated iCCA. Results underscore the limitation of PARPi monotherapy, potentially support combined PARPi therapies, and highlight a need for effective treatment options for patients with IDH1 mutated iCCA.


Subject(s)
Bile Duct Neoplasms , Cholangiocarcinoma , Isocitrate Dehydrogenase , Poly(ADP-ribose) Polymerase Inhibitors , Humans , Isocitrate Dehydrogenase/genetics , Cholangiocarcinoma/drug therapy , Cholangiocarcinoma/genetics , Cholangiocarcinoma/pathology , Female , Male , Poly(ADP-ribose) Polymerase Inhibitors/therapeutic use , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Middle Aged , Retrospective Studies , Aged , Bile Duct Neoplasms/drug therapy , Bile Duct Neoplasms/genetics , Bile Duct Neoplasms/pathology , Mutation , Adult
20.
J Clin Invest ; 134(14)2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39007266

ABSTRACT

Mutations in the tumor-suppressor genes BRCA1 and BRCA2 resulting in BRCA1/2 deficiency are frequently identified in breast, ovarian, prostate, pancreatic, and other cancers. Poly(ADP-ribose) polymerase (PARP) inhibitors (PARPis) selectively kill BRCA1/2-deficient cancer cells by inducing synthetic lethality, providing an effective biomarker-guided strategy for targeted cancer therapy. However, a substantial fraction of cancer patients carrying BRCA1/2 mutations do not respond to PARPis, and most patients develop resistance to PARPis over time, highlighting a major obstacle to PARPi therapy in the clinic. Recent studies have revealed that changes of specific functional defects of BRCA1/2-deficient cells, particularly their defects in suppressing and protecting single-stranded DNA gaps, contribute to the gain or loss of PARPi-induced synthetic lethality. These findings not only shed light on the mechanism of action of PARPis, but also lead to revised models that explain how PARPis selectively kill BRCA-deficient cancer cells. Furthermore, new mechanistic principles of PARPi sensitivity and resistance have emerged from these studies, generating potentially useful guidelines for predicting the PARPi response and design therapies for overcoming PARPi resistance. In this Review, we will discuss these recent studies and put them in context with the classic views of PARPi-induced synthetic lethality, aiming to stimulate the development of new therapeutic strategies to overcome PARPi resistance and improve PARPi therapy.


Subject(s)
BRCA1 Protein , BRCA2 Protein , Poly(ADP-ribose) Polymerase Inhibitors , Synthetic Lethal Mutations , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Humans , BRCA2 Protein/genetics , BRCA1 Protein/genetics , BRCA1 Protein/metabolism , Synthetic Lethal Mutations/genetics , Neoplasms/drug therapy , Neoplasms/genetics , Neoplasms/pathology , Animals , Female , Drug Resistance, Neoplasm/genetics , Drug Resistance, Neoplasm/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL