Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.806
Filter
1.
Nat Commun ; 15(1): 6641, 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-39103378

ABSTRACT

DNA-protein crosslinks (DPCs) are toxic lesions that inhibit DNA related processes. Post-translational modifications (PTMs), including SUMOylation and ubiquitylation, play a central role in DPC resolution, but whether other PTMs are also involved remains elusive. Here, we identify a DPC repair pathway orchestrated by poly-ADP-ribosylation (PARylation). Using Xenopus egg extracts, we show that DPCs on single-stranded DNA gaps can be targeted for degradation via a replication-independent mechanism. During this process, DPCs are initially PARylated by PARP1 and subsequently ubiquitylated and degraded by the proteasome. Notably, PARP1-mediated DPC resolution is required for resolving topoisomerase 1-DNA cleavage complexes (TOP1ccs) induced by camptothecin. Using the Flp-nick system, we further reveal that in the absence of PARP1 activity, the TOP1cc-like lesion persists and induces replisome disassembly when encountered by a DNA replication fork. In summary, our work uncovers a PARP1-mediated DPC repair pathway that may underlie the synergistic toxicity between TOP1 poisons and PARP inhibitors.


Subject(s)
DNA Repair , DNA Replication , DNA Topoisomerases, Type I , Poly (ADP-Ribose) Polymerase-1 , Poly ADP Ribosylation , Animals , Poly (ADP-Ribose) Polymerase-1/metabolism , Poly (ADP-Ribose) Polymerase-1/genetics , DNA Topoisomerases, Type I/metabolism , Xenopus laevis , Ubiquitination , Humans , DNA/metabolism , DNA Damage , Camptothecin/pharmacology , Protein Processing, Post-Translational , DNA, Single-Stranded/metabolism , Xenopus Proteins/metabolism
2.
Epigenetics Chromatin ; 17(1): 26, 2024 Aug 08.
Article in English | MEDLINE | ID: mdl-39118189

ABSTRACT

Poly (ADP-ribose) polymerase 1 (PARP1) is a multifunctional nuclear enzyme that catalyzes poly-ADP ribosylation in eukaryotic cells. In addition to maintaining genomic integrity, this nuclear enzyme is also involved in transcriptional regulation. PARP1 can trigger and maintain changes in the chromatin structure and directly recruit transcription factors. PARP1 also prevents DNA methylation. However, most previous reviews on PARP1 have focused on its involvement in maintaining genome integrity, with less focus on its transcriptional regulatory function. This article comprehensively reviews the transcriptional regulatory function of PARP1 and its application in disease treatment, providing new ideas for targeting PARP1 for the treatment of diseases other than cancer.


Subject(s)
Poly (ADP-Ribose) Polymerase-1 , Transcription, Genetic , Humans , Poly (ADP-Ribose) Polymerase-1/metabolism , Animals , Neoplasms/genetics , Neoplasms/metabolism , Gene Expression Regulation , DNA Methylation , Chromatin/metabolism
3.
Physiol Rep ; 12(15): e16181, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39138135

ABSTRACT

This study aimed to evaluate the influence of combined intermittent fasting (IF) and high-intensity interval training (HIIT) on morphology, caspase-independent apoptosis signaling pathway, and myostatin expression in soleus and gastrocnemius (white portion) muscles from healthy rats. Sixty-day-old male Wistar rats (n = 60) were divided into four groups: control (C), IF, high-intensity-interval training (T), and high-intensity-interval training and intermittent fasting (T-IF). The C and T groups received ad libitum chow daily; IF and T-IF received the same standard chow every other day. Animals from T and T-IF underwent a HIIT protocol five times a week for 12 weeks. IF reduced gastrocnemius mass and increased pro-apoptotic proteins apoptosis-inducing factor (AIF) and endonuclease G (EndoG) in soleus and cleaved-to-non-cleaved PARP-1 ratio and myostatin expression in gastrocnemius white portion. HIIT increased AIF and apoptosis repressor with caspase recruitment domain expression in soleus and cleaved-to-total PARP-1 ratio in gastrocnemius muscle white portion. The combination of IF and HIIT reduced fiber cross-sectional area in both muscles, increased EndoG and AIF expression, and decreased cleaved-to-non-cleaved PARP-1 ratio in gastrocnemius muscle white portion. Muscle responses to IF and HIIT are directly impacted by the muscle fiber type composition and are modulated, at least in part, by myostatin and caspase-independent apoptosis signaling.


Subject(s)
Apoptosis Inducing Factor , Apoptosis , Fasting , High-Intensity Interval Training , Muscle Fibers, Slow-Twitch , Muscular Atrophy , Myostatin , Rats, Wistar , Signal Transduction , Animals , Male , Apoptosis/physiology , Fasting/metabolism , Fasting/physiology , Myostatin/metabolism , High-Intensity Interval Training/methods , Rats , Signal Transduction/physiology , Muscular Atrophy/metabolism , Muscular Atrophy/pathology , Apoptosis Inducing Factor/metabolism , Muscle Fibers, Slow-Twitch/metabolism , Muscle Fibers, Fast-Twitch/metabolism , Muscle Fibers, Fast-Twitch/pathology , Endodeoxyribonucleases/metabolism , Physical Conditioning, Animal/methods , Physical Conditioning, Animal/physiology , Muscle, Skeletal/metabolism , Intermittent Fasting , Poly (ADP-Ribose) Polymerase-1
4.
Nat Commun ; 15(1): 6343, 2024 Jul 27.
Article in English | MEDLINE | ID: mdl-39068174

ABSTRACT

Clinical success with poly (ADP-ribose) polymerase inhibitors (PARPi) is impeded by inevitable resistance and associated cytotoxicity. Depletion of Amplified in Liver Cancer 1 (ALC1), a chromatin-remodeling enzyme, can overcome these limitations by hypersensitizing BReast CAncer genes 1/2 (BRCA1/2) mutant cells to PARPi. Here, we demonstrate that PARPi hypersensitivity upon ALC1 loss is reliant on its role in promoting the repair of chromatin buried abasic sites. We show that ALC1 enhances the ability of the abasic site processing enzyme, Apurinic/Apyrimidinic endonuclease 1 (APE1) to cleave nucleosome-occluded abasic sites. However, unrepaired abasic sites in ALC1-deficient cells are readily accessed by APE1 at the nucleosome-free replication forks. APE1 cleavage leads to fork breakage and trapping of PARP1/2 upon PARPi treatment, resulting in hypersensitivity. Collectively, our studies reveal how cells overcome the chromatin barrier to repair abasic lesions and uncover cleavage of abasic sites as a mechanism to overcome limitations of PARPi.


Subject(s)
BRCA1 Protein , BRCA2 Protein , DNA Repair , DNA-(Apurinic or Apyrimidinic Site) Lyase , Poly(ADP-ribose) Polymerase Inhibitors , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Humans , Cell Line, Tumor , BRCA1 Protein/metabolism , BRCA1 Protein/genetics , BRCA1 Protein/deficiency , DNA-(Apurinic or Apyrimidinic Site) Lyase/metabolism , DNA-(Apurinic or Apyrimidinic Site) Lyase/genetics , BRCA2 Protein/metabolism , BRCA2 Protein/genetics , BRCA2 Protein/deficiency , DNA Repair/drug effects , Poly (ADP-Ribose) Polymerase-1/metabolism , Poly (ADP-Ribose) Polymerase-1/genetics , Female , Chromatin/metabolism , Mutation , DNA Damage/drug effects , Breast Neoplasms/genetics , Breast Neoplasms/drug therapy , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , DNA Replication/drug effects , Nucleosomes/metabolism , DNA Helicases , DNA-Binding Proteins
5.
J Enzyme Inhib Med Chem ; 39(1): 2383886, 2024 Dec.
Article in English | MEDLINE | ID: mdl-39072709

ABSTRACT

Specifically inducing the degradation of acidic nucleoplasmic DNA-binding protein 1 (And1) is a promising antitumor strategy. Our previous study identified Bazedoxifene (BZA) and CH3 as specific And1 degraders and validated their activity in reversing radiotherapy resistance in vitro and in vivo. However, unelucidated structure-activity relationships and moderate activity have limited their application. In this study, 27 novel CH3 derivatives were designed and synthesised based on the cavity topology of the WD40 domain of And1. Among them, A15 with a "V" conformation significantly induced And1 degradation in NSCLC cells. In addition, this study demonstrated a potential synthetic lethal effect of And1 degraders and PARP1 inhibitors. 1 µM of Olaparib in combination with 5 µM of A15 significantly inhibited the proliferation of A549 and H460 cells. Overall, these compounds are valuable tools for elucidating And1 biology, and their special spatial conformation make them promising candidates for future optimisation studies.


Subject(s)
Antineoplastic Agents , Carcinoma, Non-Small-Cell Lung , Cell Proliferation , Dose-Response Relationship, Drug , Drug Design , Drug Screening Assays, Antitumor , Lung Neoplasms , Poly (ADP-Ribose) Polymerase-1 , Stilbenes , Humans , Structure-Activity Relationship , Cell Proliferation/drug effects , Molecular Structure , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Lung Neoplasms/drug therapy , Lung Neoplasms/pathology , Lung Neoplasms/metabolism , Poly (ADP-Ribose) Polymerase-1/antagonists & inhibitors , Poly (ADP-Ribose) Polymerase-1/metabolism , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/pathology , Carcinoma, Non-Small-Cell Lung/metabolism , Stilbenes/pharmacology , Stilbenes/chemistry , Stilbenes/chemical synthesis , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Poly(ADP-ribose) Polymerase Inhibitors/chemical synthesis , Poly(ADP-ribose) Polymerase Inhibitors/chemistry , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/antagonists & inhibitors , Cell Line, Tumor
6.
Cell Rep ; 43(7): 114433, 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-38985679

ABSTRACT

ADP-ribosylation (ADPr) signaling plays a crucial role in DNA damage response. Inhibitors against the main enzyme catalyzing ADPr after DNA damage, poly(ADP-ribose) polymerase 1 (PARP1), are used to treat patients with breast cancer harboring BRCA1/2 mutations. However, resistance to PARP inhibitors (PARPi) is a major obstacle in treating patients. To understand the role of ADPr in PARPi sensitivity, we use liquid chromatography-tandem mass spectrometry (LC-MS/MS) to analyze ADPr in six breast cancer cell lines exhibiting different PARPi sensitivities. We identify 1,632 sites on 777 proteins across all cell lines, primarily on serine residues, with site-specific overlap of targeted residues across DNA-damage-related proteins across all cell lines, demonstrating high conservation of serine ADPr-signaling networks upon DNA damage. Furthermore, we observe site-specific differences in ADPr intensities in PARPi-sensitive BRCA mutants and unique ADPr sites in PARPi-resistant BRCA-mutant HCC1937 cells, which have low poly(ADP-ribose) glycohydrolase (PARG) levels and longer ADPr chains on PARP1.


Subject(s)
ADP-Ribosylation , BRCA1 Protein , Breast Neoplasms , DNA Damage , Serine , Humans , Female , Cell Line, Tumor , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Serine/metabolism , BRCA1 Protein/metabolism , BRCA1 Protein/genetics , BRCA2 Protein/metabolism , BRCA2 Protein/genetics , Mutation/genetics , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Glycoside Hydrolases/metabolism , Glycoside Hydrolases/genetics , Poly (ADP-Ribose) Polymerase-1/metabolism , Poly (ADP-Ribose) Polymerase-1/genetics
7.
Sci Rep ; 14(1): 17555, 2024 07 30.
Article in English | MEDLINE | ID: mdl-39080338

ABSTRACT

Performing accurate Fluorescence Correlation Spectroscopy (FCS) measurements in cells can be challenging due to cellular motion or other intracellular processes. In this respect, it has recently been shown that analysis of FCS data in short temporal segments (segmented FCS) can be very useful to increase the accuracy of FCS measurements inside cells. Here, we demonstrate that segmented FCS can be performed on a commercial laser scanning microscope (LSM), even in the absence of the dedicated FCS module. We show how data can be acquired on a Leica SP8 confocal microscope and then exported and processed with a custom software in MATLAB. The software performs segmentation of the data to extract an average ACF and measure the diffusion coefficient in specific subcellular regions. First of all, we measure the diffusion of fluorophores of different size in solution, to show that good-quality ACFs can be obtained in a commercial LSM. Next, we validate the method by measuring the diffusion coefficient of GFP in the nucleus of HeLa cells, exploiting variations of the intensity to distinguish between nucleoplasm and nucleolus. As expected, the measured diffusion coefficient of GFP is slower in the nucleolus relative to nucleoplasm. Finally, we apply the method to HeLa cells expressing a PARP1 chromobody to measure the diffusion coefficient of PARP1 in different subcellular regions. We find that PARP1 diffusion is slower in the nucleolus compared to the nucleoplasm.


Subject(s)
Microscopy, Confocal , Spectrometry, Fluorescence , Humans , HeLa Cells , Microscopy, Confocal/methods , Spectrometry, Fluorescence/methods , Green Fluorescent Proteins/metabolism , Diffusion , Cell Nucleus/metabolism , Software , Poly (ADP-Ribose) Polymerase-1/metabolism
8.
Reprod Biol Endocrinol ; 22(1): 92, 2024 Jul 31.
Article in English | MEDLINE | ID: mdl-39085882

ABSTRACT

BACKGROUND: Endometriosis is a gynecological disease characterized by the presence of endometrial tissue in abnormal locations, leading to severe symptoms, inflammation, pain, organ dysfunction, and infertility. Surgical removal of endometriosis lesions is crucial for improving pain and fertility outcomes, with the goal of complete lesion removal. This study aimed to analyze the location and expression patterns of poly (ADP-ribose) polymerase 1 (PARP-1), epithelial cell adhesion molecule (EpCAM), and folate receptor alpha (FRα) in endometriosis lesions and evaluate their potential for targeted imaging. METHODS: Gene expression analysis was performed using the Turku endometriosis database (EndometDB). By immunohistochemistry, we investigated the presence and distribution of PARP-1, EpCAM, and FRα in endometriosis foci and adjacent tissue. We also applied an ad hoc platform for the analysis of images to perform a quantitative immunolocalization analysis. Double immunofluorescence analysis was carried out for PARP-1 and EpCAM, as well as for PARP-1 and FRα, to explore the expression of these combined markers within endometriosis foci and their potential simultaneous utilization in surgical treatment. RESULTS: Gene expression analysis revealed that PARP-1, EpCAM, and FOLR1 (FRα gene) are more highly expressed in endometriotic lesions than in the peritoneum, which served as the control tissue. The results of the immunohistochemical study revealed a significant increase in the expression levels of all three biomarkers inside the endometriosis foci compared to the adjacent tissues. Additionally, the double immunofluorescence analysis consistently demonstrated the presence of PARP-1 in the nucleus and the expression of EpCAM and FRα in the cell membrane and cytoplasm. CONCLUSION: Overall, these three markers demonstrate significant potential for effective imaging of endometriosis. In particular, the results emphasize the importance of PARP-1 expression as a possible indicator for distinguishing endometriotic lesions from adjacent tissue. PARP-1, as a potential biomarker for endometriosis, offers promising avenues for further investigation in terms of both pathophysiology and diagnostic-therapeutic approaches.


Subject(s)
Endometriosis , Epithelial Cell Adhesion Molecule , Folate Receptor 1 , Poly (ADP-Ribose) Polymerase-1 , Endometriosis/metabolism , Endometriosis/surgery , Endometriosis/genetics , Endometriosis/diagnosis , Endometriosis/pathology , Female , Humans , Poly (ADP-Ribose) Polymerase-1/metabolism , Poly (ADP-Ribose) Polymerase-1/genetics , Folate Receptor 1/genetics , Folate Receptor 1/metabolism , Epithelial Cell Adhesion Molecule/genetics , Epithelial Cell Adhesion Molecule/metabolism , Adult , Biomarkers/metabolism , Immunohistochemistry , Endometrium/metabolism , Endometrium/pathology , Endometrium/surgery
9.
Nat Commun ; 15(1): 5822, 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38987289

ABSTRACT

DNA polymerase theta (Polθ)-mediated end-joining (TMEJ) repairs DNA double-strand breaks and confers resistance to genotoxic agents. How Polθ is regulated at the molecular level to exert TMEJ remains poorly characterized. We find that Polθ interacts with and is PARylated by PARP1 in a HPF1-independent manner. PARP1 recruits Polθ to the vicinity of DNA damage via PARylation dependent liquid demixing, however, PARylated Polθ cannot perform TMEJ due to its inability to bind DNA. PARG-mediated de-PARylation of Polθ reactivates its DNA binding and end-joining activities. Consistent with this, PARG is essential for TMEJ and the temporal recruitment of PARG to DNA damage corresponds with TMEJ activation and dissipation of PARP1 and PAR. In conclusion, we show a two-step spatiotemporal mechanism of TMEJ regulation. First, PARP1 PARylates Polθ and facilitates its recruitment to DNA damage sites in an inactivated state. PARG subsequently activates TMEJ by removing repressive PAR marks on Polθ.


Subject(s)
DNA Breaks, Double-Stranded , DNA End-Joining Repair , DNA Polymerase theta , DNA-Directed DNA Polymerase , Poly (ADP-Ribose) Polymerase-1 , Humans , Poly (ADP-Ribose) Polymerase-1/metabolism , Poly (ADP-Ribose) Polymerase-1/genetics , DNA-Directed DNA Polymerase/metabolism , Poly Adenosine Diphosphate Ribose/metabolism , DNA Damage , Animals , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/genetics , DNA/metabolism , DNA/genetics , HEK293 Cells , Poly ADP Ribosylation , Poly(ADP-ribose) Polymerases/metabolism , Poly(ADP-ribose) Polymerases/genetics , Carrier Proteins , Glycoside Hydrolases , Nuclear Proteins
10.
J Transl Med ; 22(1): 681, 2024 Jul 26.
Article in English | MEDLINE | ID: mdl-39061056

ABSTRACT

BACKGROUND: Heart failure (HF) is characterized by oxidative stress and mitochondrial dysfunction. This study investigates the therapeutic potential of Necrostatin-1 (Nec-1) delivered through exosomes derived from induced pluripotent stem cells (iPSCs) to address these pathologies in HF. METHODS: An HF rat model was established, and comprehensive assessments were performed using echocardiography, hemodynamics, and ventricular mass index measurements. iPSCs were used to isolate exosomes, loaded with Nec-1, and characterized for efficient delivery into cardiomyocytes. The interaction between Nec-1-loaded exosomes (Nec-1-Exos), poly (ADP-ribose) polymerase 1 (PARP1), and apoptosis-inducing factor mitochondria-associated 1 (AIFM1) was explored. Gain-of-function experiments assessed changes in cardiomyocyte parameters, and histological analyses were conducted on myocardial tissues. RESULTS: Cardiomyocytes successfully internalized Nec-1-loaded exosomes, leading to downregulation of PARP1, inhibition of AIFM1 nuclear translocation, increased ATP and superoxide dismutase levels, reduced reactive oxygen species and malonaldehyde levels, and restored mitochondrial membrane potential. Histological examinations confirmed the modulation of the PARP1/AIFM1 axis by Nec-1, mitigating HF. CONCLUSIONS: iPSC-derived exosomes carrying Nec-1 attenuate oxidative stress and mitochondrial dysfunction in HF by targeting the PARP1/AIFM1 axis. This study proposes a promising therapeutic strategy for HF management and highlights the potential of exosome-mediated drug delivery.


Subject(s)
Exosomes , Heart Failure , Imidazoles , Indoles , Induced Pluripotent Stem Cells , Myocytes, Cardiac , Oxidative Stress , Poly (ADP-Ribose) Polymerase-1 , Exosomes/metabolism , Animals , Oxidative Stress/drug effects , Induced Pluripotent Stem Cells/metabolism , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , Poly (ADP-Ribose) Polymerase-1/metabolism , Heart Failure/metabolism , Indoles/pharmacology , Male , Imidazoles/pharmacology , Cardiotonic Agents/pharmacology , Rats, Sprague-Dawley , Mitochondria/metabolism , Mitochondria/drug effects , Apoptosis Inducing Factor/metabolism , Membrane Potential, Mitochondrial/drug effects , Rats
11.
Nat Commun ; 15(1): 6009, 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-39019926

ABSTRACT

RNA helicase DHX9 is essential for genome stability by resolving aberrant R-loops. However, its regulatory mechanisms remain unclear. Here we show that SUMOylation at lysine 120 (K120) is crucial for DHX9 function. Preventing SUMOylation at K120 leads to R-loop dysregulation, increased DNA damage, and cell death. Cells expressing DHX9 K120R mutant which cannot be SUMOylated are more sensitive to genotoxic agents and this sensitivity is mitigated by RNase H overexpression. Unlike the mutant, wild-type DHX9 interacts with R-loop-associated proteins such as PARP1 and DDX21 via SUMO-interacting motifs. Fusion of SUMO2 to the DHX9 K120R mutant enhances its association with these proteins, reduces R-loop accumulation, and alleviates survival defects of DHX9 K120R. Our findings highlight the critical role of DHX9 SUMOylation in maintaining genome stability by regulating protein interactions necessary for R-loop balance.


Subject(s)
DEAD-box RNA Helicases , Genomic Instability , R-Loop Structures , Sumoylation , DEAD-box RNA Helicases/metabolism , DEAD-box RNA Helicases/genetics , Humans , HEK293 Cells , DNA Damage , Poly (ADP-Ribose) Polymerase-1/metabolism , Poly (ADP-Ribose) Polymerase-1/genetics , Lysine/metabolism , Mutation , Small Ubiquitin-Related Modifier Proteins/metabolism , Small Ubiquitin-Related Modifier Proteins/genetics , Neoplasm Proteins
12.
Proc Natl Acad Sci U S A ; 121(30): e2303642121, 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-39012819

ABSTRACT

Glutamyl-prolyl-tRNA synthetase (EPRS1) is a bifunctional aminoacyl-tRNA-synthetase (aaRS) essential for decoding the genetic code. EPRS1 resides, with seven other aaRSs and three noncatalytic proteins, in the cytoplasmic multi-tRNA synthetase complex (MSC). Multiple MSC-resident aaRSs, including EPRS1, exhibit stimulus-dependent release from the MSC to perform noncanonical activities distinct from their primary function in protein synthesis. Here, we show EPRS1 is present in both cytoplasm and nucleus of breast cancer cells with constitutively low phosphatase and tensin homolog (PTEN) expression. EPRS1 is primarily cytosolic in PTEN-expressing cells, but chemical or genetic inhibition of PTEN, or chemical or stress-mediated activation of its target, AKT, induces EPRS1 nuclear localization. Likewise, preferential nuclear localization of EPRS1 was observed in invasive ductal carcinoma that were also P-Ser473-AKT+. EPRS1 nuclear transport requires a nuclear localization signal (NLS) within the linker region that joins the catalytic glutamyl-tRNA synthetase and prolyl-tRNA synthetase domains. Nuclear EPRS1 interacts with poly(ADP-ribose) polymerase 1 (PARP1), a DNA-damage sensor that directs poly(ADP-ribosyl)ation (PARylation) of proteins. EPRS1 is a critical regulator of PARP1 activity as shown by markedly reduced ADP-ribosylation in EPRS1 knockdown cells. Moreover, EPRS1 and PARP1 knockdown comparably alter the expression of multiple tumor-related genes, inhibit DNA-damage repair, reduce tumor cell survival, and diminish tumor sphere formation by breast cancer cells. EPRS1-mediated regulation of PARP1 activity provides a mechanistic link between PTEN loss in breast cancer cells, PARP1 activation, and cell survival and tumor growth. Targeting the noncanonical activity of EPRS1, without inhibiting canonical tRNA ligase activity, provides a therapeutic approach potentially supplementing existing PARP1 inhibitors.


Subject(s)
Breast Neoplasms , Cell Nucleus , Poly (ADP-Ribose) Polymerase-1 , Proto-Oncogene Proteins c-akt , Humans , Breast Neoplasms/metabolism , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Female , Poly (ADP-Ribose) Polymerase-1/metabolism , Poly (ADP-Ribose) Polymerase-1/genetics , Cell Nucleus/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Proto-Oncogene Proteins c-akt/genetics , Cell Line, Tumor , PTEN Phosphohydrolase/metabolism , PTEN Phosphohydrolase/genetics , Amino Acyl-tRNA Synthetases/metabolism , Amino Acyl-tRNA Synthetases/genetics , Active Transport, Cell Nucleus , Nuclear Localization Signals/metabolism
13.
Toxicol Appl Pharmacol ; 490: 117037, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39004143

ABSTRACT

BACKGROUND: Fibromyalgia (FM) is a complex syndrome with somatic symptoms connected to the operational state of muscles. Although radiotherapy is a cornerstone in cancer treatment, it is implicated in the aggravation of FM. Lately, formulation of medicines in nano-forms become of great prominence due to their prospective applications in medicine. So, this study aimed to assess possible therapeutic benefits of formulating pregabalin in a nono-form (N-PG) for managing FM during exposure to gamma radiation. METHODS: Gamma rays administered in fractionated doses (2 Gy/day) to male rats after one hour of s.c. injection of reserpine (1 mL/kg per day) to induce FM, then treated with single daily dose of (30 mg/kg, p.o.) PG or N-PG for ten successive days. Rats were subjected to behavioral tests, then sacrificed to obtain serum and gastrocnemius muscles. RESULTS: N-PG significantly antagonized reserpine-induced FM as proved by; the immobility and performance times in forced swim and rotarod performance tests, respectively were restored near to the normal time, serum IL-8 and MCP-1 chemokines were nearby the normal levels, mitigated oxidative stress through increasing total thiol, Sirt3, CAT enzyme and decreasing COX-1, inhibition of inflammation via IL-1ß and MIF significant reduction, it possessed anti-apoptotic effect verified by decreasing PARP-1 and increasing Bcl-XL, gastrocnemius muscles had minimal fibrosis levels as seen after Masson trichrome staining. Histopathological results were coincidence with biochemical inspection. CONCLUSION: This study identifies N-PG as a novel drug that could be of a value in the management of FM particularly in cancer patients undergoing radiotherapy.


Subject(s)
Fibromyalgia , Gamma Rays , Interleukin-1beta , Muscle, Skeletal , Rats, Wistar , Animals , Fibromyalgia/drug therapy , Male , Interleukin-1beta/metabolism , Rats , Muscle, Skeletal/drug effects , Muscle, Skeletal/metabolism , Muscle, Skeletal/radiation effects , Muscle, Skeletal/pathology , Poly (ADP-Ribose) Polymerase-1/metabolism , Disease Models, Animal , Oxidative Stress/drug effects , Signal Transduction/drug effects , Nanoparticles
14.
Eur J Pharmacol ; 978: 176765, 2024 Sep 05.
Article in English | MEDLINE | ID: mdl-38906236

ABSTRACT

Subarachnoid hemorrhage (SAH) is a neurological condition with high mortality and poor prognosis, and there are currently no effective therapeutic drugs available. Poly (ADP-ribose) polymerase 1 (PARP-1) dependent cell death pathway-parthanatos is closely associated with stroke. We investigated improvements in neurological function, oxidative stress, blood-brain barrier and parthanatos-related protein expression in rats with SAH after intraperitoneal administration of PARP-1 inhibitor (AG14361). Our study found that the expression of parthanatos-related proteins was significantly increased after SAH. Immunofluorescence staining showed increased expression of apoptosis-inducing factor (AIF) in the nucleus after SAH. Administration of PARP-1 inhibitor significantly reduced malondialdehyde (MDA) level and the expression of parthanatos-related proteins. Immunofluorescence staining showed that PARP-1 inhibitor reduced the expression of 8-hydroxy-2' -deoxyguanosine (8-OHdG) and thus reduced oxidative stress. Moreover, PARP-1 inhibitor could inhibit inflammation-associated proteins level and neuronal apoptosis, protect the blood-brain barrier and significantly improve neurological function after SAH. These results suggest that PARP-1 inhibitor can significantly improve SAH, and the underlying mechanism may be through inhibiting parthanatos pathway.


Subject(s)
Blood-Brain Barrier , Brain Injuries , Cell Death , Parthanatos , Poly (ADP-Ribose) Polymerase-1 , Subarachnoid Hemorrhage , Animals , Male , Rats , Apoptosis Inducing Factor/metabolism , Blood-Brain Barrier/metabolism , Blood-Brain Barrier/drug effects , Brain Injuries/metabolism , Brain Injuries/etiology , Brain Injuries/drug therapy , Brain Injuries/pathology , Cell Death/drug effects , Oxidative Stress/drug effects , Parthanatos/drug effects , Poly (ADP-Ribose) Polymerase-1/metabolism , Poly (ADP-Ribose) Polymerase-1/antagonists & inhibitors , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Rats, Sprague-Dawley , Subarachnoid Hemorrhage/metabolism , Subarachnoid Hemorrhage/complications , Subarachnoid Hemorrhage/drug therapy , Subarachnoid Hemorrhage/pathology
15.
Vet Parasitol ; 330: 110217, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38861911

ABSTRACT

Clonorchis sinensis is an important food-borne zoonotic parasite that is highly associated with liver fibrosis and cholangiocarcinoma. Further understanding of the pathogenesis of C. sinensis, especially liver fibrosis, could help us develop novel strategies for controlling clonorchiasis. Poly (ADP-ribose) polymerase-1 (PARP-1) can induce cellular parthanatos which is reported to be involved in liver fibrosis. Currently, whether C. sinensis could activate PARP-1 signaling to induce parthanatos or whether parthanatos play a role in C. sinensis-induced liver fibrosis is not clear. In the present study, the expression of PARP-1 and parthanatos indicators were detected in C. sinensis-infected mouse liver and in human intrahepatic biliary epithelial cells (HiBEpiCs) incubated with excretory/secretory products (ESPs) of C. sinensis. To explore the role of PARP-1 in C. sinensis infection, PARP-1 inhibitor NMS-P118 was used to block PARP-1 expression in vivo and vitro. The mortality rate, body weight, worm load, liver and bile duct lesions as well as PARP-1 and parthanatos indicators in C57BL/6 mice infected with C. sinensis, or in HiBEpiCs incubated with C. sinensis ESPs and NMS-P118 were analyzed and compared to the group without NMS-P118. The results showed that C. sinensis infection induced the activation of PARP-1 signaling as well as the translocation of AIF and MIF into the nucleus in mouse liver. ESPs of C. sinensis could induce PARP-1 up-regulation, ATP depletion and DNA damage in HiBEpiCs, indicating that C. sinensis could induce parthanatos. Inhibiting PARP-1 with NMS-P118 significantly reduced liver fibrosis and the number of larvae, increased the survival rate and body weight gain of the mice infected with C. sinensis. In addition, NMS-P118 decreased the expression of PARP-1 and alleviated ATP depletion as well as DNA damage in HiBEpiCs incubated with ESPs of C. sinensis. Our data indicated that C. sinensis and its ESPs could activate PARP-1 signaling to induce cellular parthanatos. NMS-P118 treatment alleviated liver fibrosis and promoted survival of the mice by inhibiting PARP-1, which suggested that PARP-1 could be used as a potential therapeutic target against clonorchiasis.


Subject(s)
Clonorchiasis , Clonorchis sinensis , DNA Damage , Liver Cirrhosis , Parthanatos , Poly (ADP-Ribose) Polymerase-1 , Signal Transduction , Animals , Clonorchis sinensis/physiology , Mice , Poly (ADP-Ribose) Polymerase-1/metabolism , Poly (ADP-Ribose) Polymerase-1/genetics , Liver Cirrhosis/parasitology , Clonorchiasis/parasitology , Humans , Liver/parasitology , Liver/pathology , Male
16.
Apoptosis ; 29(7-8): 967-980, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38886312

ABSTRACT

With global warming, extreme environmental heat is becoming a social issue of concern, which can cause adverse health results including heatstroke (HS). Severe heat stress is characterized by cell death of direct heat damage, excessive inflammatory responses, and coagulation disorders that can lead to multiple organ dysfunction (MODS) and even death. However, the significant pathophysiological mechanism and treatment of HS are still not fully clear. Various modes of cell death, including apoptosis, pyroptosis, ferroptosis, necroptosis and PANoptosis are involved in MODS induced by heatstroke. In this review, we summarized molecular mechanism, key transcriptional regulation as for HSF1, NRF2, NF-κB and PARP-1, and potential therapies of cell death resulting in CNS, liver, intestine, reproductive system and kidney injury induced by heat stress. Understanding the mechanism of cell death provides new targets to protect multi-organ function in HS.


Subject(s)
Cell Death , Heat Stroke , Heat Stroke/genetics , Heat Stroke/pathology , Heat Stroke/therapy , Heat Stroke/metabolism , Heat Stroke/physiopathology , Humans , Animals , Apoptosis , NF-kappa B/metabolism , NF-kappa B/genetics , Heat-Shock Response , NF-E2-Related Factor 2/metabolism , NF-E2-Related Factor 2/genetics , Poly (ADP-Ribose) Polymerase-1/metabolism , Poly (ADP-Ribose) Polymerase-1/genetics , Multiple Organ Failure/pathology , Multiple Organ Failure/metabolism , Multiple Organ Failure/genetics , Heat Shock Transcription Factors/metabolism , Heat Shock Transcription Factors/genetics
17.
Molecules ; 29(12)2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38930900

ABSTRACT

The malignancy of breast cancer poses a global challenge, with existing treatments often falling short of desired efficacy. Extensive research has underscored the effectiveness of targeting the metabolism of nicotinamide adenine dinucleotide (NAD), a pivotal molecule crucial for cancer cell survival and growth, as a promising anticancer strategy. Within mammalian cells, sustaining optimal NAD concentrations relies on two key enzymes, namely nicotinamide phosphoribosyltransferase (NAMPT) and poly(ADP-ribose) polymer 1 (PARP1). Recent studies have accentuated the potential benefits of combining NAMPT inhibitors and PARP1 inhibitors to enhance therapeutic outcomes, particularly in breast cancer. In this study, we designed and synthesized eleven novel NAMPT/PARP1 dual-target inhibitors. Among them, compound DDY02 exhibited acceptable inhibitory activities against both NAMPT and PARP1, with IC50 values of 0.01 and 0.05 µM, respectively. Moreover, in vitro evaluations revealed that treatment with DDY02 resulted in proliferation inhibition, NAD depletion, DNA damage, apoptosis, and migration inhibition in MDA-MB-468 cells. These results posit DDY02, by targeting NAD metabolism through inhibiting both NAMPT and PARP1, as a promising lead compound for the development of breast cancer therapy.


Subject(s)
Antineoplastic Agents , Breast Neoplasms , Cell Proliferation , NAD , Nicotinamide Phosphoribosyltransferase , Poly (ADP-Ribose) Polymerase-1 , Nicotinamide Phosphoribosyltransferase/antagonists & inhibitors , Nicotinamide Phosphoribosyltransferase/metabolism , Humans , NAD/metabolism , Breast Neoplasms/drug therapy , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Poly (ADP-Ribose) Polymerase-1/antagonists & inhibitors , Poly (ADP-Ribose) Polymerase-1/metabolism , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Female , Cell Proliferation/drug effects , Cell Line, Tumor , Apoptosis/drug effects , Drug Design , Cytokines/metabolism , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/chemistry , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Poly(ADP-ribose) Polymerase Inhibitors/chemical synthesis , Poly(ADP-ribose) Polymerase Inhibitors/chemistry , Molecular Docking Simulation
18.
Chem Res Toxicol ; 37(7): 1187-1198, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38837948

ABSTRACT

Hydroquinone(HQ) is a widely used industrial raw material and is a topical lightening product found in over-the-counter products. However, inappropriate exposure to HQ can pose certain health hazards. This study aims to explore the mechanisms of DNA damage and cell apoptosis caused by HQ, with a focus on whether HQ activates the nuclear factor-κB (NF-κB) pathway to participate in this process and to investigate the correlation between the NF-κB pathway activation and poly(ADP-ribose) polymerase 1(PARP1). Through various experimental techniques, such as DNA damage detection, cell apoptosis assessment, cell survival rate analysis, immunofluorescence, and nuclear-cytoplasmic separation, the cytotoxic effects of HQ were verified, and the activation of the NF-κB pathway was observed. Simultaneously, the relationship between the NF-κB pathway and PARP1 was verified by shRNA interference experiments. The results showed that HQ could significantly activate the NF-κB pathway, leading to a decreased cell survival rate, increased DNA damage, and cell apoptosis. Inhibiting the NF-κB pathway could significantly reduce HQ-induced DNA damage and cell apoptosis and restore cell proliferation and survival rate. shRNA interference experiments further indicated that the activation of the NF-κB pathway was regulated by PARP1. This study confirmed the important role of the NF-κB pathway in HQ-induced DNA damage and cell apoptosis and revealed that the activation of the NF-κB pathway was mediated by PARP1. This research provides important clues for a deeper understanding of the toxic mechanism of HQ.


Subject(s)
Apoptosis , Cell Survival , DNA Damage , Hydroquinones , NF-kappa B , Poly (ADP-Ribose) Polymerase-1 , Apoptosis/drug effects , Poly (ADP-Ribose) Polymerase-1/metabolism , Poly (ADP-Ribose) Polymerase-1/antagonists & inhibitors , Hydroquinones/pharmacology , Humans , NF-kappa B/metabolism , DNA Damage/drug effects , Cell Survival/drug effects , Cell Line , Signal Transduction/drug effects , Dose-Response Relationship, Drug
19.
Mol Pharm ; 21(7): 3321-3329, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38843501

ABSTRACT

Poly ADP-ribose polymerase (PARP) plays an important role in the DNA repair process and has become an attractive target for cancer therapy in recent years. Given that niraparib has good clinical efficacy as a PARP inhibitor, this study aimed to develop radiolabeled niraparib derivatives for tumor imaging to detect PARP expression and improve the accuracy of stratified patient therapy. The niraparib isonitrile derivative (CNPN) was designed, synthesized, and radiolabeled to obtain the [99mTc]Tc-CNPN complex with high radiochemical purity (>95%). It was lipophilic and stable in vitro. In HeLa cell experiments, the uptake of [99mTc]Tc-CNPN was effectively inhibited by the ligand CNPN, indicating the binding affinity for PARP. According to the biodistribution studies of HeLa tumor-bearing mice, [99mTc]Tc-CNPN has moderate tumor uptake and can be effectively inhibited, demonstrating its specificity for targeting PARP. The SPECT imaging results showed that [99mTc]Tc-CNPN had tumor uptake at 2 h postinjection. All of the results of this study indicated that [99mTc]Tc-CNPN is a promising tumor imaging agent that targets PARP.


Subject(s)
Indazoles , Piperidines , Poly(ADP-ribose) Polymerase Inhibitors , Animals , Humans , Mice , Piperidines/chemistry , Piperidines/pharmacokinetics , Indazoles/chemistry , Indazoles/pharmacokinetics , HeLa Cells , Poly(ADP-ribose) Polymerase Inhibitors/pharmacokinetics , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Poly(ADP-ribose) Polymerase Inhibitors/chemistry , Tissue Distribution , Tomography, Emission-Computed, Single-Photon/methods , Radiopharmaceuticals/pharmacokinetics , Radiopharmaceuticals/chemistry , Poly (ADP-Ribose) Polymerase-1/metabolism , Female , Technetium/chemistry , Nitriles/chemistry , Nitriles/pharmacokinetics , Mice, Nude , Mice, Inbred BALB C
20.
Biochem Biophys Res Commun ; 723: 150214, 2024 Sep 03.
Article in English | MEDLINE | ID: mdl-38850810

ABSTRACT

Generation of O6-methylguanine (O6-meG) by DNA-alkylating agents such as N-methyl N-nitrosourea (MNU) activates the multiprotein mismatch repair (MMR) complex and the checkpoint response involving ATR/CHK1 and ATM/CHK2 kinases, which may in turn trigger cell cycle arrest and apoptosis. The Bloom syndrome DNA helicase BLM interacts with the MMR complex, suggesting functional relevance to repair and checkpoint responses. We observed a strong interaction of BLM with MMR proteins in HeLa cells upon treatment with MNU as evidenced by co-immunoprecipitation as well as colocalization in the nucleus as revealed by dual immunofluorescence staining. Knockout of BLM sensitized HeLa MR cells to MNU-induced cell cycle disruption and enhanced expression of the apoptosis markers cleaved caspase-9 and PARP1. MNU-treated BLM-deficient cells also exhibited a greater number of 53BP1 foci and greater phosphorylation levels of H2AX at S139 and RPA32 at S8, indicating the accumulation of DNA double-strand breaks. These findings suggest that BLM prevents double-strand DNA breaks during the MMR-dependent DNA damage response and mitigates O6-meG-induced apoptosis.


Subject(s)
Apoptosis , DNA Mismatch Repair , RecQ Helicases , Humans , RecQ Helicases/metabolism , RecQ Helicases/genetics , HeLa Cells , DNA Breaks, Double-Stranded , Methylnitrosourea/toxicity , Bloom Syndrome/genetics , Bloom Syndrome/metabolism , Bloom Syndrome/pathology , Poly (ADP-Ribose) Polymerase-1/metabolism , Poly (ADP-Ribose) Polymerase-1/genetics
SELECTION OF CITATIONS
SEARCH DETAIL