Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.290
Filter
1.
Nat Commun ; 15(1): 5550, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38956014

ABSTRACT

Oocyte in vitro maturation is a technique in assisted reproductive technology. Thousands of genes show abnormally high expression in in vitro maturated metaphase II (MII) oocytes compared to those matured in vivo in bovines, mice, and humans. The mechanisms underlying this phenomenon are poorly understood. Here, we use poly(A) inclusive RNA isoform sequencing (PAIso-seq) for profiling the transcriptome-wide poly(A) tails in both in vivo and in vitro matured mouse and human oocytes. Our results demonstrate that the observed increase in maternal mRNA abundance is caused by impaired deadenylation in in vitro MII oocytes. Moreover, the cytoplasmic polyadenylation of dormant Btg4 and Cnot7 mRNAs, which encode key components of deadenylation machinery, is impaired in in vitro MII oocytes, contributing to reduced translation of these deadenylase machinery components and subsequently impaired global maternal mRNA deadenylation. Our findings highlight impaired maternal mRNA deadenylation as a distinct molecular defect in in vitro MII oocytes.


Subject(s)
Oocytes , Polyadenylation , Oocytes/metabolism , Animals , Humans , Female , Mice , Poly A/metabolism , In Vitro Oocyte Maturation Techniques , RNA, Messenger/metabolism , RNA, Messenger/genetics , Transcriptome , RNA, Messenger, Stored/metabolism , RNA, Messenger, Stored/genetics , Metaphase , Exoribonucleases , Repressor Proteins , Cell Cycle Proteins
2.
Proc Natl Acad Sci U S A ; 121(29): e2403188121, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-38990950

ABSTRACT

The kinetoplastid parasite, Trypanosoma brucei, undergoes a complex life cycle entailing slender and stumpy bloodstream forms in mammals and procyclic and metacyclic forms (MFs) in tsetse fly hosts. The numerous gene regulatory events that underlie T. brucei differentiation between hosts, as well as between active and quiescent stages within each host, take place in the near absence of transcriptional control. Rather, differentiation is controlled by RNA-binding proteins (RBPs) that associate with mRNA 3' untranslated regions (3'UTRs) to impact RNA stability and translational efficiency. DRBD18 is a multifunctional T. brucei RBP, shown to impact mRNA stability, translation, export, and processing. Here, we use single-cell RNAseq to characterize transcriptomic changes in cell populations that arise upon DRBD18 depletion, as well as to visualize transcriptome-wide alterations to 3'UTR length. We show that in procyclic insect stages, DRBD18 represses expression of stumpy bloodstream form and MF transcripts. Additionally, DRBD18 regulates the 3'UTR lengths of over 1,500 transcripts, typically promoting the use of distal polyadenylation sites, and thus the inclusion of 3'UTR regulatory elements. Remarkably, comparison of polyadenylation patterns in DRBD18 knockdowns with polyadenylation patterns in stumpy bloodstream forms shows numerous similarities, revealing a role for poly(A) site selection in developmental gene regulation, and indicating that DRBD18 controls this process for a set of transcripts. RNA immunoprecipitation supports a direct role for DRBD18 in poly(A) site selection. This report highlights the importance of alternative polyadenylation in T. brucei developmental control and identifies a critical RBP in this process.


Subject(s)
3' Untranslated Regions , Life Cycle Stages , Protozoan Proteins , RNA-Binding Proteins , Trypanosoma brucei brucei , Trypanosoma brucei brucei/genetics , Trypanosoma brucei brucei/metabolism , Protozoan Proteins/metabolism , Protozoan Proteins/genetics , RNA-Binding Proteins/metabolism , RNA-Binding Proteins/genetics , Life Cycle Stages/genetics , 3' Untranslated Regions/genetics , Animals , Transcriptome , RNA, Messenger/genetics , RNA, Messenger/metabolism , Poly A/metabolism , Poly A/genetics , Polyadenylation
3.
Commun Biol ; 7(1): 860, 2024 Jul 13.
Article in English | MEDLINE | ID: mdl-39003419

ABSTRACT

Alternative polyadenylation (APA) plays a crucial role in cancer biology. Here, we used data from the 3'aQTL-atlas, GTEx, and the China Nanjing Lung Cancer GWAS database to explore the association between apaQTL/eQTL-SNPs and the risk of lung adenocarcinoma (LUAD). The variant T allele of rs277646 in NIT2 is associated with an increased risk of LUAD (OR = 1.12, P = 0.015), lower PDUI values, and higher NIT2 expression. The 3'RACE experiment showed multiple poly (A) sites in NIT2, with the rs277646-T allele causing preferential use of the proximal poly (A) site, resulting in a shorter 3'UTR transcript. This leads to the loss of the hsa-miR-650 binding site, thereby affecting LUAD malignant phenotypes by regulating the expression level of NIT2. Our findings may provide new insights into understanding and exploring APA events in LUAD carcinogenesis.


Subject(s)
Adenocarcinoma of Lung , Genetic Predisposition to Disease , Lung Neoplasms , Quantitative Trait Loci , Humans , Adenocarcinoma of Lung/genetics , China/epidemiology , East Asian People/genetics , Gene Expression Regulation, Neoplastic , Genome-Wide Association Study , Lung Neoplasms/genetics , Polyadenylation , Polymorphism, Single Nucleotide
4.
Nat Commun ; 15(1): 5868, 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-38997252

ABSTRACT

The 3' end of a gene, often called a terminator, modulates mRNA stability, localization, translation, and polyadenylation. Here, we adapted Plant STARR-seq, a massively parallel reporter assay, to measure the activity of over 50,000 terminators from the plants Arabidopsis thaliana and Zea mays. We characterize thousands of plant terminators, including many that outperform bacterial terminators commonly used in plants. Terminator activity is species-specific, differing in tobacco leaf and maize protoplast assays. While recapitulating known biology, our results reveal the relative contributions of polyadenylation motifs to terminator strength. We built a computational model to predict terminator strength and used it to conduct in silico evolution that generated optimized synthetic terminators. Additionally, we discover alternative polyadenylation sites across tens of thousands of terminators; however, the strongest terminators tend to have a dominant cleavage site. Our results establish features of plant terminator function and identify strong naturally occurring and synthetic terminators.


Subject(s)
Arabidopsis , Polyadenylation , Zea mays , Zea mays/genetics , Zea mays/metabolism , Arabidopsis/genetics , Arabidopsis/metabolism , Gene Expression Regulation, Plant , Terminator Regions, Genetic/genetics , Nicotiana/genetics , Nicotiana/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism
5.
Mol Cell ; 84(12): 2255-2271.e9, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38851186

ABSTRACT

The mechanisms and timescales controlling de novo establishment of chromatin-mediated transcriptional silencing by Polycomb repressive complex 2 (PRC2) are unclear. Here, we investigate PRC2 silencing at Arabidopsis FLOWERING LOCUS C (FLC), known to involve co-transcriptional RNA processing, histone demethylation activity, and PRC2 function, but so far not mechanistically connected. We develop and test a computational model describing proximal polyadenylation/termination mediated by the RNA-binding protein FCA that induces H3K4me1 removal by the histone demethylase FLD. H3K4me1 removal feeds back to reduce RNA polymerase II (RNA Pol II) processivity and thus enhance early termination, thereby repressing productive transcription. The model predicts that this transcription-coupled repression controls the level of transcriptional antagonism to PRC2 action. Thus, the effectiveness of this repression dictates the timescale for establishment of PRC2/H3K27me3 silencing. We experimentally validate these mechanistic model predictions, revealing that co-transcriptional processing sets the level of productive transcription at the locus, which then determines the rate of the ON-to-OFF switch to PRC2 silencing.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Gene Expression Regulation, Plant , Gene Silencing , Histones , MADS Domain Proteins , Polycomb Repressive Complex 2 , RNA Polymerase II , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Histones/metabolism , Histones/genetics , RNA Polymerase II/metabolism , RNA Polymerase II/genetics , Polycomb Repressive Complex 2/metabolism , Polycomb Repressive Complex 2/genetics , MADS Domain Proteins/genetics , MADS Domain Proteins/metabolism , Transcription, Genetic , Polyadenylation , Histone Demethylases/metabolism , Histone Demethylases/genetics , Transcription Termination, Genetic , Chromatin/metabolism , Chromatin/genetics , RNA-Binding Proteins/metabolism , RNA-Binding Proteins/genetics
6.
Cell Death Dis ; 15(6): 432, 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38898019

ABSTRACT

Platinum-based chemotherapy is the standard postoperative adjuvant treatment for ovarian cancer (OC). Despite the initial response to chemotherapy, 85% of advanced OC patients will have recurrent disease. Relapsed disease and platinum resistance are the major causes of death in OC patients. In this study, we compared the global regulation of alternative polyadenylation (APA) in platinum-resistant and platinum-sensitive tissues of OC patients by analyzing a set of single-cell RNA sequencing (scRNA-seq) data from public databases and found that platinum-resistant patients exhibited global 3' untranslated region (UTR) shortening due to the different usage of polyadenylation sites (PASs). The APA regulator CSTF3 was the most significantly upregulated gene in epithelial cells of platinum-resistant OC. CSTF3 knockdown increased the sensitivity of OC cells to platinum. The lncRNA NEAT1 has two isoforms, short (NEAT1_1) and long (NEAT1_2) transcript, because of the APA processing in 3'UTR. We found that CSTF3 knockdown reduced the usage of NEAT1 proximal PAS to lengthen the transcript and facilitate the expression of NEAT1_2. Downregulation of the expression of NEAT1 (NEAT1_1/_2), but not only NEAT1_2, also increased the sensitivity of OC cells to platinum. Overexpressed NEAT1_1 reversed the platinum resistance of OC cells after knocking down CSTF3 expression. Furthermore, downregulated expression of CSTF3 and NEAT1_1, rather than NEAT1_2, was positively correlated with inactivation of the PI3K/AKT/mTOR pathway in OC cells. Together, our findings revealed a novel mechanism of APA regulation in platinum-resistant OC. CSTF3 directly bound downstream of the NEAT1 proximal PAS to generate the short isoform NEAT1_1 and was conducive to platinum resistance, which provides a potential biomarker and therapeutic strategy for platinum-resistant OC patients.


Subject(s)
Drug Resistance, Neoplasm , Ovarian Neoplasms , Polyadenylation , RNA, Long Noncoding , Animals , Female , Humans , Mice , Cell Line, Tumor , Cleavage And Polyadenylation Specificity Factor/metabolism , Cleavage And Polyadenylation Specificity Factor/genetics , Drug Resistance, Neoplasm/genetics , Gene Expression Regulation, Neoplastic , Mice, Nude , Ovarian Neoplasms/genetics , Ovarian Neoplasms/drug therapy , Ovarian Neoplasms/metabolism , Ovarian Neoplasms/pathology , Platinum/pharmacology , Platinum/therapeutic use , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Signal Transduction
7.
Nat Commun ; 15(1): 5331, 2024 Jun 22.
Article in English | MEDLINE | ID: mdl-38909026

ABSTRACT

Cytoplasmic polyadenylation plays a vital role in gametogenesis; however, the participating enzymes and substrates in mammals remain unclear. Using knockout and knock-in mouse models, we describe the essential role of four TENT5 poly(A) polymerases in mouse fertility and gametogenesis. TENT5B and TENT5C play crucial yet redundant roles in oogenesis, with the double knockout of both genes leading to oocyte degeneration. Additionally, TENT5B-GFP knock-in females display a gain-of-function infertility effect, with multiple chromosomal aberrations in ovulated oocytes. TENT5C and TENT5D both regulate different stages of spermatogenesis, as shown by the sterility in males following the knockout of either gene. Finally, Tent5a knockout substantially lowers fertility, although the underlying mechanism is not directly related to gametogenesis. Through direct RNA sequencing, we discovered that TENT5s polyadenylate mRNAs encoding endoplasmic reticulum-targeted proteins essential for gametogenesis. Sequence motif analysis and reporter mRNA assays reveal that the presence of an endoplasmic reticulum-leader sequence represents the primary determinant of TENT5-mediated regulation.


Subject(s)
Gametogenesis , Mice, Knockout , Polyadenylation , RNA, Messenger , Spermatogenesis , Animals , Female , Male , RNA, Messenger/metabolism , RNA, Messenger/genetics , Mice , Spermatogenesis/genetics , Gametogenesis/genetics , Oogenesis/genetics , Polynucleotide Adenylyltransferase/metabolism , Polynucleotide Adenylyltransferase/genetics , Oocytes/metabolism , Fertility/genetics , Mice, Inbred C57BL
8.
Proc Natl Acad Sci U S A ; 121(27): e2406710121, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38917004

ABSTRACT

The essential role of U4 snRNP in pre-messenger RNA (mRNA) splicing has been well established. In this study, we utilized an antisense morpholino oligonucleotide (AMO) specifically targeting U4 snRNA to achieve functional knockdown of U4 snRNP in HeLa cells. Our results showed that this knockdown resulted in global intronic premature cleavage and polyadenylation (PCPA) events, comparable to the effects observed with U1 AMO treatment, as demonstrated by mRNA 3'-seq analysis. Furthermore, our study suggested that this may be a common phenomenon in both human and mouse cell lines. Additionally, we showed that U4 AMO treatment disrupted transcription elongation, as evidenced by chromatin immunoprecipitation sequencing (ChIP-seq) analysis for RNAPII. Collectively, our results identified a unique role for U4 snRNP in the inhibition of PCPA and indicated a model wherein splicing intrinsically inhibits intronic cleavage and polyadenylation in the context of cotranscriptional mRNA processing.


Subject(s)
Polyadenylation , RNA Precursors , RNA Splicing , Humans , RNA Precursors/metabolism , RNA Precursors/genetics , HeLa Cells , Mice , Animals , Ribonucleoprotein, U4-U6 Small Nuclear/metabolism , Ribonucleoprotein, U4-U6 Small Nuclear/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism , Introns/genetics
9.
Proc Natl Acad Sci U S A ; 121(21): e2405827121, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38748572

ABSTRACT

The RNA polymerase II (Pol II) elongation rate influences poly(A) site selection, with slow and fast Pol II derivatives causing upstream and downstream shifts, respectively, in poly(A) site utilization. In yeast, depletion of either of the histone chaperones FACT or Spt6 causes an upstream shift of poly(A) site use that strongly resembles the poly(A) profiles of slow Pol II mutant strains. Like slow Pol II mutant strains, FACT- and Spt6-depleted cells exhibit Pol II processivity defects, indicating that both Spt6 and FACT stimulate the Pol II elongation rate. Poly(A) profiles of some genes show atypical downstream shifts; this subset of genes overlaps well for FACT- or Spt6-depleted strains but is different from the atypical genes in Pol II speed mutant strains. In contrast, depletion of histone H3 or H4 causes a downstream shift of poly(A) sites for most genes, indicating that nucleosomes inhibit the Pol II elongation rate in vivo. Thus, chromatin-based control of the Pol II elongation rate is a potential mechanism, distinct from direct effects on the cleavage/polyadenylation machinery, to regulate alternative polyadenylation in response to genetic or environmental changes.


Subject(s)
Chromatin , Histones , Polyadenylation , RNA Polymerase II , Saccharomyces cerevisiae Proteins , Saccharomyces cerevisiae , Transcriptional Elongation Factors , RNA Polymerase II/metabolism , RNA Polymerase II/genetics , Chromatin/metabolism , Chromatin/genetics , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae Proteins/genetics , Histones/metabolism , Transcriptional Elongation Factors/metabolism , Transcriptional Elongation Factors/genetics , Nucleosomes/metabolism , Nucleosomes/genetics , Transcription Elongation, Genetic , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/genetics , Histone Chaperones/metabolism , Histone Chaperones/genetics , Poly A/metabolism
10.
Cells ; 13(10)2024 May 16.
Article in English | MEDLINE | ID: mdl-38786074

ABSTRACT

Mammalian oocyte development depends on the temporally controlled translation of maternal transcripts, particularly in the coordination of meiotic and early embryonic development when transcription has ceased. The translation of mRNA is regulated by various RNA-binding proteins. We show that the absence of cytoplasmic polyadenylation element-binding protein 3 (CPEB3) negatively affects female reproductive fitness. CPEB3-depleted oocytes undergo meiosis normally but experience early embryonic arrest due to a disrupted transcriptome, leading to aberrant protein expression and the subsequent failure of embryonic transcription initiation. We found that CPEB3 stabilizes a subset of mRNAs with a significantly longer 3'UTR that is enriched in its distal region with cytoplasmic polyadenylation elements. Overall, our results suggest that CPEB3 is an important maternal factor that regulates the stability and translation of a subclass of mRNAs that are essential for the initiation of embryonic transcription and thus for embryonic development.


Subject(s)
Oocytes , RNA-Binding Proteins , Oocytes/metabolism , Animals , RNA-Binding Proteins/metabolism , RNA-Binding Proteins/genetics , Female , Mice , Meiosis/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism , Embryonic Development/genetics , Gene Expression Regulation, Developmental , 3' Untranslated Regions/genetics , Polyadenylation , RNA Stability/genetics
11.
Nat Commun ; 15(1): 4110, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38750024

ABSTRACT

Maturation of eukaryotic pre-mRNAs via splicing and polyadenylation is modulated across cell types and conditions by a variety of RNA-binding proteins (RBPs). Although there exist over 1,500 RBPs in human cells, their binding motifs and functions still remain to be elucidated, especially in the complex environment of tissues and in the context of diseases. To overcome the lack of methods for the systematic and automated detection of sequence motif-guided pre-mRNA processing regulation from RNA sequencing (RNA-Seq) data we have developed MAPP (Motif Activity on Pre-mRNA Processing). Applying MAPP to RBP knock-down experiments reveals that many RBPs regulate both splicing and polyadenylation of nascent transcripts by acting on similar sequence motifs. MAPP not only infers these sequence motifs, but also unravels the position-dependent impact of the RBPs on pre-mRNA processing. Interestingly, all investigated RBPs that act on both splicing and 3' end processing exhibit a consistently repressive or activating effect on both processes, providing a first glimpse on the underlying mechanism. Applying MAPP to normal and malignant brain tissue samples unveils that the motifs bound by the PTBP1 and RBFOX RBPs coordinately drive the oncogenic splicing program active in glioblastomas demonstrating that MAPP paves the way for characterizing pre-mRNA processing regulators under physiological and pathological conditions.


Subject(s)
Polyadenylation , RNA Precursors , RNA Splicing , RNA-Binding Proteins , Humans , RNA-Binding Proteins/metabolism , RNA-Binding Proteins/genetics , RNA Precursors/metabolism , RNA Precursors/genetics , Gene Expression Regulation, Neoplastic , Neoplasms/genetics , Neoplasms/metabolism , Nucleotide Motifs , Polypyrimidine Tract-Binding Protein/metabolism , Polypyrimidine Tract-Binding Protein/genetics , RNA Splicing Factors/metabolism , RNA Splicing Factors/genetics , Heterogeneous-Nuclear Ribonucleoproteins/metabolism , Heterogeneous-Nuclear Ribonucleoproteins/genetics , RNA, Messenger/metabolism , RNA, Messenger/genetics
12.
Sci Rep ; 14(1): 10987, 2024 05 14.
Article in English | MEDLINE | ID: mdl-38745101

ABSTRACT

The length of 3' untranslated regions (3'UTR) is highly regulated during many transitions in cell state, including T cell activation, through the process of alternative polyadenylation (APA). However, the regulatory mechanisms and functional consequences of APA remain largely unexplored. Here we present a detailed analysis of the temporal and condition-specific regulation of APA following activation of primary human CD4+ T cells. We find that global APA changes are regulated temporally and CD28 costimulatory signals enhance a subset of these changes. Most APA changes upon T cell activation involve 3'UTR shortening, although a set of genes enriched for function in the mTOR pathway exhibit 3'UTR lengthening. While upregulation of the core polyadenylation machinery likely induces 3'UTR shortening following prolonged T cell stimulation; a significant program of APA changes occur prior to cellular proliferation or upregulation of the APA machinery. Motif analysis suggests that at least a subset of these early changes in APA are driven by upregulation of RBM3, an RNA-binding protein which competes with the APA machinery for binding. Together this work expands our understanding of the impact and mechanisms of APA in response to T cell activation and suggests new mechanisms by which APA may be regulated.


Subject(s)
3' Untranslated Regions , Lymphocyte Activation , Polyadenylation , Humans , CD4-Positive T-Lymphocytes/metabolism , CD4-Positive T-Lymphocytes/immunology , Gene Expression Regulation , Signal Transduction , RNA-Binding Proteins/metabolism , RNA-Binding Proteins/genetics , CD28 Antigens/metabolism , CD28 Antigens/genetics , T-Lymphocytes/metabolism , T-Lymphocytes/immunology
13.
Sci China Life Sci ; 67(6): 1212-1225, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38811444

ABSTRACT

Generally shortened 3' UTR due to alternative polyadenylation (APA) is widely observed in cancer, but its regulation mechanisms for cancer are not well characterized. Here, with profiling of APA in colorectal cancer tissues and poly(A) signal editing, we firstly identified that the shortened 3' UTR of CTNNIBP1 in colorectal cancer promotes cell proliferation and migration. We found that liquid-liquid phase separation (LLPS) of PABPN1 is reduced albeit with higher expression in cancer, and the reduction of LLPS leads to the shortened 3' UTR of CTNNBIP1 and promotes cell proliferation and migration. Notably, the splicing factor SNRPD2 upregulated in colorectal cancer, can interact with glutamic-proline (EP) domain of PABPN1, and then disrupt LLPS of PABPN1, which attenuates the repression effect of PABPN1 on the proximal poly(A) sites. Our results firstly reveal a new regulation mechanism of APA by disruption of LLPS of PABPN1, suggesting that regulation of APA by interfering LLPS of 3' end processing factor may have the potential as a new way for the treatment of cancer.


Subject(s)
3' Untranslated Regions , Cell Movement , Cell Proliferation , Colorectal Neoplasms , Poly(A)-Binding Protein I , Polyadenylation , Humans , Colorectal Neoplasms/genetics , Colorectal Neoplasms/metabolism , Colorectal Neoplasms/pathology , Poly(A)-Binding Protein I/metabolism , Poly(A)-Binding Protein I/genetics , Cell Movement/genetics , 3' Untranslated Regions/genetics , Cell Line, Tumor , Gene Expression Regulation, Neoplastic , Phase Separation
14.
Cancer Lett ; 593: 216925, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38718887

ABSTRACT

Alternative polyadenylation (APA), an important post-transcriptional regulatory mechanism, is aberrantly activated in cancer,but how APA functions in tumorigenesis remains elusive. We analyzed APA events in RNA-seq data in TCGA and reported 3'UTR alterations associated with esophageal squamous cell carcinoma (ESCC) patient prognosis and gene expression changes involving loss of tumor-suppressive miRNA binding sites. Moreover, we investigated the expression and function of cleavage and polyadenylation specific factor 3 (CPSF3), a key APA regulator in ESCC. By immunohistochemistry and qRT-PCR, we found that CPSF3 was highly expressed in ESCC tissues and associated with poor patient prognosis. Overexpression of CPSF3 enhanced, while knockdown of CPSF3 inhibited ESCC cell proliferation and migration in vitro and in vivo, as determined by colony formation, transwell assays and animal experiments. Iso-Seq and RNA-seq data analysis indicated that knockdown of CPSF3 favored use of the distal poly (A) site in the 3'UTR of Cornichon family AMPA receptor auxiliary protein 2 (CNIH2), resulting in a long-3'UTR CNIH2 isoform that produced less CNIH2 protein due to miR-125a-5p targeting and downregulating CNIH2 mRNA through a miR-125a-5p binding site in the long CNIH2 mRNA 3'UTR. Moreover, CPSF3-induced ESCC tumorigenicity was mediated by CNIH2. Taken together, CPSF3 promotes ESCC progression by upregulating CNIH2 expression through loss of miR-125a-5p-mediated CNIH2 repression through alternative splicing and polyadenylation of the CNIH2 mRNA 3'UTR.


Subject(s)
Cell Proliferation , Cleavage And Polyadenylation Specificity Factor , Disease Progression , Esophageal Neoplasms , Esophageal Squamous Cell Carcinoma , Gene Expression Regulation, Neoplastic , Polyadenylation , Animals , Female , Humans , Male , Mice , 3' Untranslated Regions , Cell Line, Tumor , Cell Movement , Cleavage And Polyadenylation Specificity Factor/genetics , Cleavage And Polyadenylation Specificity Factor/metabolism , Esophageal Neoplasms/genetics , Esophageal Neoplasms/pathology , Esophageal Neoplasms/metabolism , Esophageal Squamous Cell Carcinoma/genetics , Esophageal Squamous Cell Carcinoma/pathology , Esophageal Squamous Cell Carcinoma/metabolism , Mice, Nude , MicroRNAs/genetics , MicroRNAs/metabolism , Prognosis , Receptors, AMPA/genetics , Receptors, AMPA/metabolism
15.
Mol Pharmacol ; 106(1): 33-46, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38719474

ABSTRACT

DNA topoisomerase IIα (TOP2α; 170 kDa, TOP2α/170) is an essential enzyme for proper chromosome dysjunction by producing transient DNA double-stranded breaks and is an important target for DNA damage-stabilizing anticancer agents, such as etoposide. Therapeutic effects of TOP2α poisons can be limited due to acquired drug resistance. We previously demonstrated decreased TOP2α/170 levels in an etoposide-resistant human leukemia K562 subline, designated K/VP.5, accompanied by increased expression of a C-terminal truncated TOP2α isoform (90 kDa; TOP2α/90), which heterodimerized with TOP2α/170 and was a determinant of resistance by exhibiting dominant-negative effects against etoposide activity. Based on 3'-rapid amplification of cDNA ends, we confirmed TOP2α/90 as the translation product of a TOP2α mRNA in which a cryptic polyadenylation site (PAS) harbored in intron 19 (I19) was used. In this report, we investigated whether the resultant intronic polyadenylation (IPA) would be attenuated by blocking or mutating the I19 PAS, thereby circumventing acquired drug resistance. An antisense morpholino oligonucleotide was used to hybridize/block the PAS in TOP2α pre-mRNA in K/VP.5 cells, resulting in decreased TOP2α/90 mRNA/protein levels in K/VP.5 cells and partially circumventing drug resistance. Subsequently, CRISPR/CRISPR-associated protein 9 with homology-directed repair was used to mutate the cryptic I19 PAS (AATAAA→ACCCAA) to prevent IPA. Gene-edited clones exhibited increased TOP2α/170 and decreased TOP2α/90 mRNA/protein and demonstrated restored sensitivity to etoposide and other TOP2α-targeted drugs. Together, results indicated that blocking/mutating a cryptic I19 PAS in K/VP.5 cells reduced IPA and restored sensitivity to TOP2α-targeting drugs. SIGNIFICANCE STATEMENT: The results presented in this study indicate that CRISPR/CRISPR-associated protein 9 gene editing of a cryptic polyadenylation site (PAS) within I19 of the TOP2α gene results in the reversal of acquired resistance to etoposide and other TOP2-targeted drugs. An antisense morpholino oligonucleotide targeting the PAS also partially circumvented resistance.


Subject(s)
DNA Topoisomerases, Type II , Drug Resistance, Neoplasm , Etoposide , Introns , Polyadenylation , Humans , Etoposide/pharmacology , DNA Topoisomerases, Type II/genetics , DNA Topoisomerases, Type II/metabolism , Drug Resistance, Neoplasm/genetics , Drug Resistance, Neoplasm/drug effects , K562 Cells , Polyadenylation/drug effects , Polyadenylation/genetics , Introns/genetics , CRISPR-Cas Systems
16.
Cell Rep Methods ; 4(4): 100755, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38608690

ABSTRACT

In vitro translation is an important method for studying fundamental aspects of co- and post-translational gene regulation, as well as for protein expression in the laboratory and on an industrial scale. Here, by re-examining and improving a human in vitro translation system (HITS), we were able to develop a minimal system where only four components are needed to supplement human cell lysates. Functional characterization of our improved HITS revealed the synergistic effect of mRNA capping and polyadenylation. Furthermore, we found that mRNAs are translated with an efficiency equal to or higher than existing state-of-the-art mammalian in vitro translation systems. Lastly, we present an easy preparation procedure for cytoplasmic extracts from cultured HeLa cells, which can be performed in any cell culture laboratory. These methodological advances will allow HITSs to become a widespread tool in basic molecular biology research.


Subject(s)
Protein Biosynthesis , RNA, Messenger , Humans , HeLa Cells , RNA, Messenger/genetics , RNA, Messenger/metabolism , Polyadenylation , RNA Caps/metabolism , RNA Caps/genetics
17.
Biochim Biophys Acta Mol Basis Dis ; 1870(5): 167191, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38648900

ABSTRACT

AIMS: Trophoblast cell dysfunction is one of the important factors leading to preeclampsia (PE). Cytoplasmic polyadenylation element-binding 2 (CPEB2) has been found to be differentially expressed in PE patients, but whether it mediates PE process by regulating trophoblast cell function is unclear. METHODS: The expression of CPEB2 and somatostatin receptor 3 (SSTR3) was detected by quantitative real-time PCR, Western blot (WB) and immunofluorescence staining. Cell functions were analyzed by CCK-8 assay, EdU assay, flow cytometry and transwell assay. Epithelial-mesenchymal transition (EMT)-related protein levels were detected by WB. The interaction of CPEB2 and SSTR3 was confirmed by RIP assay, dual-luciferase reporter assay and PCR poly(A) tail assay. Animal experiments were performed to explore the effect of CPEB2 on PE progression in vivo, and the placental tissues of rat were used for H&E staining, immunohistochemical staining and TUNEL staining. RESULTS: CPEB2 was lowly expressed in PE patients. CPEB2 upregulation accelerated trophoblast cell proliferation, migration, invasion and EMT, while its knockdown had an opposite effect. CPEB2 bound to the CPE site in the 3'-UTR of SSTR3 mRNA to suppress SSTR3 translation through reducing poly(A) tails. Besides, SSTR3 overexpression suppressed trophoblast cell proliferation, migration, invasion and EMT, while its silencing accelerated trophoblast cell functions. However, these effects could be reversed by CPEB2 upregulation and knockdown, respectively. In vivo experiments, CPEB2 overexpression relieved histopathologic changes, inhibited apoptosis, promoted proliferation and enhanced EMT in the placenta of PE rat by decreasing SSTR3 expression. CONCLUSION: CPEB2 inhibited PE progression, which promoted trophoblast cell functions by inhibiting SSTR3 translation through polyadenylation.


Subject(s)
Polyadenylation , Pre-Eclampsia , RNA-Binding Proteins , Receptors, Somatostatin , Trophoblasts , Pregnancy , Humans , Pre-Eclampsia/metabolism , Pre-Eclampsia/genetics , Pre-Eclampsia/pathology , Female , Animals , Receptors, Somatostatin/metabolism , Receptors, Somatostatin/genetics , Rats , RNA-Binding Proteins/metabolism , RNA-Binding Proteins/genetics , Trophoblasts/metabolism , Trophoblasts/pathology , Cell Proliferation , Epithelial-Mesenchymal Transition/genetics , Rats, Sprague-Dawley , Adult , Disease Progression , Cell Movement/genetics , Protein Biosynthesis , Placenta/metabolism , Placenta/pathology
18.
Nucleic Acids Res ; 52(8): 4483-4501, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38587191

ABSTRACT

Messenger RNA precursors (pre-mRNA) generally undergo 3' end processing by cleavage and polyadenylation (CPA), which is specified by a polyadenylation site (PAS) and adjacent RNA sequences and regulated by a large variety of core and auxiliary CPA factors. To date, most of the human CPA factors have been discovered through biochemical and proteomic studies. However, genetic identification of the human CPA factors has been hampered by the lack of a reliable genome-wide screening method. We describe here a dual fluorescence readthrough reporter system with a PAS inserted between two fluorescent reporters. This system enables measurement of the efficiency of 3' end processing in living cells. Using this system in combination with a human genome-wide CRISPR/Cas9 library, we conducted a screen for CPA factors. The screens identified most components of the known core CPA complexes and other known CPA factors. The screens also identified CCNK/CDK12 as a potential core CPA factor, and RPRD1B as a CPA factor that binds RNA and regulates the release of RNA polymerase II at the 3' ends of genes. Thus, this dual fluorescence reporter coupled with CRISPR/Cas9 screens reliably identifies bona fide CPA factors and provides a platform for investigating the requirements for CPA in various contexts.


Subject(s)
CRISPR-Cas Systems , Genes, Reporter , RNA Precursors , mRNA Cleavage and Polyadenylation Factors , Humans , Cyclin-Dependent Kinases/metabolism , Cyclin-Dependent Kinases/genetics , Genome, Human , HEK293 Cells , mRNA Cleavage and Polyadenylation Factors/metabolism , mRNA Cleavage and Polyadenylation Factors/genetics , Polyadenylation , RNA Cleavage , RNA Polymerase II/metabolism , RNA Precursors/metabolism , RNA Precursors/genetics
19.
mBio ; 15(5): e0072924, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38624210

ABSTRACT

The integration of HPV DNA into human chromosomes plays a pivotal role in the onset of papillomavirus-related cancers. HPV DNA integration often occurs by linearizing the viral DNA in the E1/E2 region, resulting in the loss of a critical viral early polyadenylation signal (PAS), which is essential for the polyadenylation of the E6E7 bicistronic transcripts and for the expression of the viral E6 and E7 oncogenes. Here, we provide compelling evidence that, despite the presence of numerous integrated viral DNA copies, virus-host fusion transcripts originate from only a single integrated HPV DNA in HPV16 and HPV18 cervical cancers and cervical cancer-derived cell lines. The host genomic elements neighboring the integrated HPV DNA are critical for the efficient expression of the viral oncogenes that leads to clonal cell expansion. The fusion RNAs that are produced use a host RNA polyadenylation signal downstream of the integration site, and almost all involve splicing to host sequences. In cell culture, siRNAs specifically targeting the host portion of the virus-host fusion transcripts effectively silenced viral E6 and E7 expression. This, in turn, inhibited cell growth and promoted cell senescence in HPV16+ CaSki and HPV18+ HeLa cells. Showing that HPV E6 and E7 expression from a single integration site is instrumental in clonal cell expansion sheds new light on the mechanisms of HPV-induced carcinogenesis and could be used for the development of precision medicine tailored to combat HPV-related malignancies. IMPORTANCE: Persistent oncogenic HPV infections lead to viral DNA integration into the human genome and the development of cervical, anogenital, and oropharyngeal cancers. The expression of the viral E6 and E7 oncogenes plays a key role in cell transformation and tumorigenesis. However, how E6 and E7 could be expressed from the integrated viral DNA which often lacks a viral polyadenylation signal in the cancer cells remains unknown. By analyzing the integrated HPV DNA sites and expressed HPV RNAs in cervical cancer tissues and cell lines, we show that HPV oncogenes are expressed from only one of multiple chromosomal HPV DNA integrated copies. A host polyadenylation signal downstream of the integrated viral DNA is used for polyadenylation and stabilization of the virus-host chimeric RNAs, making the oncogenic transcripts targetable by siRNAs. This observation provides further understanding of the tumorigenic mechanism of HPV integration and suggests possible therapeutic strategies for the development of precision medicine for HPV cancers.


Subject(s)
DNA, Viral , Oncogene Proteins, Viral , Papillomavirus Infections , Uterine Cervical Neoplasms , Virus Integration , Humans , Female , Uterine Cervical Neoplasms/virology , Uterine Cervical Neoplasms/genetics , Virus Integration/genetics , Oncogene Proteins, Viral/genetics , Oncogene Proteins, Viral/metabolism , Papillomavirus Infections/virology , Papillomavirus Infections/genetics , DNA, Viral/genetics , Human papillomavirus 16/genetics , Human papillomavirus 18/genetics , Cell Line, Tumor , Oncogenes/genetics , Polyadenylation
20.
Leuk Res ; 141: 107499, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38640632

ABSTRACT

Acute myeloid leukemia (AML) is a hematopoietic malignancy with a high relapse rate and progressive drug resistance. Alternative polyadenylation (APA) contributes to post-transcriptional dysregulation, but little is known about the association between APA and AML. The APA quantitative trait locus (apaQTL) is a powerful method to investigate the relationship between APA and single nucleotide polymorphisms (SNPs). We quantified APA usage in 195 Chinese AML patients and identified 4922 cis-apaQTLs related to 1875 genes, most of which were newly reported. Cis-apaQTLs may modulate the APA selection of 115 genes through poly(A) signals. Colocalization analysis revealed that cis-apaQTLs colocalized with cis-eQTLs may regulate gene expression by affecting miRNA binding sites or RNA secondary structures. We discovered 207 cis-apaQTLs related to AML risk by comparing genotype frequency with the East Asian healthy controls from the 1000 Genomes Project. Genes with cis-apaQTLs were associated with hematological phenotypes and tumor incidence according to the PHARMGKB and MGI databases. Collectively, we profiled an atlas of cis-apaQTLs in Asian AML patients and found their association with APA selection, gene expression, AML risk, and complex traits. Cis-apaQTLs may provide insights into the regulatory mechanisms related to APA in AML occurrence, progression, and prognosis.


Subject(s)
Leukemia, Myeloid, Acute , Polyadenylation , Polymorphism, Single Nucleotide , Quantitative Trait Loci , Humans , Leukemia, Myeloid, Acute/genetics , Male , Female , Middle Aged , Genetic Predisposition to Disease , Adult , Gene Expression Regulation, Leukemic , Aged , Asian People/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...