Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.579
Filter
1.
Sci Rep ; 14(1): 15046, 2024 07 01.
Article in English | MEDLINE | ID: mdl-38951601

ABSTRACT

The cotton whitefly, Bemisia tabaci, is considered as a species complex with 46 cryptic species, with Asia II-1 being predominant in Asia. This study addresses a significant knowledge gap in the characterization of odorant-binding proteins (OBPs) and chemosensory proteins (CSPs) in Asia II-1. We explored the expression patterns of OBPs and CSPs throughout their developmental stages and compared the motif patterns of these proteins. Significant differences in expression patterns were observed for the 14 OBPs and 14 CSPs of B. tabaci Asia II-1, with OBP8 and CSP4 showing higher expression across the developmental stages. Phylogenetic analysis reveals that OBP8 and CSP4 form distinct clades, with OBP8 appearing to be an ancestral gene, giving rise to the evolution of other odorant-binding proteins in B. tabaci. The genomic distribution of OBPs and CSPs highlights gene clustering on the chromosomes, suggesting functional conservation and evolutionary events following the birth-and-death model. Molecular docking studies indicate strong binding affinities of OBP8 and CSP4 with various odour compounds like ß-caryophyllene, α-pinene, ß-pinene and limonene, reinforcing their roles in host recognition and reproductive functions. This study elaborates on our understanding of the putative roles of different OBPs and CSPs in B. tabaci Asia II-1, hitherto unexplored. The dynamics of the expression of OBPs and CSPs and their interactions with odour compounds offer scope for developing innovative methods for controlling this global invasive pest.


Subject(s)
Hemiptera , Insect Proteins , Phylogeny , Receptors, Odorant , Animals , Hemiptera/metabolism , Hemiptera/genetics , Receptors, Odorant/genetics , Receptors, Odorant/metabolism , Receptors, Odorant/chemistry , Insect Proteins/metabolism , Insect Proteins/genetics , Insect Proteins/chemistry , Gene Expression Regulation, Developmental , Molecular Docking Simulation , Polycyclic Sesquiterpenes/metabolism , Limonene/metabolism , Sesquiterpenes/metabolism
2.
Molecules ; 29(12)2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38930909

ABSTRACT

In this work, a group of ten sesquiterpene drimanes, including polygodial (1), isopolygodial (2), and drimenol (3) obtained from the bark of Drimys winteri F. and seven synthetic derivatives, were tested in vitro against a unique panel of bacteria, fungi, and oomycetes with standardized procedures against bacterial strains K. pneumoniae, S. tiphy, E. avium, and E. coli. The minimum inhibitory concentrations and bactericidal activities were evaluated using standardized protocols. Polygodial (1) was the most active compound, with MBC 8 µg/mL and MIC 16 µg/mL in E. avium; MBC 16 µg/mL and MIC 32 µg/mL in K. pneumoniae; MBC 64 µg/mL and MIC 64 µg/mL in S. typhi; and MBC 8 µg/mL and MIC 16 µg/mL and MBC 32 µg/mL and MIC 64 µg/mL in E. coli, respectively. The observed high potency could be attributed to the presence of an aldehyde group at the C8-C9 position. The antifungal activity of 1 from different microbial isolates has been evaluated. The results show that polygodial affects the growth of normal isolates and against filamentous fungi and oomycetes with MFC values ranging from 8 to 64 µg/mL. Sesquiterpene drimanes isolated from this plant have shown interesting antimicrobial properties.


Subject(s)
Anti-Infective Agents , Drimys , Microbial Sensitivity Tests , Sesquiterpenes , Sesquiterpenes/pharmacology , Sesquiterpenes/chemistry , Sesquiterpenes/isolation & purification , Anti-Infective Agents/pharmacology , Anti-Infective Agents/chemistry , Drimys/chemistry , Polycyclic Sesquiterpenes/pharmacology , Polycyclic Sesquiterpenes/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Plant Extracts/pharmacology , Plant Extracts/chemistry , Escherichia coli/drug effects , Fungi/drug effects , Bacteria/drug effects
3.
Pestic Biochem Physiol ; 202: 105970, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38879314

ABSTRACT

This study aimed to develop a relatively natural and safe botanical insecticide for controlling the storage pest Tribolium castaneum in the egg and pupal stages. It examined how Elsholtzia densa Benth. essential oil (EO) and its primary components, ß-caryophyllene and limonene, affected T. castaneum eggs and pupae through contact and fumigation. Among th, the contact activities of ß-caryophyllene against T. castaneum eggs and pupae are LD50 (median lethal dose, 50%) = 0.156 mg/cm2 and ED50 (median effective dose, 50%) = 16.35 mg/pupa respectively. The study also investigated the effect of ß-caryophyllene and limonene on T. castaneum eggs and pupae through synergistic contact and fumigation. When the mixing ratio of ß-caryophyllene and limonene was 7:1, the LD50 value of contact activity against T. castaneum eggs was reduced to 0.100 mg/cm2, displaying an obvious synergistic effect. Experiments were conducted to investigate the antitoxic effect of ß-caryophyllene on T. castaneum eggs and pupae, as well as its effects on the enzymatic activity of acetylcholinesterase, succinate dehydrogenase, glutathione S-transferase and carboxylesterase in T. castaneum pupae. Finally, the molecular docking techniques were employed to confirm the aforementioned effects on enzyme function. The findings of this study might help improve storage pest control with T. castaneum and create eco-friendly insecticides using E. densa EO, ß-caryophyllene, and limonene.


Subject(s)
Insecticides , Lamiaceae , Oils, Volatile , Pupa , Tribolium , Animals , Oils, Volatile/pharmacology , Oils, Volatile/chemistry , Tribolium/drug effects , Lamiaceae/chemistry , Insecticides/pharmacology , Insecticides/chemistry , Pupa/drug effects , Ovum/drug effects , Limonene/pharmacology , Polycyclic Sesquiterpenes/pharmacology , Polycyclic Sesquiterpenes/chemistry
4.
Sheng Wu Gong Cheng Xue Bao ; 40(6): 1924-1934, 2024 Jun 25.
Article in Chinese | MEDLINE | ID: mdl-38914501

ABSTRACT

Valencene, a high-value sesquiterpene with a citrus aroma, is widely employed in the food and cosmetic fields and the industrial synthesis of nootkatone. In this study, 16 genomic loci in the intergenic regions (IGRs) of Saccharomyces cerevisiae were identified. A Ypet expression cassette was successfully integrated into various genomic loci by CRISPR-Cas9, with an impressive integration success rate of 87.50% and exhibiting expression variations of up to 1.91-fold depending on the insertion site. The study demonstrates that the positional effect exhibits relative stability in gene expression, and is essentially unaffected by changes in promoters and reporter genes. Furthermore, a high-expression element combination, PTDH3-TPRC1, was selected. The iterative integration of the valencene synthase gene VSm from Callitropsis nootkatensis at the selected loci increased the valencene yield to 254.67 mg/L. Overexpression of key genes tHMG1-ERG20 with multiple copies increased the valencene yield by 93.49%. The engineered strain L-13 achieved the valencene yield of 9 530.18 mg/L by two-stage fed-batch fermentation in a 3 L fermenter. This yield represents a nearly 100-fold increase compared with that of the starting strain, highlighting the significant potential of the screened genomic loci in optimizing valencene production.


Subject(s)
CRISPR-Cas Systems , Saccharomyces cerevisiae , Sesquiterpenes , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Sesquiterpenes/metabolism , Metabolic Engineering/methods , Polycyclic Sesquiterpenes/metabolism
5.
Nat Prod Res ; 38(11): 1918-1923, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38739564

ABSTRACT

Blumea eriantha D.C is a weed from Asteraceae family and is reported to have anticancer activity. The essential oil from the aerial parts was extracted by steam distillation method with the yield of 0.36%. Through GC-MS analysis of the oil, seventeen compounds could be identified by comparing with linear retention indices with the library. Out of the seventeen compounds ß-Caryophylline oxide was isolated by column chromatography with gradient elution and the structure was determined through FT-IR, MS, 1HNMR, 13 C NMR and DEPT. The oil was evaluated for its effect on angiogenesis using Chorioallantoic Membrane Assay (CAM Assay). The concentration dependent antiangiogenic effect was observed with IC 50 value of 19.28 ppm.


Subject(s)
Angiogenesis Inhibitors , Asteraceae , Gas Chromatography-Mass Spectrometry , Oils, Volatile , Oils, Volatile/chemistry , Oils, Volatile/pharmacology , Angiogenesis Inhibitors/pharmacology , Angiogenesis Inhibitors/chemistry , Asteraceae/chemistry , Animals , Chorioallantoic Membrane/drug effects , Chorioallantoic Membrane/blood supply , Plant Components, Aerial/chemistry , Sesquiterpenes/pharmacology , Sesquiterpenes/chemistry , Sesquiterpenes/isolation & purification , Molecular Structure , Spectroscopy, Fourier Transform Infrared , Polycyclic Sesquiterpenes
6.
Biochem Biophys Res Commun ; 719: 150081, 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-38744071

ABSTRACT

Renin-Angiotensin System (RAS) is a peptidergic system, canonically known for its role in blood pressure regulation. Furthermore, a non-canonical RAS regulates pathophysiological phenomena, such as inflammation since it consists of two main axes: the pro-inflammatory renin/(pro)renin receptor ((P)RR) axis, and the anti-inflammatory angiotensin-converting enzyme 2 (ACE2)/Angiotensin-(1-7) (Ang-(1-7))/Mas Receptor (MasR) axis. Few phytochemicals have shown to exert angiotensinergic and anti-inflammatory effects through some of these axes; nevertheless, anti-inflammatory drugs, such as phytocannabinoids have not been studied regarding this subject. Among phytocannabinoids, ß-Caryophyllene stands out as a dietary phytocannabinoid with antiphlogistic activity that possess a unique sesquiterpenoid structure. Although its cannabinergic effect has been studied, its angiotensinergic effect reminds underexplored. This study aims to explore the angiotensinergic effect of ß-Caryophyllene on inflammation and stress at a systemic level. After intranasal Lipopolysaccharide (LPS) installation and oral treatment with ß-Caryophyllene, the concentration and activity of key RAS elements in the serum, such as Renin, ACE2 and Ang-(1-7), along with the stress hormone corticosterone and pro/anti-inflammatory cytokines, were measured in mice serum. The results show that ß-Caryophyllene treatment modified RAS levels by increasing Renin and Ang-(1-7), alongside the reduction of pro-inflammatory cytokines and corticosterone levels. These results indicate that ß-Caryophyllene exhibits angiotensinergic activity in favor of anti-inflammation.


Subject(s)
Angiotensin I , Inflammation , Lipopolysaccharides , Polycyclic Sesquiterpenes , Renin-Angiotensin System , Animals , Polycyclic Sesquiterpenes/pharmacology , Inflammation/metabolism , Inflammation/drug therapy , Male , Mice , Renin-Angiotensin System/drug effects , Angiotensin I/metabolism , Sesquiterpenes/pharmacology , Anti-Inflammatory Agents/pharmacology , Peptide Fragments/metabolism
7.
Phytomedicine ; 130: 155726, 2024 Jul 25.
Article in English | MEDLINE | ID: mdl-38815406

ABSTRACT

BACKGROUND: Flap transplantation is a widely used plastic repair technique in surgical procedures, aimed at addressing skin defects resulting from diverse wounds and diseases. However, due to the insufficient blood supply after flap surgery, the occurrence of ischemia-reperfusion injury, and an excessive sterile inflammatory response, flaps frequently develop complications (e.g., partial or complete ischemic necrosis). These complications have adverse effects on wound healing and repair. ß-Caryophyllene (BCP) is a bicyclic sesquiterpene that is widely present in plants. It mitigates oxidative stress and inflammatory responses, demonstrates neuroprotective and analgesic properties, and serves a protective function in organs or tissues subjected to ischemia-reperfusion injury. However, no study has confirmed whether BCP can be used in the field of flap transplantation to improve the flap survival rate. METHODS: To assess the impact of BCP on random flap survival, we constructed a modified McFarlane random flap model on the rat. After 7 consecutive days of gavage with different doses of BCP, we measured the survival area ratio, angiogenesis, blood perfusion, tissue inflammation level, apoptosis-related protein levels, and the PI3K/AKT signaling pathway expression of the random flap. RESULTS: BCP treatment increased the survival area of the flap in a dose-dependent manner after random flap transplantation in rats. BCP mainly promoted the formation of tissue blood vessels, improved flap blood perfusion, limited the local inflammatory response, and reduced apoptosis. In addition, we demonstrated that BCP works primarily by promoting the PI3K/AKT signaling expression while enhancing the phosphorylation of AKT. Administration of wortmannin, a selective inhibitor of PI3K, eliminated the effects of BCP. CONCLUSION: BCP can promote the survival of random flaps by upregulating the PI3K/AKT signaling pathway, increasing tissue blood perfusion, and limiting the inflammatory response and apoptosis.


Subject(s)
Phosphatidylinositol 3-Kinases , Polycyclic Sesquiterpenes , Proto-Oncogene Proteins c-akt , Rats, Sprague-Dawley , Signal Transduction , Surgical Flaps , Animals , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction/drug effects , Polycyclic Sesquiterpenes/pharmacology , Phosphatidylinositol 3-Kinases/metabolism , Male , Rats , Up-Regulation/drug effects , Skin/drug effects , Skin/blood supply , Sesquiterpenes/pharmacology , Apoptosis/drug effects
8.
Int J Pharm ; 659: 124252, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38782149

ABSTRACT

Although rare, amoebic keratitis (AK) is a disease caused by Acanthamoeba spp. that can lead to blindness. The drugs currently available for its treatment are very toxic, which has motivated the investigation for more effective and safe therapeutic options. In this study, the in vitro activity of ß-caryophyllene (BCP) was exploited taking into account its action against other protozoans as well as its well-known healing and anti-inflammatory properties (aspects relevant for the AK pathogenesis). On the other hand, high volatilization and oxidation phenomena are found for this compound, which led to its incorporation into nanoemulsions (NEs). Two emulsifying agents were tested, resulting in monodisperse systems with reduced droplet size (<265 nm) and high surface charge (positive and negative for NEs prepared with cetrimonium bromide -CTAB and Phosal® 50+, respectively). NEs prepared with CTAB were shown to be more stable after long-term storage at 4 and 25 °C than those prepared with Phosal®. Pure BCP, at the highest concentration (500 µM), resulted in a level of inhibition of Acanthamoeba trophozoites equivalent to that of reference drug (chlorhexidine). This activity was even greater after oil nanoencapsulation. The reduced droplet size could improve the interaction of the oil with the microorganism, justifying this finding. Changes in surface charge did not impact the activity. Positively charged NEs improved the interaction and retention of BCP in the cornea and thus should be prioritized for further studies.


Subject(s)
Acanthamoeba Keratitis , Emulsions , Polycyclic Sesquiterpenes , Acanthamoeba Keratitis/drug therapy , Acanthamoeba Keratitis/parasitology , Polycyclic Sesquiterpenes/chemistry , Nanoparticles , Administration, Ophthalmic , Cetrimonium/chemistry , Animals , Acanthamoeba/drug effects , Drug Stability , Particle Size , Ophthalmic Solutions , Humans
9.
Int J Biol Macromol ; 271(Pt 2): 132401, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38761902

ABSTRACT

The abnormal deposition of tau protein is one of the critical causes of tauopathies including Alzheimer's disease (AD). In recent years, there has been great interest in the use of essential oils and volatile compounds in aromatherapy for treating AD, since volatile compounds can directly reach the brain through intranasal administration. The volatile compounds α-asarone (ASA) and ß-caryophyllene (BCP) have revealed various important neuroprotective properties, useful in treating AD. In this study, the volatile compounds ASA and BCP were assessed for their effectiveness in preventing tau fibrillation, disassembly of pre-formed tau fibrils, and disaggregation of tau aggregates. SDS-PAGE and AFM analyses revealed that ASA and BCP inhibited tau fibrillation/aggregation and decreased the mean size of tau oligomers. Tau samples treated with ASA and BCP, showed a reduction in ThT and ANS fluorescence intensities, and a decrease in the ß-sheet content. Additionally, ASA and BCP disassembled the pre-formed tau fibrils to the granular and linear oligomeric intermediates. Treatment of neuroblastoma SH-SY5Y cells with tau samples treated with ASA and BCP, revealed protective effects as shown by reduced toxicity of the cells, due to the inhibition of tau fibrillation/aggregation. Overall, ASA and BCP appeared to be promising therapeutic candidates for AD.


Subject(s)
Allylbenzene Derivatives , Alzheimer Disease , Anisoles , Polycyclic Sesquiterpenes , tau Proteins , tau Proteins/metabolism , Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , Humans , Polycyclic Sesquiterpenes/pharmacology , Polycyclic Sesquiterpenes/chemistry , Allylbenzene Derivatives/pharmacology , Allylbenzene Derivatives/chemistry , Anisoles/pharmacology , Anisoles/chemistry , Cell Line, Tumor , Protein Aggregates/drug effects , Neuroprotective Agents/pharmacology , Neuroprotective Agents/chemistry , Sesquiterpenes/pharmacology , Sesquiterpenes/chemistry
10.
Int J Mol Sci ; 25(10)2024 May 11.
Article in English | MEDLINE | ID: mdl-38791278

ABSTRACT

Recent advancements in understanding the intricate molecular mechanisms underlying immunological responses have underscored the critical involvement of ion channels in regulating calcium influx, particularly in inflammation. Nootkatone, a natural sesquiterpenoid found in Alpinia oxyphylla and various citrus species, has gained attention for its diverse pharmacological properties, including anti-inflammatory effects. This study aimed to elucidate the potential of nootkatone in modulating ion channels associated with calcium signaling, particularly CRAC, KV1.3, and KCa3.1 channels, which play pivotal roles in immune cell activation and proliferation. Using electrophysiological techniques, we demonstrated the inhibitory effects of nootkatone on CRAC, KV1.3, and KCa3.1 channels in HEK293T cells overexpressing respective channel proteins. Nootkatone exhibited dose-dependent inhibition of channel currents, with IC50 values determined for each channel. Nootkatone treatment did not significantly affect cell viability, indicating its potential safety for therapeutic applications. Furthermore, we observed that nootkatone treatment attenuated calcium influx through activated CRAC channels and showed anti-proliferative effects, suggesting its role in regulating inflammatory T cell activation. These findings highlight the potential of nootkatone as a natural compound for modulating calcium signaling pathways by targeting related key ion channels and it holds promise as a novel therapeutic agent for inflammatory disorders.


Subject(s)
Calcium Signaling , Intermediate-Conductance Calcium-Activated Potassium Channels , Polycyclic Sesquiterpenes , T-Lymphocytes , Humans , T-Lymphocytes/drug effects , T-Lymphocytes/metabolism , T-Lymphocytes/immunology , Polycyclic Sesquiterpenes/pharmacology , HEK293 Cells , Calcium Signaling/drug effects , Intermediate-Conductance Calcium-Activated Potassium Channels/metabolism , Cell Proliferation/drug effects , Calcium Release Activated Calcium Channels/metabolism , Calcium/metabolism , Kv1.3 Potassium Channel/metabolism , Kv1.3 Potassium Channel/antagonists & inhibitors , Cell Survival/drug effects , Lymphocyte Activation/drug effects , Sesquiterpenes/pharmacology
11.
J Nat Prod ; 87(4): 1092-1102, 2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38557062

ABSTRACT

As an important bioactive molecular backbone, drimane meroterpenoids have drawn a great deal of attention from both pharmacologists and chemists. Inspired by the prevalidated success of conformational restriction in the discovery of novel pharmaceutical leads, two distinct tetracyclic drimane meroterpenoids, (-)-pelorol and (+)-aureol, were synthesized from the inexpensive starting material (-)-sclareol through 10 and 8 steps with 5.6% and 5.4% overall yield, respectively. The mild conditions, operational facility, and scalability enabled the expedient synthesis and biological exploration of not only natural products themselves but also their mimics. The first agrochemical exploration showed (-)-pelorol and (+)-aureol possessed good antifungal activity against Rhizoctonia solani, with EC50 values of 7.7 and 6.9 µM, respectively. This revealed that tetracyclic drimane meroterpenoids are valuable models for antifungal lead discovery.


Subject(s)
Antifungal Agents , Rhizoctonia , Antifungal Agents/pharmacology , Antifungal Agents/chemical synthesis , Antifungal Agents/chemistry , Molecular Structure , Rhizoctonia/drug effects , Terpenes/pharmacology , Terpenes/chemical synthesis , Terpenes/chemistry , Stereoisomerism , Sesquiterpenes/pharmacology , Sesquiterpenes/chemical synthesis , Sesquiterpenes/chemistry , Polycyclic Sesquiterpenes/pharmacology , Microbial Sensitivity Tests
12.
Pestic Biochem Physiol ; 201: 105861, 2024 May.
Article in English | MEDLINE | ID: mdl-38685215

ABSTRACT

Tribolium castaneum is a worldwide pest of stored grain that mainly damages flour, and not only causes serious loss of flour quality but also leads to deterioration of flour quality. Chemical detection plays a key role in insect behavior, and the role of odorant-binding proteins (OBPs) in insect chemical detection has been widely studied. OBPs can interact with small molecule compounds and thereby modulate variation in insecticide susceptibility in insects. In this study, a total of 65 small molecule compounds are selected to investigate the bound effect with TcOBP C12. The molecular docking results showed that ß-caryophyllene, (-)-catechin, butylated hydroxytoluene, diphenyl phthalate and quercetin were the top five compounds, with docking binding energies of -6.11, -5.25, -5.09, -5.05, and - 5.03 Kcal/mol, respectively. Molecular dynamics analysis indicated that odorant binding protein C12 (TcOBP C12) exhibited high binding affinity to all five tested chemical ligands, evidenced by fluorescence quenching assay in vitro. In addition, the contact toxicity assay results suggested that these chemical agents caused a dose-dependent increase in mortality rate for T. castaneum adults. The TcOBP C12 gene was upregulated >2 times after a 24-h exposure, indicating that OBP C12 may play an important role for T. castaneum in response to these chemical agents. In conclusion, our results provide a theoretical basis for future insecticide experiments and pest management.


Subject(s)
Insect Proteins , Molecular Docking Simulation , Receptors, Odorant , Tribolium , Animals , Tribolium/drug effects , Tribolium/metabolism , Receptors, Odorant/metabolism , Receptors, Odorant/genetics , Insect Proteins/metabolism , Insect Proteins/genetics , Insect Proteins/chemistry , Insecticides/pharmacology , Insecticides/toxicity , Polycyclic Sesquiterpenes/pharmacology , Molecular Dynamics Simulation
13.
Neuropharmacology ; 252: 109947, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38631564

ABSTRACT

A growing body of research indicates that ß-caryophyllene (BCP), a constituent present in a large number of plants, possesses significant therapeutic properties against CNS disorders, including alcohol and psychostimulant use disorders. However, it is unknown whether BCP has similar therapeutic potential for opioid use disorders. In this study, we found that systemic administration of BCP dose-dependently reduced heroin self-administration in rats under an FR2 schedule of reinforcement and partially blocked heroin-enhanced brain stimulation reward in DAT-cre mice, maintained by optical stimulation of midbrain dopamine neurons at high frequencies. Acute administration of BCP failed to block heroin conditioned place preference (CPP) in male mice, but attenuated heroin-induced CPP in females. Furthermore, repeated dosing with BCP for 5 days facilitated the extinction of CPP in female but not male mice. In the hot plate assay, pretreatment with the same doses of BCP failed to enhance or prolong opioid antinociception. Lastly, in a substitution test, BCP replacement for heroin failed to maintain intravenous BCP self-administration, suggesting that BCP itself has no reinforcing properties. These findings suggest that BCP may have certain therapeutic effects against opioid use disorders with fewer unwanted side-effects by itself.


Subject(s)
Heroin , Polycyclic Sesquiterpenes , Self Administration , Animals , Male , Heroin/administration & dosage , Polycyclic Sesquiterpenes/pharmacology , Polycyclic Sesquiterpenes/administration & dosage , Female , Mice , Rats , Analgesics, Opioid/pharmacology , Analgesics, Opioid/administration & dosage , Sesquiterpenes/pharmacology , Sesquiterpenes/administration & dosage , Rats, Sprague-Dawley , Dose-Response Relationship, Drug , Conditioning, Operant/drug effects , Extinction, Psychological/drug effects , Reinforcement, Psychology , Reward , Mice, Transgenic , Nociception/drug effects , Mice, Inbred C57BL
14.
Fitoterapia ; 175: 105960, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38621426

ABSTRACT

Five undescribed eremophilane-type sesquiterpenes, remophilanetriols E-I (1-5), along with seven known compounds (6-12) were isolated from the fresh roots of Rehmannia glutinosa. Their structures were characterized by extensive spectroscopic data analysis and their absolute configurations were determined by comparing their calculated electronic circular dichroism (ECD) spectra and experimental ECD spectra. The anti-pulmonary fibrosis activities of all compounds were evaluated in vitro by MTT methods, and compounds 2, 8, 10, and 12 exhibited excellent anti-pulmonary fibrosis activities. In addition, compound 2 can reduce the levels of ROS and apoptosis in TGF-ß1-induced BEAS-2B cells.


Subject(s)
Phytochemicals , Plant Roots , Rehmannia , Plant Roots/chemistry , Molecular Structure , Rehmannia/chemistry , Humans , Phytochemicals/pharmacology , Phytochemicals/isolation & purification , Sesquiterpenes/pharmacology , Sesquiterpenes/isolation & purification , Sesquiterpenes/chemistry , Apoptosis/drug effects , Cell Line , Reactive Oxygen Species/metabolism , China , Polycyclic Sesquiterpenes/pharmacology , Polycyclic Sesquiterpenes/isolation & purification , Polycyclic Sesquiterpenes/chemistry
15.
Fitoterapia ; 175: 105970, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38653340

ABSTRACT

Eleven new highly oxygenated eremophilane-type sesquiterpenoids were isolated from the whole plant of Synotis solidaginea, including two pairs of C-8 S/R epimers. The structures of the new compounds were elucidated on the basis of detailed spectroscopic analysis and the absolute configurations of 1 and 9 were confirmed by single-crystal X-ray crystallography using Cu Kα radiation. All the isolates were tested for the inhibition of LPS-stimulated NO production in macrophage-like mouse monocytic leukemia RAW264.7 cells. Compound 1 exhibited weak inhibitory effects with an IC50 of 71.2 µM.


Subject(s)
Nitric Oxide , Phytochemicals , Sesquiterpenes , Mice , Animals , RAW 264.7 Cells , Molecular Structure , Nitric Oxide/metabolism , Sesquiterpenes/pharmacology , Sesquiterpenes/isolation & purification , Sesquiterpenes/chemistry , Phytochemicals/isolation & purification , Phytochemicals/pharmacology , China , Polycyclic Sesquiterpenes/pharmacology , Polycyclic Sesquiterpenes/isolation & purification
16.
Molecules ; 29(8)2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38675573

ABSTRACT

The repellent capacity against Sitophilus zeamais and the in vitro inhibition on AChE of 11 essential oils, isolated from six plants of the northern region of Colombia, were assessed using a modified tunnel-type device and the Ellman colorimetric method, respectively. The results were as follows: (i) the degree of repellency (DR) of the EOs against S. zeamais was 20-68% (2 h) and 28-74% (4 h); (ii) the IC50 values on AChE were 5-36 µg/mL; likewise, the %inh. on AChE (1 µg/cm3 per EO) did not show any effect in 91% of the EO tested; (iii) six EOs (Bursera graveolens-bark, B. graveolens-leaves, B. simaruba-bark, Peperomia pellucida-leaves, Piper holtonii (1b*)-leaves, and P. reticulatum-leaves) exhibited a DR (53-74%) ≥ C+ (chlorpyrifos-61%), while all EOs were less active (8-60-fold) on AChE compared to chlorpyrifos (IC50 of 0.59 µg/mL). Based on the ANOVA/linear regression and multivariate analysis of data, some differences/similarities could be established, as well as identifying the most active EOs (five: B. simaruba-bark, Pep. Pellucida-leaves, P. holtonii (1b*)-leaves, B. graveolens-bark, and B. graveolens-leaves). Finally, these EOs were constituted by spathulenol (24%)/ß-selinene (18%)/caryophyllene oxide (10%)-B. simaruba; carotol (44%)/dillapiole (21%)-Pep. pellucida; dillapiole (81% confirmed by 1H-/13C-NMR)-P. holtonii; mint furanone derivative (14%)/mint furanone (14%)-B. graveolens-bark; limonene (17%)/carvone (10%)-B. graveolens-leaves.


Subject(s)
Cholinesterase Inhibitors , Insect Repellents , Oils, Volatile , Polycyclic Sesquiterpenes , Animals , Acetylcholinesterase/metabolism , Cholinesterase Inhibitors/pharmacology , Cholinesterase Inhibitors/chemistry , Colombia , Insect Repellents/pharmacology , Insect Repellents/chemistry , Oils, Volatile/pharmacology , Oils, Volatile/chemistry , Piper/chemistry , Plant Oils/pharmacology , Plant Oils/chemistry , Polycyclic Sesquiterpenes/chemistry , Polycyclic Sesquiterpenes/pharmacology , Weevils/enzymology , Weevils/drug effects , Sesquiterpenes, Eudesmane/chemistry , Sesquiterpenes, Eudesmane/pharmacology , Sesquiterpenes/chemistry , Sesquiterpenes/pharmacology
17.
Environ Sci Pollut Res Int ; 31(23): 33454-33463, 2024 May.
Article in English | MEDLINE | ID: mdl-38684608

ABSTRACT

Synthetic insecticides have been the primary approach in controlling Aedes aegypti; however, their indiscriminate use has led to the development of resistance and toxicity to non-target animals. In contrast, essential oils (EOs) are alternatives for vector control. This study investigated the mechanism of larvicidal action of the EO and ß-caryophyllene from Piper tuberculatum against A. aegypti larvae, as well as evaluated the toxicity of both on non-target animals. The EO extracted from P. tuberculatum leaves was majority constituted of ß-caryophyllene (54.8%). Both demonstrated larvicidal activity (LC50 of 48.61 and 57.20 ppm, p < 0.05), acetylcholinesterase inhibition (IC50 of 57.78 and 71.97 ppm), and an increase in the production of reactive oxygen and nitrogen species in larvae after exposure to the EO and ß-caryophyllene. Furthermore, EO and ß-caryophyllene demonstrate no toxicity to non-target animals Toxorhynchites haemorrhoidalis, Anisops bouvieri, and Diplonychus indicus (100% of survival rate), while the insecticide α-cypermethrin was highly toxic (100% of death). The results demonstrate that the EO from P. tuberculatum and ß-caryophyllene are important larvicidal agents.


Subject(s)
Aedes , Insecticides , Larva , Oils, Volatile , Piper , Polycyclic Sesquiterpenes , Animals , Aedes/drug effects , Oils, Volatile/pharmacology , Oils, Volatile/chemistry , Piper/chemistry , Larva/drug effects , Plant Leaves/chemistry
18.
ACS Chem Biol ; 19(4): 861-865, 2024 04 19.
Article in English | MEDLINE | ID: mdl-38568215

ABSTRACT

Eremophilanes exhibit diverse biological activities and chemical structures. This study reports the bioinformatics-guided reconstitution of the biosynthetic machinery of fungal eremophilanes, eremofortin C and sporogen-AO1, to elucidate their biosynthetic pathways. Their biosyntheses include P450-catalyzed multistep oxidation and enzyme-catalyzed isomerization by the DUF3237 family protein. Successful characterization of six P450s enabled us to discuss the functions of eremophilane P450s in putative eremophilane biosynthetic gene clusters, providing opportunities to understand the oxidative modification pathways of fungal eremophilanes.


Subject(s)
Sesquiterpenes , Oxidation-Reduction , Polycyclic Sesquiterpenes , Sesquiterpenes/chemistry , Fungi/chemistry , Fungi/metabolism , Biosynthetic Pathways , Computational Biology/methods
19.
J Nat Prod ; 87(4): 861-868, 2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38438305

ABSTRACT

PC-A (1), a bromo nor-eremophilane, showed selective antiproliferative activity against a triple-negative breast cancer (TNBC) cell line. This unique activity prompted us to establish a total synthesis to facilitate a structure-activity relationship (SAR) study and selectivity optimization. An enantioselective first total synthesis of 1 was achieved starting from (R)-carvone through a side chain extension with a Mukaiyama aldol reaction and decalin construction. The synthesized decalin derivatives and debromo PC-A (2) were evaluated for antiproliferative activity against five human tumor cell lines, including TNBC, to assess preliminary SAR correlations.


Subject(s)
Drug Screening Assays, Antitumor , Triple Negative Breast Neoplasms , Humans , Structure-Activity Relationship , Molecular Structure , Triple Negative Breast Neoplasms/drug therapy , Stereoisomerism , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Cyclohexane Monoterpenes/pharmacology , Cyclohexane Monoterpenes/chemistry , Monoterpenes/pharmacology , Monoterpenes/chemistry , Monoterpenes/chemical synthesis , Sesquiterpenes/pharmacology , Sesquiterpenes/chemical synthesis , Sesquiterpenes/chemistry , Female , Cell Line, Tumor , Polycyclic Sesquiterpenes/pharmacology , Polycyclic Sesquiterpenes/chemistry , Polycyclic Sesquiterpenes/chemical synthesis
20.
Biochim Biophys Acta Mol Cell Res ; 1871(4): 119704, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38462075

ABSTRACT

Pulmonary arterial hypertension (PAH) is characterized by increased pulmonary vascular resistance (PVR), right ventricular (RV) failure and premature death. Compounds with vasodilatory characteristics, such as ß-caryophyllene, could be promising therapeutics for PAH. This study aimed to determine the effects of free and nanoemulsified ß-caryophyllene in lung oxidative stress and heart function in PAH rats. Male Wistar rats (170 g, n = 6/group) were divided into four groups: control (CO), monocrotaline (MCT), monocrotaline + ß-caryophyllene (MCT-Bcar) and monocrotaline + nanoemulsion with ß-caryophyllene (MCT-Nano). PAH was induced by MCT (60 mg/kg i.p.), and 7 days later, treatment with ß-caryophyllene, either free or in a nanoemulsion (by gavage, 176 mg/kg/day) or vehicle was given for 14 days. Echocardiographic and hemodynamic measurements were performed, and after, the RV was collected for morphometry and the lungs for evaluation of oxidative stress, antioxidant enzymes, total sulfhydryl compounds, nitric oxide synthase (NOS) activity and endothelin-1 receptor expression. RV hypertrophy, increased PVR and RV systolic and diastolic pressures (RVSP and RVEDP, respectively) and increased mean pulmonary arterial pressure (mPAP) were observed in the MCT group. Treatment with both free and nanoemulsified ß-caryophyllene reduced RV hypertrophy, mPAP, RVSP and lipid peroxidation. The reduction in RVSP was more pronounced in the MCT-Nano group. Moreover, RVEDP decreased only in the MCT-Nano group. These treatments also increased superoxide dismutase, catalase and NOS activities and decreased endothelin-1 receptors expression. Both ß-caryophyllene formulations improved mPAP, PVR and oxidative stress parameters. However, ß-caryophyllene in a nanoemulsion was more effective in attenuating the effects of PAH.


Subject(s)
Hypertension, Pulmonary , Polycyclic Sesquiterpenes , Pulmonary Arterial Hypertension , Rats , Male , Animals , Pulmonary Arterial Hypertension/metabolism , Monocrotaline/toxicity , Monocrotaline/metabolism , Hypertension, Pulmonary/chemically induced , Hypertension, Pulmonary/metabolism , Rats, Wistar , Pulmonary Artery/metabolism , Hypertrophy, Right Ventricular/chemically induced , Hypertrophy, Right Ventricular/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...