Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 27.264
1.
AAPS PharmSciTech ; 25(5): 97, 2024 May 06.
Article En | MEDLINE | ID: mdl-38710894

Pancreatic ductal adenocarcinoma (PDAC) is one of the highly fatal types of cancer with high mortality/incidence. Considering the crucial role of vascular endothelial growth factor (VEGF) in PDAC progression, its inhibition can be a viable strategy for the treatment. Pazopanib, a second-generation VEGF inhibitor, is approved for the treatment of various oncological conditions. However, due to associated limitations like low oral bioavailability (14-39%), high inter/intra-subject variability, stability issues, etc., high doses (800 mg) are required, which further lead to non-specific toxicities and also contribute toward cancer resistance. Thus, to overcome these challenges, pazopanib-loaded PEGylated nanoliposomes were developed and evaluated against pancreatic cancer cell lines. The nanoliposomes were prepared by thin-film hydration method, followed by characterization and stability studies. This QbD-enabled process design successfully led to the development of a suitable pazopanib liposomal formulation with desirable properties. The % entrapment of PZP-loaded non-PEGylated and PEGylated nanoliposomes was found to be 75.2% and 84.9%, respectively, whereas their particle size was found to be 129.7 nm and 182.0 nm, respectively. The developed liposomal formulations exhibited a prolonged release and showed desirable physicochemical properties. Furthermore, these liposomal formulations were also assessed for in vitro cell lines, such as cell cytotoxicity assay and cell uptake. These studies confirm the effectiveness of developed liposomal formulations against pancreatic cancer cell lines. The outcomes of this work provide encouraging results and a way forward to thoroughly investigate its potential for PDAC treatment.


Carcinoma, Pancreatic Ductal , Indazoles , Liposomes , Nanoparticles , Pancreatic Neoplasms , Particle Size , Pyrimidines , Sulfonamides , Indazoles/administration & dosage , Indazoles/pharmacology , Humans , Sulfonamides/administration & dosage , Sulfonamides/pharmacology , Sulfonamides/chemistry , Pyrimidines/administration & dosage , Pyrimidines/pharmacology , Pyrimidines/chemistry , Pyrimidines/pharmacokinetics , Cell Line, Tumor , Pancreatic Neoplasms/drug therapy , Carcinoma, Pancreatic Ductal/drug therapy , Nanoparticles/chemistry , Polyethylene Glycols/chemistry , Antineoplastic Agents/administration & dosage , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Cell Survival/drug effects , Drug Liberation , Chemistry, Pharmaceutical/methods
2.
AAPS PharmSciTech ; 25(5): 103, 2024 May 07.
Article En | MEDLINE | ID: mdl-38714634

Crystallization of amorphous pharmaceutical solids are widely reported to be affected by the addition of polymer, while the underlying mechanism require deep study. Herein, crystal growth behaviors of glassy griseofulvin (GSF) doped with various 1% w/w polymer were systematically studied. From the molecular structure, GSF cannot form the hydrogen bonding interactions with the selected polymer poly(vinyl acetate), polyvinyl pyrrolidone (PVP), 60:40 vinyl pyrrolidone-vinyl acetate copolymer (PVP/VA 64), and poly(ethylene oxide) (PEO). 1% w/w polymer exhibited weak or no detectable effects on the glass transition temperature (Tg) of GSF. However, crystal growth rates of GSF was altered from 4.27-fold increase to 2.57-fold decrease at 8 ℃ below Tg of GSF. Interestingly, the ability to accelerate and inhibit the growth rates of GSF crystals correlated well with Tg of polymer, indicating the controlling role of segmental mobility of polymer. Moreover, ring-banded growth of GSF was observed in the polymer-doped systems. Normal compact bulk and ring-banded crystals of GSF were both characterized as the thermodynamically stable form I. More importantly, formation of ring-banded crystals of GSF can significantly weaken the inhibitory effects of polymer on the crystallization of glassy GSF.


Crystallization , Griseofulvin , Polymers , Transition Temperature , Griseofulvin/chemistry , Crystallization/methods , Polymers/chemistry , Drug Stability , Hydrogen Bonding , Polyvinyls/chemistry , Polyethylene Glycols/chemistry , Povidone/chemistry , Glass/chemistry
3.
Sci Rep ; 14(1): 12186, 2024 May 28.
Article En | MEDLINE | ID: mdl-38806564

Polyetheretherketone (PEEK) is considered as an excellent biomaterial for bone grafting and connective tissue replacement. The clinical potential is, however, limited by its bioinertness, poor osteoconduction, and weak antibacterial activity. These disadvantages can be overcome by introducing suitable additives to produce mineral-polymer composites or coatings. In this work, a PEEK-based bioactive composite has been obtained by blending the polymer with magnesium phosphate (Mg3(PO4)2) particles in amounts ranging from 1 to 10 wt.% using the hot press technique. The obtained composite exhibited improved mechanical and physical properties, above the lower limits set for bone engineering applications. The tested grafts were found to not induce cytotoxicity. The presence of magnesium phosphate induced the mineralisation process with no adverse effects on the expression of the marker crucial for osteoblastic differentiation. The most promising results were observed in the grafts containing 1 wt.% of magnesium phosphate embedded within the PEEK matrix. The improved bioactivity of grafts, together with suitable physical-chemical and mechanical properties, indicate this composite as a promising orthopaedic implant material.


Benzophenones , Biocompatible Materials , Ketones , Phosphates , Polyethylene Glycols , Polymers , Ketones/chemistry , Ketones/pharmacology , Polymers/chemistry , Polyethylene Glycols/chemistry , Biocompatible Materials/chemistry , Phosphates/chemistry , Humans , Magnesium Compounds/chemistry , Magnesium Compounds/pharmacology , Materials Testing , Osteoblasts/drug effects , Osteoblasts/metabolism
4.
Proc Natl Acad Sci U S A ; 121(22): e2317227121, 2024 May 28.
Article En | MEDLINE | ID: mdl-38771870

The biophysical properties of lipid vesicles are important for their stability and integrity, key parameters that control the performance when these vesicles are used for drug delivery. The vesicle properties are determined by the composition of lipids used to form the vesicle. However, for a given lipid composition, they can also be tailored by tethering polymers to the membrane. Typically, synthetic polymers like polyethyleneglycol are used to increase vesicle stability, but the use of polysaccharides in this context is much less explored. Here, we report a general method for functionalizing lipid vesicles with polysaccharides by binding them to cholesterol. We incorporate the polysaccharides on the outer membrane leaflet of giant unilamellar vesicles (GUVs) and investigate their effect on membrane mechanics using micropipette aspiration. We find that the presence of the glycolipid functionalization produces an unexpected softening of GUVs with fluid-like membranes. By contrast, the functionalization of GUVs with polyethylene glycol does not reduce their stretching modulus. This work provides the potential means to study membrane-bound meshworks of polysaccharides similar to the cellular glycocalyx; moreover, it can be used for tuning the mechanical properties of drug delivery vehicles.


Polysaccharides , Unilamellar Liposomes , Unilamellar Liposomes/chemistry , Unilamellar Liposomes/metabolism , Polysaccharides/chemistry , Polysaccharides/metabolism , Polyethylene Glycols/chemistry , Cholesterol/chemistry , Cholesterol/metabolism , Lipids/chemistry
5.
Luminescence ; 39(5): e4778, 2024 May.
Article En | MEDLINE | ID: mdl-38772865

To establish a new method for detecting crystal violet (CV), a harmful dye, herein, a genre of novel biomass carbon dots (CDs) was synthesized via a microwave method and employed as a fluorescent probe, in which water spinach and polyethylene glycol (PEG) performed as raw materials. Based on the inner filter effect (IFE) between the luminescent CDs and CV, the blue emission of this probe at 430 nm could be quenched by CV. Hence, a new strategy was proposed to selectively determine CV in aquaculture ambient. Moreover, under the optimal experiment conditions, this method showed a good linearity between the concentration of CV (c) and fluorescence quenching rate (ΔF/F0) in the concentration range of 4-200 µmol/L with the corresponding correlation coefficient (r) and the detection limit of 0.997 and 710 nmol/L, respectively. With advantages of environmental protectivity, sensitivity, affordability, and user-friendliness, the facilely fabricated CDs could be successfully applied in detecting CV in aquaculture samples, providing a technical foundation for monitoring the pollution of CV and ensuring the quality and safety of aquatic products.


Biomass , Carbon , Fluorescent Dyes , Gentian Violet , Microwaves , Quantum Dots , Gentian Violet/chemistry , Carbon/chemistry , Quantum Dots/chemistry , Fluorescent Dyes/chemistry , Fluorescent Dyes/chemical synthesis , Spectrometry, Fluorescence , Fluorescence , Polyethylene Glycols/chemistry
6.
J Vis Exp ; (207)2024 May 03.
Article En | MEDLINE | ID: mdl-38767370

Preclinical gene therapy research, particularly in rodent and large animal models, necessitates the production of AAV vectors with high yield and purity. Traditional approaches in research laboratories often involve extensive use of cell culture dishes to cultivate HEK293T cells, a process that can be both laborious and problematic. Here, a unique in-house method is presented, which simplifies this process with a specific cell factory (or cell stacks, CF10) platform. An integration of polyethylene glycol/aqueous two-phase partitioning with iodixanol gradient ultracentrifugation improves both the yield and purity of the generated AAV vectors. The purity of the AAV vectors is verified through SDS-PAGE and silver staining, while the ratio of full to empty particles is determined using transmission electron microscopy (TEM). This approach offers an efficient cell factory platform for the production of AAV vectors at high yields, coupled with an improved purification method to meet the quality demands for in vivo studies.


Dependovirus , Genetic Vectors , Dependovirus/genetics , Humans , Genetic Vectors/chemistry , HEK293 Cells , Triiodobenzoic Acids/chemistry , Polyethylene Glycols/chemistry , Microscopy, Electron, Transmission
7.
Artif Cells Nanomed Biotechnol ; 52(1): 309-320, 2024 Dec.
Article En | MEDLINE | ID: mdl-38781462

Photodynamic therapy (PDT) holds great potential to overcome limitations associated with common colorectal cancer (CRC) treatment approaches. Targeted photosensitiser (PS) delivery systems using nanoparticles (NPs) with targeting moieties are continually being designed, which are aimed at enhancing PS efficacy in CRC PDT. However, the optimisation of targeted PS delivery systems in most, in vitro PDT studies has been conducted on two dimensional (2D) monolayers cell cultures. In our present study, we developed a nano PS delivery system for in vitro cultured human colorectal three-dimensional multicellular spheroids (3D MCTS). PEGylated gold nanoparticles (PEG-AuNPs) were prepared and attached to ZnPcS4PS and further functionalised with specific CRC targeting anti-Guanylate Cyclase monoclonal antibodies(mAb). The ZnPcS4-AuNP-Anti-GCC Ab (BNC) nanoconjugates were successfully synthesised and their photodynamic effect investigated following exposure to laser irradiation and demonstrated enhanced anticancer effects in Caco-2 cells cultivated as 3D MCTS spheroids. Our findings suggest that targeted BNC nanoconjugates can improve the efficacy of PDT and highlight the potential of 3D MCTS tumour model for evaluating of targeted PDT.


Colorectal Neoplasms , Gold , Metal Nanoparticles , Photochemotherapy , Spheroids, Cellular , Humans , Gold/chemistry , Gold/pharmacology , Spheroids, Cellular/drug effects , Spheroids, Cellular/pathology , Spheroids, Cellular/metabolism , Colorectal Neoplasms/pathology , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/metabolism , Metal Nanoparticles/chemistry , Caco-2 Cells , Photosensitizing Agents/pharmacology , Photosensitizing Agents/chemistry , Polyethylene Glycols/chemistry
8.
Braz Dent J ; 35: e245720, 2024.
Article En | MEDLINE | ID: mdl-38775593

This study evaluated a new method of adhesive system application on the bond strength between fiber post and root dentin using two adhesive systems. The canals of sixty bovine incisors were prepared and obturated. The roots were divided into six groups (n=10) according to the adhesive system (Clearfil SE - CSE and Single Bond Universal - SBU) and the application strategy (microbrush - MB; rotary brush - RB; and ultrasonic tip - US). The glass fiber posts were cemented with resin cement (RelyX ARC). The roots were sectioned perpendicularly to their long axis, and three slices per root were obtained. Previously to the push-out test, confocal laser scanning microscopy (CLSM) was performed to illustrate the interfacial adaptation of the cement to the root canal walls. Failure patterns were analyzed with 40x magnification. Shapiro-Wilk indicated a normal distribution of the data. The bond strength values were compared using one-way ANOVA and Tukey's tests. Student's T test analyzed the differences between the adhesive systems within each third and protocol. A significance level of 5% was used. CSE with RB showed higher mean bond strength values compared to MB (conventional technique) (P < 0.05). US application resulted in intermediate bond strength values for CSE (P > 0.05). The application of SBU using RB generated higher mean bond strength values compared to MB and US (P < 0.05). Adhesive failures were predominant (65.5%). CSE and SBU application with the new rotary brush improved the bond strength of fiber posts to root dentin compared to the conventional strategy.


Dentin , Post and Core Technique , Resin Cements , Cattle , Animals , Resin Cements/chemistry , Dental Bonding/methods , Bisphenol A-Glycidyl Methacrylate/chemistry , Dentin-Bonding Agents/chemistry , Microscopy, Confocal , Polymethacrylic Acids/chemistry , Materials Testing , Glass/chemistry , Tooth Root , Polyethylene Glycols/chemistry , Dental Stress Analysis
9.
Einstein (Sao Paulo) ; 22: eAO0764, 2024.
Article En | MEDLINE | ID: mdl-38775605

OBJECTIVE: To evaluate the in vitro and in vivo toxicities of polyethylene glycol-coated gold nanoparticles synthesized using a one-step process. METHODS: Gold nanoparticles were prepared via a co-precipitation method using polyethylene glycol, and the synthesis product was characterized. For the in vitro evaluation, a flow cytometry analysis with Annexin V and iodide propidium staining was used to assess cytotoxicity in MG-63 cells labeled with 10, 50, and 100µg/mL of nanoparticle concentration. For the in vivo evaluation, nanoparticles were administered intraperitoneally at a dose of 10mg/kg dose in 10-week-old mice. Toxicity was assessed 24 hours and 7 days after administration via histopathological analysis of various tissues, as well as through renal, hepatic, and hematopoietic evaluations. RESULTS: Synthesized nanoparticles exhibited different hydrodynamic sizes depending on the medium: 51.27±1.62nm in water and 268.12±28.45nm (0 hour) in culture medium. They demonstrated a maximum absorbance at 520nm and a zeta potential of -8.419mV. Cellular viability exceeded 90%, with less than 3% early apoptosis, 6% late apoptosis, and 1% necrosis across all labeling conditions, indicating minimal cytotoxicity differences. Histopathological analysis highlighted the accumulation of nanoparticles in the mesentery; however, no lesions or visible agglomeration was observed in the remaining tissues. Renal, hepatic, and hematopoietic analyses showed no significant differences at any time point. CONCLUSION: Polyethylene glycol-coated gold nanoparticles exhibit extremely low toxicity and high biocompatibility, showing promise for future studies.


Gold , Metal Nanoparticles , Polyethylene Glycols , Polyethylene Glycols/toxicity , Polyethylene Glycols/chemistry , Gold/toxicity , Gold/chemistry , Animals , Metal Nanoparticles/toxicity , Mice , Cell Survival/drug effects , Flow Cytometry , Apoptosis/drug effects , Humans , Particle Size , Male , Kidney/drug effects , Kidney/pathology , Time Factors
10.
Bull Exp Biol Med ; 176(5): 626-630, 2024 Mar.
Article En | MEDLINE | ID: mdl-38730109

We studied the antitumor activity of the combined use of local proton irradiation in two modes (10 and 31 Gy) with preliminary intra-tumoral injection of two types of bismuth nanoparticles differing in surface coating: coated with the amphiphilic molecule Pluronic-F127 or Silane-PEG (5 kDa)-COOH polymer. Nanoparticles were used in doses of 0.75 and 1.5 mg/mouse. In two independent series on experimental tumor model (solid Ehrlich carcinoma), bismuth nanoparticles of both modifications injected directly into the tumor enhanced the antitumor effects of proton therapy. Moreover, the radiosensitizing effect of bismuth nanoparticles administered via this route increased with the increasing the doses of nanoparticles and the doses of radiation exposure. In our opinion, these promising data obtained for the first time extend the possibilities of treating malignant neoplasms.


Bismuth , Carcinoma, Ehrlich Tumor , Poloxamer , Proton Therapy , Carcinoma, Ehrlich Tumor/radiotherapy , Carcinoma, Ehrlich Tumor/drug therapy , Carcinoma, Ehrlich Tumor/pathology , Animals , Bismuth/therapeutic use , Bismuth/chemistry , Mice , Proton Therapy/methods , Poloxamer/chemistry , Radiation-Sensitizing Agents/therapeutic use , Radiation-Sensitizing Agents/chemistry , Radiation-Sensitizing Agents/pharmacology , Polyethylene Glycols/chemistry , Metal Nanoparticles/chemistry , Metal Nanoparticles/therapeutic use , Nanoparticles/chemistry , Female
11.
J Nanobiotechnology ; 22(1): 253, 2024 May 16.
Article En | MEDLINE | ID: mdl-38755600

Improving cancer therapy by targeting the adverse tumor microenvironment (TME) rather than the cancer cells presents a novel and potentially effective strategy. In this study, we introduced FexMoyS nanoparticles (NPs), which act as sequential bioreactors to manipulate the TME. FexMoyS NPs were synthesized using thermal decomposition and modified with polyethylene glycol (PEG). Their morphology, chemical composition, and photothermal properties were characterized. The capability to produce ROS and deplete GSH was evaluated. Effects on CRC cells, including cell viability, apoptosis, and glycolysis, were tested through various in vitro assays. In vivo efficacy was determined using CRC-bearing mouse models and patient-derived xenograft (PDX) models. The impact on the MAPK signaling pathway and tumor metabolism was also examined. The FexMoyS NPs showed efficient catalytic activity, leading to increased ROS production and GSH depletion, inducing ferroptosis, and suppressing glycolysis in CRC cells. In vivo, the NPs significantly inhibited tumor growth, particularly when combined with NIR light therapy, indicating a synergistic effect of photothermal therapy and chemodynamic therapy. Biosafety assessments revealed no significant toxicity in treated mice. RNA sequencing suggested that the NPs impact metabolism and potentially immune processes within CRC cells. FexMoyS NPs present a promising multifaceted approach for CRC treatment, effectively targeting tumor cells while maintaining biosafety. The nanoparticles exhibit potential for clinical translation, offering a new avenue for cancer therapy.


Colorectal Neoplasms , Ferroptosis , Glycolysis , Polyethylene Glycols , Reactive Oxygen Species , Animals , Colorectal Neoplasms/metabolism , Colorectal Neoplasms/pathology , Colorectal Neoplasms/drug therapy , Reactive Oxygen Species/metabolism , Humans , Mice , Polyethylene Glycols/chemistry , Ferroptosis/drug effects , Glycolysis/drug effects , Cell Line, Tumor , Tumor Microenvironment/drug effects , Nanoparticles/chemistry , Xenograft Model Antitumor Assays , Mice, Inbred BALB C , Mice, Nude , Apoptosis/drug effects , Cell Survival/drug effects , Female , Glutathione/metabolism
12.
Molecules ; 29(9)2024 Apr 27.
Article En | MEDLINE | ID: mdl-38731508

This study delves into the physicochemical properties of inorganic hydroxyapatite (HAp) and hybrid hydroxyapatite-chitosan (HAp-CTS) granules, also gold-enriched, which can be used as aggregates in biomicroconcrete-type materials. The impact of granules' surface modifications with citric acid (CA) or polyethylene glycol (PEG) was assessed. Citric acid modification induced increased specific surface area and porosity in inorganic granules, contrasting with reduced parameters in hybrid granules. PEG modification resulted in a slight increase in specific surface area for inorganic granules and a substantial rise for hybrid granules with gold nanoparticles. Varied effects on open porosity were observed based on granule type. Microstructural analysis revealed increased roughness for inorganic granules post CA modification, while hybrid granules exhibited smoother surfaces. Novel biomicroconcretes, based on α-tricalcium phosphate (α-TCP) calcium phosphate cement and developed granules as aggregates within, were evaluated for compressive strength. Compressive strength assessments showcased significant enhancement with PEG modification, emphasizing its positive impact. Citric acid modification demonstrated variable effects, depending on granule composition. The incorporation of gold nanoparticles further enriched the multifaceted approach to enhancing calcium phosphate-based biomaterials for potential biomedical applications. This study demonstrates the pivotal role of surface modifications in tailoring the physicochemical properties of granules, paving the way for advanced biomicroconcretes with improved compressive strength for diverse biomedical applications.


Citric Acid , Durapatite , Polyethylene Glycols , Citric Acid/chemistry , Durapatite/chemistry , Polyethylene Glycols/chemistry , Gold/chemistry , Biocompatible Materials/chemistry , Materials Testing , Chitosan/chemistry , Porosity , Metal Nanoparticles/chemistry , Chemical Phenomena , Compressive Strength , Surface Properties
13.
Sci Rep ; 14(1): 10825, 2024 05 11.
Article En | MEDLINE | ID: mdl-38734808

This study developed a kind of PEG-crosslinked O-carboxymethyl chitosan (O-CMC-PEG) with various PEG content for food packaging. The crosslinking agent of isocyanate-terminated PEG was firstly synthesized by a simple condensation reaction between PEG and excess diisocyanate, then the crosslink between O-carboxymethyl chitosan (O-CMC) and crosslinking agent occurred under mild conditions to produce O-CMC-PEG with a crosslinked structure linked by urea bonds. FT-IR and 1H NMR techniques were utilized to confirm the chemical structures of the crosslinking agent and O-CMC-PEGs. Extensive research was conducted to investigate the impact of the PEG content (or crosslinking degree) on the physicochemical characteristics of the casted O-CMC-PEG films. The results illuminated that crosslinking and components compatibility could improve their tensile features and water vapor barrier performance, while high PEG content played the inverse effects due to the microphase separation between PEG and O-CMC segments. The in vitro degradation rate and water sensitivity primarily depended on the crosslinking degree in comparison with the PEG content. Furthermore, caused by the remaining -NH2 groups of O-CMC, the films demonstrated antibacterial activity against Escherichia coli and Staphylococcus aureus. When the PEG content was 6% (medium crosslinking degree), the prepared O-CMC-PEG-6% film possessed optimal tensile features, high water resistance, appropriate degradation rate, low water vapor transmission rate and fine broad-spectrum antibacterial capacity, manifesting a great potential for application in food packaging to extend the shelf life.


Anti-Bacterial Agents , Chitosan , Escherichia coli , Food Packaging , Polyethylene Glycols , Chitosan/chemistry , Chitosan/analogs & derivatives , Chitosan/pharmacology , Food Packaging/methods , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Polyethylene Glycols/chemistry , Escherichia coli/drug effects , Cross-Linking Reagents/chemistry , Spectroscopy, Fourier Transform Infrared , Staphylococcus aureus/drug effects , Microbial Sensitivity Tests , Tensile Strength
14.
BMC Oral Health ; 24(1): 557, 2024 May 13.
Article En | MEDLINE | ID: mdl-38735940

BACKGROUND: Dental resin-based composites are widely recognized for their aesthetic appeal and adhesive properties, which make them integral to modern restorative dentistry. Despite their advantages, adhesion and biomechanical performance challenges persist, necessitating innovative strategies for improvement. This study addressed the challenges associated with adhesion and biomechanical properties in dental resin-based composites by employing molecular docking and dynamics simulation. METHODS: Molecular docking assesses the binding energies and provides valuable insights into the interactions between monomers, fillers, and coupling agents. This investigation prioritizes SiO2 and TRIS, considering their consistent influence. Molecular dynamics simulations, executed with the Forcite module and COMPASS II force field, extend the analysis to the mechanical properties of dental composite complexes. The simulations encompassed energy minimization, controlled NVT and NPT ensemble simulations, and equilibration stages. Notably, the molecular dynamics simulations spanned a duration of 50 ns. RESULTS: SiO2 and TRIS consistently emerged as influential components, showcasing their versatility in promoting solid interactions. A correlation matrix underscores the significant roles of van der Waals and desolvation energies in determining the overall binding energy. Molecular dynamics simulations provide in-depth insights into the mechanical properties of dental composite complexes. HEMA-SiO2-TRIS excelled in stiffness, BisGMA-SiO2-TRIS prevailed in terms of flexural strength, and EBPADMA-SiO2-TRIS offered a balanced combination of mechanical properties. CONCLUSION: These findings provide valuable insights into optimizing dental composites tailored to diverse clinical requirements. While EBPADMA-SiO2-TRIS demonstrates distinct strengths, this study emphasizes the need for further research. Future investigations should validate the computational findings experimentally and assess the material's response to dynamic environmental factors.


Biocompatible Materials , Composite Resins , Molecular Docking Simulation , Molecular Dynamics Simulation , Silicon Dioxide , Composite Resins/chemistry , Silicon Dioxide/chemistry , Biocompatible Materials/chemistry , Dental Materials/chemistry , Methacrylates/chemistry , Polyurethanes/chemistry , Polymethacrylic Acids/chemistry , Polyethylene Glycols/chemistry , Acrylic Resins/chemistry
15.
J Colloid Interface Sci ; 668: 575-586, 2024 Aug 15.
Article En | MEDLINE | ID: mdl-38691966

Lanthanide-doped up-converting nanoparticles (UCNPs) have emerged as promising biomedical tools in recent years. Most research efforts were devoted to the synthesis of inorganic cores with the optimal physicochemical properties. However, the careful design of UCNPs with the adequate surface coating to optimize their biological performance still remains a significant challenge. Here, we propose the functionalization of UCNPs with four distinct types of surface coatings, which were compared in terms of the provided colloidal stability and resistance to degradation in different biological-relevant media, including commonly avoided analysis in acidic lysosomal-mimicking fluids. Moreover, the influence of the type of particle surface coating on cell cytotoxicity and endocytosis/exocytosis was also evaluated. The obtained results demonstrated that the functionalization of UCNPs with poly(isobutylene-alt-maleic anhydride) grafted with dodecylamine (PMA-g-dodecyl) constitutes an outstanding strategy for their subsequent biomedical application, whereas poly(ethylene glycol) (PEG) coating, although suitable for colloidal stability purposes, hinders extensive cell internalization. Conversely, surface coating with small ligand were found not to be suitable, leading to large degradation degrees of UCNPs. The analysis of particle' behavior in different biological media and in vitro conditions here performed pretends to help researchers to improve the design and implementation of UCNPs as theranostic nanotools.


Endocytosis , Nanoparticles , Surface Properties , Endocytosis/drug effects , Humans , Nanoparticles/chemistry , Particle Size , Cell Survival/drug effects , Polyethylene Glycols/chemistry
16.
ACS Biomater Sci Eng ; 10(5): 3343-3354, 2024 May 13.
Article En | MEDLINE | ID: mdl-38695560

Moldable tissue-sealant hydrogels were developed herein by combining the yield stress fluidity of a Carbomer and in situ cross-linking of 3-arm PEG-thiol (PEG-SH) and 4-arm PEG-acrylate (PEG-AC). The Carbomer was mixed with each PEG oligomer to form two aqueous precursors: Carbomer/PEG-SH and Carbomer/PEG-AC. The two hydrogel precursors exhibited sufficient yield stress (>100 Pa) to prevent dripping from their placement on the tissue surface. Moreover, these hydrogel precursors exhibited rapid restructuring when the shear strain was repeatedly changed. These rheological properties contribute to the moldability of these hydrogel precursors. After mixing these two precursors, they were converted from yield-stress fluids to chemically cross-linked hydrogels, Carbomer/PEG hydrogel, via thiol-Michael addition. The gelation time was 5.0 and 11.2 min at 37 and 25 °C, respectively. In addition, the Carbomer/PEG hydrogels exhibited higher cellular viability than the pure Carbomer. They also showed stable adhesiveness and burst pressure resistance to various tissues, such as the skin, stomach, colon, and cecum of pigs. The hydrogels showed excellent tissue sealing in a cecum ligation and puncture model in mice and improved the survival rate due to their tissue adhesiveness and biocompatibility. The Carbomer/PEG hydrogel is a potential biocompatible tissue sealant that surgeons can mold. It was revealed that the combination of in situ cross-linkable PEG oligomers and yield stress fluid such as Carbomer is effective for developing the moldable tissue sealant without dripping of its hydrogel precursors.


Hydrogels , Polyethylene Glycols , Sulfhydryl Compounds , Hydrogels/chemistry , Hydrogels/pharmacology , Polyethylene Glycols/chemistry , Animals , Mice , Sulfhydryl Compounds/chemistry , Tissue Adhesives/chemistry , Tissue Adhesives/pharmacology , Swine , Cross-Linking Reagents/chemistry , Rheology , Humans , Acrylic Resins
17.
BMC Oral Health ; 24(1): 545, 2024 May 10.
Article En | MEDLINE | ID: mdl-38730391

BACKGROUND: This Finite Element Analysis was conducted to analyze the biomechanical behaviors of titanium base abutments and several crown materials with respect to fatigue lifetime and stress distribution in implants and prosthetic components. METHODS: Five distinct designs of implant-supported single crowns were modeled, including a polyetheretherketone (PEEK), polymer-infiltrated ceramic network, monolithic lithium disilicate, and precrystallized and crystallized zirconia-reinforced lithium silicates supported by a titanium base abutment. For the static load, a 100 N oblique load was applied to the buccal incline of the palatal cusp of the maxillary right first premolar. The dynamic load was applied in the same way as in static loading with a frequency of 1 Hz. The principal stresses in the peripheral bone as well as the von Mises stresses and fatigue strength of the implants, abutments, prosthetic screws, and crowns were assessed. RESULTS: All of the models had comparable von Mises stress values from the implants and abutments, as well as comparable maximum and minimum principal stress values from the cortical and trabecular bones. The PEEK crown showed the lowest stress (46.89 MPa) in the cervical region. The prosthetic screws and implants exhibited the highest von Mises stress among the models. The lithium disilicate crown model had approximately 9.5 times more cycles to fatique values for implants and 1.7 times more cycles to fatique values for abutments than for the lowest ones. CONCLUSIONS: With the promise of at least ten years of clinical success and favorable stress distributions in implants and prosthetic components, clinicians can suggest using an implant-supported lithium disilicate crown with a titanium base abutment.


Benzophenones , Crowns , Dental Abutments , Dental Prosthesis, Implant-Supported , Dental Stress Analysis , Finite Element Analysis , Titanium , Titanium/chemistry , Humans , Dental Porcelain/chemistry , Polyethylene Glycols/chemistry , Dental Materials/chemistry , Polymers , Ketones/chemistry , Zirconium/chemistry , Dental Implants, Single-Tooth , Materials Testing , Dental Implant-Abutment Design , Biomechanical Phenomena
18.
Int J Mol Sci ; 25(9)2024 Apr 30.
Article En | MEDLINE | ID: mdl-38732121

Today a lot of attention is paid to the formation of thermosensitive systems for biomedical and industrial applications. The development of new methods for synthesis of such systems is a dynamically developing direction in chemistry and materials science. In this regard, this paper presents results of the studies of a new synthesized supramolecular polymer system based on polyethylene glycol and tetrafluoroethylene telomers. The films formed from the polymer substance have the property of switching wettability depending on temperature after heating activation. It has been established that the wettability changes at 60 °C. The contact angle of activated hydrophobic polymer film reaches 143°. Additionally, the system exhibits its properties regardless of the pH of the environment. Based on data obtained by the methods of infrared and x-ray photoelectron spectroscopy, differential thermal analysis and thermal analysis in conjunction with wettability and morphology, a model of the behavior of molecules in a polymer system was built that ensures switching of the hydrophilic/hydrophobic surface state. The resulting polymer system, as well as films based on it, can be used in targeted drug delivery, implantation surgery, as sensors, etc.


Hydrophobic and Hydrophilic Interactions , Polyethylene Glycols , Wettability , Polyethylene Glycols/chemistry , Polymers/chemistry , Temperature , Photoelectron Spectroscopy
19.
Int J Mol Sci ; 25(9)2024 May 04.
Article En | MEDLINE | ID: mdl-38732235

The formulation of novel delivery protocols for the targeted delivery of genes into hepatocytes by receptor mediation is important for the treatment of liver-specific disorders, including cancer. Non-viral delivery methods have been extensively studied for gene therapy. Gold nanoparticles (AuNPs) have gained attention in nanomedicine due to their biocompatibility. In this study, AuNPs were synthesized and coated with polymers: chitosan (CS), and polyethylene glycol (PEG). The targeting moiety, lactobionic acid (LA), was added for hepatocyte-specific delivery. Physicochemical characterization revealed that all nano-formulations were spherical and monodispersed, with hydrodynamic sizes between 70 and 250 nm. Nanocomplexes with pCMV-Luc DNA (pDNA) confirmed that the NPs could bind, compact, and protect the pDNA from nuclease degradation. Cytotoxicity studies revealed that the AuNPs were well tolerated (cell viabilities > 70%) in human hepatocellular carcinoma (HepG2), embryonic kidney (HEK293), and colorectal adenocarcinoma (Caco-2) cells, with enhanced transgene activity in all cells. The inclusion of LA in the NP formulation was notable in the HepG2 cells, which overexpress the asialoglycoprotein receptor on their cell surface. A five-fold increase in luciferase gene expression was evident for the LA-targeted AuNPs compared to the non-targeted AuNPs. These AuNPs have shown potential as safe and suitable targeted delivery vehicles for liver-directed gene therapy.


Chitosan , Gene Transfer Techniques , Gold , Liver Neoplasms , Metal Nanoparticles , Humans , Gold/chemistry , Metal Nanoparticles/chemistry , Hep G2 Cells , Liver Neoplasms/therapy , Liver Neoplasms/genetics , Chitosan/chemistry , HEK293 Cells , Asialoglycoprotein Receptor/metabolism , Asialoglycoprotein Receptor/genetics , Caco-2 Cells , Luciferases/genetics , Luciferases/metabolism , Polyethylene Glycols/chemistry , Plasmids/genetics , Disaccharides/chemistry , Genetic Therapy/methods , Polymers/chemistry , Cell Survival/drug effects
20.
Protein Sci ; 33(6): e5010, 2024 Jun.
Article En | MEDLINE | ID: mdl-38723172

Recent studies have demonstrated that one can control the packing density, and in turn the filterability, of protein precipitates by changing the pH and buffer composition of the precipitating solution to increase the structure/order within the precipitate. The objective of this study was to examine the effect of sodium malonate, which is known to enhance protein crystallizability, on the morphology of immunoglobulin precipitates formed using a combination of ZnCl2 and polyethylene glycol. The addition of sodium malonate significantly stabilized the precipitate particles as shown by an increase in melting temperature, as determined by differential scanning calorimetry, and an increase in the enthalpy of interaction, as determined by isothermal titration calorimetry. The sodium malonate also increased the selectivity of the precipitation, significantly reducing the coprecipitation of DNA from a clarified cell culture fluid. The resulting precipitate had a greater packing density and improved filterability, enabling continuous tangential flow filtration with minimal membrane fouling relative to precipitates formed under otherwise identical conditions but in the absence of sodium malonate. These results provide important insights into strategies for controlling precipitate morphology to enhance the performance of precipitation-filtration processes for the purification of therapeutic proteins.


Malonates , Malonates/chemistry , Filtration , Chemical Precipitation , Immunoglobulins/chemistry , Polyethylene Glycols/chemistry , Chlorides/chemistry , Calorimetry, Differential Scanning , Malates/chemistry , Zinc Compounds
...