Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 9.333
Filter
1.
J Environ Manage ; 365: 121603, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38963967

ABSTRACT

Water treatment has turned out to be more important in most societies due to the expansion of most economies and to advancement of industrialization. Developing efficient materials and technologies for water treatment is of high interest. Thin film nanocomposite membranes are regarded as the most effective membranes available for salts, hydrocarbon, and environmental pollutants removal. These membranes improve productivity while using less energy than conventional asymmetric membranes. Here, the polyvinylidene fluoride (PVDF) membranes have been successfully modified via dip single-step coating by silica-aminopropyl triethoxysilane/trimesic acid/melamine nanocomposite (Si-APTES-TA-MM). The developed membranes were evaluated for separating the emulsified oil/water mixture, the surface wettability of the membrane materials is therefore essential. During the conditioning step, that is when the freshwater was introduced, the prepared membrane reached a flux of about 27.77 L m-2 h-1. However, when the contaminated water was introduced, the flux reached 18 L m-2 h-1, alongside an applied pressure of 400 kPa. Interestingly, during the first 8 h of the filtration test, the membrane showed 90 % rejection for ions including Mg2+, and SO42- and ≈100 % for organic pollutants including pentane, isooctane, toluene, and hexadecane. Also, the membrane showed 98 % rejection for heavy metals including strontium, lead, and cobalt ions. As per the results, the membrane could be recommended as a promising candidate to be used for a mixture of salt ions, hydrocarbons, and mixtures of heavy metals from wastewater.


Subject(s)
Membranes, Artificial , Silanes , Water Pollutants, Chemical , Water Purification , Water Purification/methods , Silanes/chemistry , Water Pollutants, Chemical/chemistry , Metals/chemistry , Oils/chemistry , Propylamines/chemistry , Salts/chemistry , Hydrophobic and Hydrophilic Interactions , Ions , Polyvinyls/chemistry
2.
AAPS PharmSciTech ; 25(6): 164, 2024 Jul 13.
Article in English | MEDLINE | ID: mdl-38997569

ABSTRACT

This study employed a Quality by Design (QbD) approach to spray dry amorphousclotrimazole nanosuspension (CLT-NS) consisting of Soluplus® and microcrystallinecellulose. Using the Box-Behnken Design, a systematic evaluation was conducted toanalyze the impact of inlet temperature, % aspiration, and feed rate on the criticalquality attributes (CQAs) of the clotrimazole spray-dried nanosuspension (CLT-SDNS). In this study, regression analysis and ANOVA were employed to detect significantfactors and interactions, enabling the development of a predictive model for the spraydrying process. Following optimization, the CLT-SD-NS underwent analysis using Xraypowder diffraction (XRPD), Fourier transform infrared spectroscopy (FTIR), Dynamic Scanning Calorimetry (DSC), and in vitro dissolution studies. The resultsshowed significant variables, including inlet temperature, feed rate, and aspiration rate,affecting yield, redispersibility index (RDI), and moisture content of the final product. The models created for critical quality attributes (CQAs) showed statistical significanceat a p-value of 0.05. XRPD and DSC confirmed the amorphous state of CLT in theCLT-SD-NS, and FTIR indicated no interactions between CLT and excipients. In vitrodissolution studies showed improved dissolution rates for the CLT-SD-NS (3.12-foldincrease in DI water and 5.88-fold increase at pH 7.2 dissolution media), attributed torapidly redispersing nanosized amorphous CLT particles. The well-designed studyutilizing the Design of Experiments (DoE) methodology.


Subject(s)
Clotrimazole , Nanoparticles , Suspensions , Clotrimazole/chemistry , Clotrimazole/administration & dosage , Nanoparticles/chemistry , Suspensions/chemistry , Spray Drying , Chemistry, Pharmaceutical/methods , Solubility , Spectroscopy, Fourier Transform Infrared/methods , Particle Size , Calorimetry, Differential Scanning/methods , Temperature , Drug Compounding/methods , Polyvinyls/chemistry , X-Ray Diffraction/methods , Polyethylene Glycols
3.
Int J Mol Sci ; 25(13)2024 Jun 27.
Article in English | MEDLINE | ID: mdl-39000132

ABSTRACT

The phenylpyrazole derivative 5-amino-3-[1-cyano-2-(3-phenyl-1H-pyrazol-4-yl) vinyl]-1-phenyl-1H-pyrazole-4-carbonitrile (LN002), which was screened out through high-throughput molecular docking for the AOX target, exhibits promising efficacy against Cryptosporidium. However, its poor water solubility limits its oral bioavailability and therapeutic utility. In this study, solid dispersion agents were prepared by using HP-ß-CD and Soluplus® and characterized through differential scanning calorimetry, Fourier transform infrared, powder X-ray diffraction, and scanning electron microscopy. Physical and chemical characterization showed that the crystal morphology of LN002 transformed into an amorphous state, thus forming a solid dispersion of LN002. The solid dispersion prepared with an LN002/HP-ß-CD/Soluplus® mass ratio of 1:3:9 (w/w/w) exhibited significantly increased solubility and cumulative dissolution. Meanwhile, LN002 SDs showed good preservation stability under accelerated conditions of 25 °C and 75% relative humidity. The complexation of LN002 with HP-ß-CD and Soluplus® significantly improved water solubility, pharmacological properties, absorption, and bioavailability.


Subject(s)
Biological Availability , Cryptosporidium parvum , Solubility , Cryptosporidium parvum/drug effects , Animals , Administration, Oral , Polyethylene Glycols/chemistry , Pyrazoles/chemistry , Pyrazoles/pharmacokinetics , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacokinetics , Enzyme Inhibitors/pharmacology , Molecular Docking Simulation , Polyvinyls/chemistry , Spectroscopy, Fourier Transform Infrared , X-Ray Diffraction , Calorimetry, Differential Scanning , Rats , Male , 2-Hydroxypropyl-beta-cyclodextrin/chemistry
4.
Biomater Sci ; 12(15): 3947-3955, 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-38949480

ABSTRACT

Zwitterionic carboxyalkyl poly(1-vinylimidazole) (CA-PVIm) polymers with imidazolium cations and carboxylate anions have been synthesized as a carrier for the in vivo delivery of plasmid DNA (pDNA) to skeletal muscle. From differential scanning calorimetry measurements, resulting CA-PVIm had intermediate water in hydration water as a biocompatible polymer. Notably, when the pDNA and resulting CA-PVIm were mixed, slight retarded bands of the pDNA were observed in agarose gel electrophoresis, suggesting the polyion complex (PIC) formation between the pDNA and CA-PVIm despite zwitterionic polymers. Resulting PICs maintained the higher-order structure of the pDNA. Using resulting pDNA PICs, the highest pDNA expression by intramuscular injection was achieved in the PIC with 7 mol% carboxymethylated PVIm, that is, CA1(7)-PVIm, observed in a widespread area by in vivo imaging system. These results suggest that the CA1(7)-PVIm/pDNA PIC is effective for the diffusive delivery of the pDNA into skeletal muscle for the treatment of serious muscle diseases.


Subject(s)
DNA , Imidazoles , Muscle, Skeletal , Plasmids , Polyvinyls , Plasmids/administration & dosage , Plasmids/chemistry , Muscle, Skeletal/metabolism , Animals , Imidazoles/chemistry , Imidazoles/administration & dosage , DNA/administration & dosage , DNA/chemistry , Polyvinyls/chemistry , Mice , Diffusion , Gene Transfer Techniques
5.
AAPS PharmSciTech ; 25(6): 161, 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-38992175

ABSTRACT

Drug solubility and dissolution remain a significant challenge in pharmaceutical formulations. This study aimed to formulate and evaluate repanglinide (RPG) nanosuspension-based buccal fast-dissolving films (BDFs) for dissolution enhancement. RPG nanosuspension was prepared by the antisolvent-precipitation method using multiple hydrophilic polymers, including soluplus®, polyvinyl alcohol, polyvinyl pyrrolidine, poloxamers, and hydroxyl propyl methyl cellulose. The nanosuspension was then directly loaded into BDFs using the solvent casting technique. Twelve formulas were prepared with a particle size range of 81.6-1389 nm and PDI 0.002-1 for the different polymers. Nanosuspensions prepared with soluplus showed a favored mean particle size of 82.6 ± 3.2 nm. The particles were spherical and non-aggregating, as demonstrated by SEM imaging. FTIR showed no interaction between soluplus and RPG. Faster dissolution occurred for the nanosuspension in comparison with pure RPG (complete release vs 60% within 30 min). The nanosuspension was successfully incorporated into BDFs. The optimum film formula showed 28 s disintegration time, and 97.3% RPG released within 10 min. Ex-vivo permeation profiles revealed improved RPG nanosuspension permeation with the cumulative amount of RPG permeated is103.4% ± 10.1 and a flux of 0.00275 mg/cm2/min compared to 39.3% ± 9.57 and a flux of 0.001058 mg/cm2/min for pure RPG. RPG was successfully formulated into nanosuspension that boosted drug dissolution and permeation. The selection of the ultimate NP formula was driven by optimal particle size, distribution, and drug content. Soluplus NPs were shown to be the successful formulations, which were further incorporated into a buccal film. The film was evaluated for ex-vivo permeation, confirming successful RPG formulation with improved performance compared to pure drugs.


Subject(s)
Carbamates , Nanoparticles , Particle Size , Piperidines , Solubility , Suspensions , Nanoparticles/chemistry , Piperidines/chemistry , Piperidines/administration & dosage , Piperidines/pharmacokinetics , Carbamates/chemistry , Carbamates/administration & dosage , Carbamates/pharmacokinetics , Animals , Chemistry, Pharmaceutical/methods , Drug Liberation , Polyvinyls/chemistry , Polymers/chemistry , Administration, Buccal , Polyethylene Glycols/chemistry , Drug Compounding/methods
6.
Acta Biomater ; 184: 201-209, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38950807

ABSTRACT

The precise mechanisms underlying the cellular response to static electric cues remain unclear, limiting the design and development of biomaterials that utilize this parameter to enhance specific biological behaviours. To gather information on this matter we have explored the interaction of collagen type-I, the most abundant mammalian extracellular protein, with poly(vinylidene fluoride) (PVDF), an electroactive polymer with great potential for tissue engineering applications. Our results reveal significant differences in collagen affinity, conformation, and interaction strength depending on the electric charge of the PVDF surface, which subsequently affects the behaviour of mesenchymal stem cells seeded on them. These findings highlight the importance of surface charge in the establishment of the material-protein interface and ultimately in the biological response to the material. STATEMENT OF SIGNIFICANCE: The development of new tissue engineering strategies relies heavily on the understanding of how biomaterials interact with biological tissues. Although several factors drive this process and their driving principles have been identified, the relevance and mechanism by which the surface potential influences cell behaviour is still unknown. In our study, we investigate the interaction between collagen, the most abundant component of the extracellular matrix, and poly(vinylidene fluoride) with varying surface charges. Our findings reveal substantial variations in the binding forces, structure and adhesion of collagen on the different surfaces, which collectively explain the differential cellular responses. By exposing these differences, our research fills a critical knowledge gap and paves the way for innovations in material design for advanced tissue regeneration strategies.


Subject(s)
Mesenchymal Stem Cells , Polyvinyls , Surface Properties , Polyvinyls/chemistry , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/drug effects , Animals , Collagen Type I/metabolism , Collagen Type I/chemistry , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Cell Adhesion/drug effects , Static Electricity , Fluorocarbon Polymers
7.
AAPS PharmSciTech ; 25(5): 136, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38862810

ABSTRACT

Cannabidiol (CBD) is a highly lipophilic compound with poor oral bioavailability, due to poor aqueous solubility and extensive pre-systemic metabolism. The aim of this study was to explore the potential of employing Hot Melt Extrusion (HME) technology for the continuous production of Self Emulsifying Drug Delivery Systems (SEDDS) to improve the solubility and in vitro dissolution performance of CBD. Accordingly, different placebos were processed through HME in order to obtain a lead CBD loaded solid SEDDS. Two SEDDS were prepared with sesame oil, Poloxamer 188, Gelucire®59/14, PEO N80 and Soluplus®. Moreover, Vitamin E was added as an antioxidant. The SEDDS formulations demonstrated emulsification times of 9.19 and 9.30 min for F1 and F2 respectively. The formed emulsions showed smaller droplet size ranging from 150-400 nm that could improve lymphatic uptake of CBD and reduce first pass metabolism. Both formulations showed significantly faster in vitro dissolution rate (90% for F1 and 83% for F2) compared to 14% for the pure CBD within the first hour, giving an enhanced release profile. The formulations were tested for stability over a 60-day time period at 4°C, 25°C, and 40°C. Formulation F1 was stable over the 60-day time-period at 4°C. Therefore, the continuous HME technology could replace conventional methods for processing SEDDS and improve the oral delivery of CBD for better therapeutic outcomes.


Subject(s)
Cannabidiol , Chemistry, Pharmaceutical , Drug Delivery Systems , Emulsions , Solubility , Cannabidiol/chemistry , Cannabidiol/administration & dosage , Emulsions/chemistry , Drug Delivery Systems/methods , Administration, Oral , Chemistry, Pharmaceutical/methods , Hot Melt Extrusion Technology/methods , Drug Liberation , Particle Size , Biological Availability , Drug Compounding/methods , Polyethylene Glycols/chemistry , Drug Stability , Sesame Oil/chemistry , Polyvinyls
8.
Methods Mol Biol ; 2822: 353-365, 2024.
Article in English | MEDLINE | ID: mdl-38907928

ABSTRACT

Polymeric delivery systems could enable the fast- and low-side-effect transport of various RNA classes. Previously, we demonstrated that polyvinylamine (PVAm), a cationic polymer, transfects many kinds of RNAs with high efficiency and low toxicity both in vitro and in vivo. The modification of poly lactic-co-glycolic acid (PLGA) with cartilage-targeting peptide (CAP) enhances its stiffness and tissue-specific delivery of RNA to overcome the avascular nature of articular cartilage. Here we describe the protocol to use PVAm as an RNA carrier, and further, by modifying PVAm with PLGA and CAP, the corresponding co-polymer could be applied for functional RNA delivery for osteoarthritis treatment.


Subject(s)
Polylactic Acid-Polyglycolic Acid Copolymer , Polyvinyls , Polyvinyls/chemistry , Animals , Polylactic Acid-Polyglycolic Acid Copolymer/chemistry , Humans , Lactic Acid/chemistry , Transfection/methods , Gene Transfer Techniques , Polyglycolic Acid/chemistry , Drug Carriers/chemistry , RNA, Small Interfering/administration & dosage , RNA, Small Interfering/genetics , Osteoarthritis/drug therapy
9.
J Cell Mol Med ; 28(11): e18389, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38864691

ABSTRACT

Chemotherapy resistance remains a significant challenge in treating ovarian cancer effectively. This study addresses this issue by utilizing a dual drug-loaded nanomicelle system comprising albendazole (ABZ) and paclitaxel (PTX), encapsulated in a novel carrier matrix of D-tocopheryl polyethylene glycol 1000 succinate vitamin E (TPGS), soluplus and folic acid. Our objective was to develop and optimize this nanoparticulate delivery system using solvent evaporation techniques to enhance the therapeutic efficacy against ovarian cancer. The formulation process involved pre-formulation, formulation, optimization, and comprehensive characterization of the micelles. Optimization was conducted through a 32 factorial design, focusing on the effects of polymer ratios on particle size, zeta potential, polydispersity index (PDI) and entrapment efficiency (%EE). The optimal formulation demonstrated improved dilution stability, as indicated by a critical micelle concentration (CMC) of 0.0015 mg/mL for the TPGS-folic acid conjugate (TPGS-FOL). Extensive characterization included differential scanning calorimetry (DSC), nuclear magnetic resonance (NMR), and Fourier-transform infrared spectroscopy (FTIR). The release profile exhibited an initial burst followed by sustained release over 90 h. The cytotoxic potential of the formulated micelles was superior to that of the drugs alone, as assessed by MTT assays on SKOV3 ovarian cell lines. Additionally, in vivo studies confirmed the presence of both drugs in plasma and tumour tissues, suggesting effective targeting and penetration. In conclusion, the developed TPGS-Fol-based nanomicelles for co-delivering ABZ and PTX show promising results in overcoming drug resistance, enhancing solubility, sustaining drug release, and improving therapeutic outcomes in ovarian cancer treatment.


Subject(s)
Albendazole , Micelles , Ovarian Neoplasms , Paclitaxel , Female , Paclitaxel/pharmacology , Paclitaxel/administration & dosage , Paclitaxel/therapeutic use , Paclitaxel/chemistry , Albendazole/chemistry , Albendazole/pharmacology , Albendazole/administration & dosage , Ovarian Neoplasms/drug therapy , Ovarian Neoplasms/pathology , Humans , Animals , Cell Line, Tumor , Drug Carriers/chemistry , Polyethylene Glycols/chemistry , Vitamin E/chemistry , Folic Acid/chemistry , Mice , Drug Liberation , Particle Size , Polyvinyls/chemistry , Polymers/chemistry , Xenograft Model Antitumor Assays
10.
Environ Sci Pollut Res Int ; 31(27): 39663-39677, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38831146

ABSTRACT

The mixed wastewater generated by anodic oxidation coating facilities contains high levels of various contaminants, including iron, aluminum, conductivity, chemical oxygen demand (COD), and sulfate. In this study, the effectiveness of the membrane distillation (MD) process using polytetrafluoroethylene (PTFE) and polyvinylidene fluoride (PVDF) membranes was investigated to treat mixed wastewater from an anodized coating factory. The results indicate that both hydrophobic membranes effectively removed targeted contaminants. However, the PTFE membrane achieved higher removal efficiencies, with over 99% removal of sulfate, conductivity, iron, and aluminum, 85.7% of COD, and 86% of total organic carbon (TOC). In contrast, the PVDF membrane exhibited a significant decline in removal efficiency as the temperature increased and performed well only at lower feed temperatures. The PTFE membranes outperformed the PVDF membranes in treating chemically intensive anodic oxidation wastewaters. This superiority can be attributed to the PTFE membrane's morphology and structure, which are less influenced by feed water temperature and chemicals. Additionally, its slippery surface imparts anti-adhesion properties, effectively preventing membrane fouling, and maintaining the treated water quality and flux for longer operation time.


Subject(s)
Distillation , Membranes, Artificial , Oxidation-Reduction , Polytetrafluoroethylene , Polyvinyls , Wastewater , Wastewater/chemistry , Polytetrafluoroethylene/chemistry , Polyvinyls/chemistry , Waste Disposal, Fluid/methods , Water Purification/methods , Water Pollutants, Chemical , Fluorocarbon Polymers
11.
J Dent ; 147: 105139, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38897540

ABSTRACT

OBJECTIVES: to investigate whether baseline mineral distribution modulates the ability of silver diammine fluoride (SDF) to remineralize and stain enamel caries lesions. METHODS: This laboratory study followed a 3 [treatment: SDF/fluoride varnish (FV)/deionized water (DIW)] ×3 [lesion protocol: methylcellulose (MeC)/hydroxyethylcellulose (HEC)/Carbopol 907 (C907)] factorial design. Lesions were created in bovine enamel specimens (n = 20). Treatments were applied and lesions remineralized in artificial saliva. Digital transverse microradiography (TMR-D) was used to analyze lesions. Lesion color was monitored spectrophotometrically. The effects of lesion protocol and treatment on changes in lesion depth (ΔLD), mineral loss (ΔΔZ), maximum mineral density at the surface zone (ΔSZmax), and color changes related to remineralization (ΔL*remin) were analyzed using two-way ANOVA. RESULTS: The treatment×lesion protocol interaction was significant for ΔΔZ (p < 0.01) and ΔL*remin (p < 0.01), however not for ΔLD (p = 0.23) or ΔSZmax (p = 0.91). There were no differences in ΔΔZ between treatments in HEC and C907 lesions. However, DIW resulted in more remineralization than both SDF (p < 0.01) and FV (p = 0.01) in MeC lesions. Considering changes from lesion baseline after remineralization in MeC lesions, SDF treatment resulted in the highest mineral gain in the surface zone. However, DIW revealed the highest mineral gain after remineralization in the lesion body. SDF stained lesions with the intensity increasing after remineralization in C907 lesions, whereas staining decreased in MeC and HEC lesions. CONCLUSION: High fluoride treatments can interfere with continuous remineralization of caries lesions due to partial arrest. Baseline lesion mineral distribution affects SDF's ability to enhance remineralization and the staining caused by SDF. CLINICAL SIGNIFICANCE: SDF is being used to arrest active caries lesions extending into dentin and to treat dentin hypersensitivity. This study shed light on SDF's effect on an isolated process in dental caries only, remineralization. It achieved this by examining enamel caries lesions with differing mineral distributions and assessing their staining properties.


Subject(s)
Cariostatic Agents , Dental Caries , Dental Enamel , Fluorides, Topical , Microradiography , Quaternary Ammonium Compounds , Silver Compounds , Tooth Remineralization , Animals , Tooth Remineralization/methods , Cattle , Dental Caries/drug therapy , Fluorides, Topical/therapeutic use , Silver Compounds/therapeutic use , Silver Compounds/pharmacology , Dental Enamel/drug effects , Dental Enamel/pathology , Cariostatic Agents/therapeutic use , Cariostatic Agents/pharmacology , Quaternary Ammonium Compounds/therapeutic use , Quaternary Ammonium Compounds/pharmacology , Methylcellulose/therapeutic use , Acrylic Resins/therapeutic use , Saliva, Artificial , Minerals/analysis , Minerals/therapeutic use , Polyvinyls/therapeutic use , Spectrophotometry , Water , Tooth Discoloration/drug therapy , Materials Testing , Cellulose/analogs & derivatives
12.
Int J Biol Macromol ; 273(Pt 2): 133136, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38889826

ABSTRACT

Polylactide/ethylene vinyl alcohol copolymer (PLA/EVOH) blends and fibers with different weight ratios were prepared by melt blending, and two-step melt spinning, respectively. PLA and EVOH in PLA/EVOH blends were immiscible. When EVOH content was ≤60 %, EVOH with the average diameter of about 3 µm was dispersed in PLA matrix uniformly. The dual continuous phases could be observed in PLA/EVOH blend with 70 wt% EVOH. When the EVOH content was ≥80 %, the spherical PLA phase with the diameter of 0.25 to 1 µm was dispersed in EVOH matrix. The introduction of EVOH as nucleating agent could promote the crystallization of PLA. Both PLA and EVOH components in PLA/EVOH blends formed individual crystal phases. The viscosity of PLA/EVOH blend with 5 % EVOH was lower than that of neat PLA. The viscosity of PLA/EVOH blends with the EVOH content of ≥10 % was much higher than that of neat PLA, which showed obvious shear thinning behavior. With the increase of EVOH content, the shear thinning behavior became obvious and the critical shear rate decreased gradually. The drawn PLA/EVOH fibers with the tensile strength of ≥16 cN/tex exhibited good mechanical properties. In addition, the introduction of EVOH could improve the hydrophilicity of PLA fibers.


Subject(s)
Polyesters , Polyvinyls , Polyesters/chemistry , Polyvinyls/chemistry , Viscosity , Tensile Strength , Crystallization
13.
Nanotechnology ; 35(36)2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38861959

ABSTRACT

Here we report the liquid-solid interaction in droplet-based triboelectric nanogenerators (TENG) for estimation of human Na+/K+levels. The exploitation of PVDF-HFP encapsulated WS2as active layer in the droplet-based TENG (DTENG) leads to the generation of electrical signal during the impact of water droplet. Comparison over the control devices indicates that surface quality and dielectric nature of the PVDF-HFP/WS2composite largely dictates the performance of the DTENG. The demonstration of excellent sensitivity of the DTENG towards water quality indicates its promising application towards water testing. In addition, the alteration in output signal with slightest variation in ionic concentration (Na+or K+) in water has been witnessed and is interpreted with charge transfer and ion transfer processes during liquid-solid interaction. The study reveals that the ion mobility largely affects the ion adsorption process on the active layer of PVDF-HFP/WS2and thus generates distinct output profiles for diverse ions like Na+and K+. Following that, the DTENG characteristics have been exploited to artificial urine where the varying output signals have been recorded for variation in urinary Na+ion concentration. Therefore, the deployment of PVDF-HFP/WS2in DTENG holds promising application towards the analyse of ionic characteristics of body fluids.


Subject(s)
Nanostructures , Fluorocarbon Polymers/chemistry , Polyvinyls/chemistry , Nanostructures/chemistry , Capsules , Tungsten Compounds/chemistry , Sulfides/chemistry , Electricity , Potassium/chemistry , Ions/chemistry , Chlorine/chemistry
14.
Int J Pharm ; 660: 124371, 2024 Jul 20.
Article in English | MEDLINE | ID: mdl-38908809

ABSTRACT

This work aimed to develop amphiphilic nanocarriers such as polymersome based diblock copolymer of Kollicoat ® IR -block-poly(ε-caprolactone) (Kollicoat ® IR-b-PCL) for potential co-delivery of Nisin (Ni) and Curcumin (CUR) for treatment of breast cancer. To generate multi-layered nanocarriers of uniform size and morphology, microfluidics was used as a new technology. In order to characterise and optimize polymersome, design of experiments (Design-Expert) software with three levels full factorial design (3-FFD) method was used. Finally, the optimized polymersome was produced with a spherical morphology, small particle size (dH < 200 nm), uniform size distribution (PDI < 0.2), and high drug loading efficiency (Ni 78 % and CUR 93 %). Furthermore, the maximum release of Ni and CUR was found to be roughly 60 % and 80 % in PBS, respectively. Cytotoxicity assays showed a slight cytotoxicity of Ni and CUR -loaded polymersome (N- Ni /CUR) towards normal cells while demonstrating inhibitory activity against cancer cells compared to the free drugs. Also, the apoptosis assays and cellular uptake confirmed the obtained results from cytotoxic analysis. In general, this study demonstrated a microfluidic approach for preparation and optimization of polymersome for co-delivery of two drugs into cancer cells.


Subject(s)
Breast Neoplasms , Curcumin , Drug Carriers , Drug Liberation , Nisin , Polyesters , Curcumin/administration & dosage , Curcumin/chemistry , Curcumin/pharmacokinetics , Curcumin/pharmacology , Nisin/administration & dosage , Nisin/chemistry , Nisin/pharmacology , Humans , Breast Neoplasms/drug therapy , Female , Polyesters/chemistry , Drug Carriers/chemistry , Apoptosis/drug effects , Particle Size , Cell Survival/drug effects , MCF-7 Cells , Cell Line, Tumor , Antineoplastic Agents/administration & dosage , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacokinetics , Antineoplastic Agents/pharmacology , Drug Delivery Systems , Microfluidics/methods , Polyvinyls/chemistry
15.
Int J Biol Macromol ; 274(Pt 1): 133387, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38914384

ABSTRACT

Mixed-matrix membranes (MMMs) exhibit significant potential for dye/salt separation. However, overcoming the "trade-off" between permeability and selectivity, as well as membrane fouling, remains a formidable task. In this work, a biocatalytic membrane was prepared using polydopamine (PDA) as a "bridge" connecting the metal-organic framework (MOF)-based MMM and immobilized laccase. The MOF-based MMM featured an interconnected MOF anchoring on the polyvinylidene fluoride (PVDF) skeleton structure, effectively mitigating the "trade-off" phenomenon and enabling efficient separation of dyes and salts. Enzyme-MOF was in situ grown on the MOF-based MMM via coordination reactions between PDA and metal ion, effectively degrading the adhesion of organic pollutants and fouling, ensuring the long-term stable operation of the membrane. The Lac-MOF@PDA MMM exhibited excellent water permeability of 142.4 L·m-2·h-1, 100 % rejection for dye, and less than 10 % rejection for NaCl. Furthermore, the separation mechanism of Lac-MOF@PDA MMM was systematically investigated, and the results suggested a synergistic combination of rejection, adsorption and catalysis processes. This biocatalytic membrane with multiple sieving and biological catalysis is expected to pave a promising way for efficient wastewater treatment applications.


Subject(s)
Coloring Agents , Enzymes, Immobilized , Indoles , Laccase , Membranes, Artificial , Metal-Organic Frameworks , Polymers , Indoles/chemistry , Polymers/chemistry , Laccase/chemistry , Laccase/metabolism , Metal-Organic Frameworks/chemistry , Coloring Agents/chemistry , Enzymes, Immobilized/chemistry , Enzymes, Immobilized/metabolism , Polyvinyls/chemistry , Salts/chemistry , Adsorption , Sodium Chloride/chemistry , Water Pollutants, Chemical/chemistry , Water Pollutants, Chemical/isolation & purification , Permeability , Water Purification/methods , Fluorocarbon Polymers
16.
Int J Mol Sci ; 25(9)2024 May 02.
Article in English | MEDLINE | ID: mdl-38732199

ABSTRACT

Nanofibrous materials generated through electrospinning have gained significant attention in tissue regeneration, particularly in the domain of bone reconstruction. There is high interest in designing a material resembling bone tissue, and many scientists are trying to create materials applicable to bone tissue engineering with piezoelectricity similar to bone. One of the prospective candidates is highly piezoelectric poly(vinylidene fluoride) (PVDF), which was used for fibrous scaffold formation by electrospinning. In this study, we focused on the effect of PVDF molecular weight (180,000 g/mol and 530,000 g/mol) and process parameters, such as the rotational speed of the collector, applied voltage, and solution flow rate on the properties of the final scaffold. Fourier Transform Infrared Spectroscopy allows for determining the effect of molecular weight and processing parameters on the content of the electroactive phases. It can be concluded that the higher molecular weight of the PVDF and higher collector rotational speed increase nanofibers' diameter, electroactive phase content, and piezoelectric coefficient. Various electrospinning parameters showed changes in electroactive phase content with the maximum at the applied voltage of 22 kV and flow rate of 0.8 mL/h. Moreover, the cytocompatibility of the scaffolds was confirmed in the culture of human adipose-derived stromal cells with known potential for osteogenic differentiation. Based on the results obtained, it can be concluded that PVDF scaffolds may be taken into account as a tool in bone tissue engineering and are worth further investigation.


Subject(s)
Nanofibers , Polyvinyls , Tissue Engineering , Tissue Scaffolds , Tissue Engineering/methods , Polyvinyls/chemistry , Humans , Tissue Scaffolds/chemistry , Nanofibers/chemistry , Biocompatible Materials/chemistry , Cells, Cultured , Spectroscopy, Fourier Transform Infrared , Cell Differentiation/drug effects , Osteogenesis/drug effects , Stromal Cells/cytology , Stromal Cells/metabolism , Molecular Weight , Fluorocarbon Polymers
17.
BMC Oral Health ; 24(1): 579, 2024 May 18.
Article in English | MEDLINE | ID: mdl-38762747

ABSTRACT

BACKGROUND: Vinyl polyether silicone (VPES) is a novel impression biomaterial made of a combination of vinyl polysiloxane (VPS) and polyether (PE). Thus, it is significant to assess its properties and behaviour under varied disinfectant test conditions. This study aimed to assess the dimensional stability of novel VPES impression material after immersion in standard disinfectants for different time intervals. METHODS: Elastomeric impression material used -medium body regular set (Monophase) [Exa'lence GC America]. A total of 84 Specimens were fabricated using stainless steel die and ring (ADA specification 19). These samples were distributed into a control group (n=12) and a test group (n=72). The test group was divided into 3 groups, based on the type of disinfectant used - Group-A- 2% Glutaraldehyde, Group-B- 0. 5% Sodium hypochlorite and Group-C- 2% Chlorhexidine each test group was further divided into 2 subgroups (n=12/subgroup) based on time intervals for which each sample was immersed in the disinfectants - subgroup-1- 10 mins and Subgroup 2- 30 mins. After the impression material was set, it was removed from the ring and then it was washed in water for 15 seconds. Control group measurements were made immediately on a stereomicroscope and other samples were immersed in the three disinfection solutions for 10 mins and 30 mins to check the dimensional stability by measuring the distance between the lines generated by the stainless steel die on the samples using a stereomicroscope at x40 magnification. RESULTS: The distance measured in the control group was 4397.2078 µm and 4396.1571 µm; for the test group Group-A- 2% Glutaraldehyde was 4396.4075 µm and 4394.5992 µm; Group-B- 0. 5% Sodium hypochlorite was 4394.5453 µm and 4389.4711 µm Group-C- 2% Chlorhexidine was 4395.2953 µm and 4387.1703 µm respectively for 10 mins and 30 mins. Percentage dimensional change was in the range of 0.02 - 0.25 for all the groups for 10 mins and 30 mins. CONCLUSIONS: 2 % Glutaraldehyde is the most suitable disinfectant for VPES elastomeric impression material in terms of dimensional stability and shows minimum dimensional changes as compared to that of 2% Chlorhexidine and 0.5% Sodium hypochlorite.


Subject(s)
Dental Impression Materials , Glutaral , Materials Testing , Polyvinyls , Siloxanes , Dental Impression Materials/chemistry , Polyvinyls/chemistry , Siloxanes/chemistry , Time Factors , Glutaral/chemistry , Dental Disinfectants/chemistry , Sodium Hypochlorite/chemistry , Disinfectants/chemistry , Chlorhexidine/chemistry , Surface Properties , Humans
18.
J Colloid Interface Sci ; 671: 336-343, 2024 Oct.
Article in English | MEDLINE | ID: mdl-38815370

ABSTRACT

Against the backdrop of advancements in modern multifunctional wearable electronics, there is a growing demand for simple, sustainable, and portable electronic skin (e-skin), posing significant challenges. This study aims to delineate the development of a straightforward, transparent, highly sensitive, and high power-density electronic skin based on a triboelectric nanogenerator(S-TENG), designed for harvesting human body energy and real-time monitoring of the physiological motion status. Our e-skin incorporates thermally treated polyvinylidene fluoride (PVDF) fiber membranes as the contact layer and a film of silver nanowires as the conductive electrodes. The resulting contact-separation type e-skin exhibits an impressive transparency of 80 %, along with a nice sensitivity value, capable of detecting a light touch from a 0.13 g sponge and demonstrating good working stability and breathability. Leveraging the triboelectric effect, our e-skin generates an open-circuit voltage of 301 V and a short-circuit current of 2.7 µA under an extrinsic force of 8 N over an interaction area of 4 × 4 cm2, achieving a power density up to 306 mW/m2. With its signal processing circuitry, the integrated S-TENG showcases nice energy harvesting and signal transmission capabilities. Accordingly, we contend that S-TENG has potential applications in energy capture and real-time human motion state monitoring. This research is anticipated to blaze a novel and practical trail for self-powered wearable devices and personalized health rehabilitation training regimens.


Subject(s)
Electric Power Supplies , Wearable Electronic Devices , Humans , Nanotechnology , Monitoring, Physiologic/instrumentation , Monitoring, Physiologic/methods , Nanowires/chemistry , Silver/chemistry , Polyvinyls/chemistry , Electrodes , Surface Properties , Breath Tests/instrumentation , Fluorocarbon Polymers
19.
Eur J Prosthodont Restor Dent ; 32(2): 183-193, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38691584

ABSTRACT

INTRODUCTION: The purpose of this in vitro study was to evaluate the dimensional accuracy, trueness, and precision of vinyl siloxane ether (VSXE) and polyvinylsiloxane (PVS) impression materials using different impression techniques. MATERIAL AND METHODS: A three-dimensional (3D) printed mandibular model with implants and metal rods served as the reference model. Impressions were taken in custom trays, resulting in four groups: PVS-closed-tray, VSXE-closed-tray, PVS-open-tray, and VSXE-open-tray. The reference model and impressions were scanned and analyzed using 3D analysis software to assess the trueness and precision within each group. RESULTS: There was significant difference in trueness between the groups, with PVS closed tray showing a higher deviation than VSXE-closed-tray and PVS-open-tray. VSXE-open-tray had the lowest deviation, which was statistically significant. In terms of precision, PVS-closed-tray showed the highest deviation, while no significant differences were found among the other groups. CONCLUSIONS: VSXE impression material with an open tray technique consistently demonstrated the highest levels of accuracy and precision. Conversely, PVS impression material with a closed tray technique yielded less favorable results. CLINICAL RELEVANCE: Better understanding of trueness and precision of new impression materials with new impression techniques will increase their clinical effectiveness.


Subject(s)
Dental Impression Materials , Dental Impression Technique , Denture, Overlay , Mandible , Polyvinyls , Siloxanes , Dental Impression Materials/chemistry , Siloxanes/chemistry , Humans , Dental Prosthesis, Implant-Supported , Printing, Three-Dimensional , In Vitro Techniques , Models, Dental
20.
ACS Appl Mater Interfaces ; 16(22): 28029-28040, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38775012

ABSTRACT

Biophysical and biochemical cues of biomaterials can regulate cell behaviors. Dental pulp stem cells (DPSCs) in pulp tissues can differentiate to odontoblast-like cells and secrete reparative dentin to form a barrier to protect the underlying pulp tissues and enable complete pulp healing. Promotion of the odontogenic differentiation of DPSCs is essential for dentin regeneration. The effects of the surface potentials of biomaterials on the adhesion and odontogenic differentiation of DPSCs remain unclear. Here, poly(vinylidene fluoride-trifluoro ethylene) (P(VDF-TrFE)) films with different surface potentials were prepared by the spin-coating technique and the contact poling method. The cytoskeletal organization of DPSCs grown on P(VDF-TrFE) films was studied by immunofluorescence staining. Using atomic force microscopy (AFM), the lateral detachment forces of DPSCs from P(VDF-TrFE) films were quantified. The effects of electrical stimulation generated from P(VDF-TrFE) films on odontogenic differentiation of DPSCs were evaluated in vitro and in vivo. The unpolarized, positively polarized, and negatively polarized films had surface potentials of -52.9, +902.4, and -502.2 mV, respectively. DPSCs on both negatively and positively polarized P(VDF-TrFE) films had larger cell areas and length-to-width ratios than those on the unpolarized films (P < 0.05). During the detachment of DPSCs from P(VDF-TrFE) films, the average magnitudes of the maximum detachment forces were 29.4, 72.1, and 53.9 nN for unpolarized, positively polarized, and negatively polarized groups, respectively (P < 0.05). The polarized films enhanced the mineralization activities and increased the expression levels of the odontogenic-related proteins of DPSCs compared to the unpolarized films (P < 0.05). The extracellular signal-regulated kinase (ERK) signaling pathway was involved in the odontogenic differentiation of DPSCs as induced by surface charge. In vivo, the polarized P(VDF-TrFE) films enhanced adhesion of DPSCs and promoted the odontogenic differentiation of DPSCs by electrical stimulation, demonstrating a potential application of electroactive biomaterials for reparative dentin formation in direct pulp capping.


Subject(s)
Cell Adhesion , Cell Differentiation , Dental Pulp , Electric Stimulation , Odontogenesis , Polyvinyls , Stem Cells , Dental Pulp/cytology , Cell Differentiation/drug effects , Stem Cells/cytology , Stem Cells/drug effects , Stem Cells/metabolism , Humans , Cell Adhesion/drug effects , Odontogenesis/drug effects , Polyvinyls/chemistry , Animals , Cells, Cultured , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Surface Properties
SELECTION OF CITATIONS
SEARCH DETAIL