Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.451
Filter
1.
Int J Mol Sci ; 25(13)2024 Jul 05.
Article in English | MEDLINE | ID: mdl-39000510

ABSTRACT

Poplar coma, the fluff-like appendages of seeds originating from the differentiated surface cells of the placenta and funicle, aids in the long-distance dispersal of seeds in the spring. However, it also poses hazards to human safety and causes pollution in the surrounding environment. Unraveling the regulatory mechanisms governing the initiation and development of coma is essential for addressing this issue comprehensively. In this study, strand-specific RNA-seq was conducted at three distinct stages of coma development, revealing 1888 lncRNAs and 52,810 mRNAs. The expression profiles of lncRNAs and mRNAs during coma development were analyzed. Subsequently, potential target genes of lncRNAs were predicted through co-localization and co-expression analyses. Integrating various types of sequencing data, lncRNA-miRNA-TF regulatory networks related to the initiation of coma were constructed. Utilizing identified differentially expressed genes encoding kinesin and actin, lncRNA-miRNA-mRNA regulatory networks associated with the construction and arrangement of the coma cytoskeleton were established. Additionally, relying on differentially expressed genes encoding cellulose synthase, sucrose synthase, and expansin, lncRNA-miRNA-mRNA regulatory networks related to coma cell wall synthesis and remodeling were developed. This study not only enhances the comprehension of lncRNA but also provides novel insights into the molecular mechanisms governing the initiation and development of poplar coma.


Subject(s)
Gene Expression Regulation, Plant , Gene Regulatory Networks , High-Throughput Nucleotide Sequencing , MicroRNAs , Populus , RNA, Long Noncoding , RNA, Messenger , Populus/genetics , RNA, Long Noncoding/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism , MicroRNAs/genetics , Gene Expression Profiling/methods , Seeds/genetics , Seeds/growth & development
2.
Int J Mol Sci ; 25(13)2024 Jun 29.
Article in English | MEDLINE | ID: mdl-39000320

ABSTRACT

The toxic metal cadmium (Cd) poses a serious threat to plant growth and human health. Populus euphratica calcium-dependent protein kinase 21 (CPK21) has previously been shown to attenuate Cd toxicity by reducing Cd accumulation, enhancing antioxidant defense and improving water balance in transgenic Arabidopsis. Here, we confirmed a protein-protein interaction between PeCPK21 and Arabidopsis nuclear transcription factor YC3 (AtNF-YC3) by yeast two-hybrid and bimolecular fluorescence complementation assays. AtNF-YC3 was induced by Cd and strongly expressed in PeCPK21-overexpressed plants. Overexpression of AtNF-YC3 in Arabidopsis reduced the Cd inhibition of root length, fresh weight and membrane stability under Cd stress conditions (100 µM, 7 d), suggesting that AtNF-YC3 appears to contribute to the improvement of Cd stress tolerance. AtNF-YC3 improved Cd tolerance by limiting Cd uptake and accumulation, activating antioxidant enzymes and reducing hydrogen peroxide (H2O2) production under Cd stress. We conclude that PeCPK21 interacts with AtNF-YC3 to limit Cd accumulation and enhance the reactive oxygen species (ROS) scavenging system and thereby positively regulate plant adaptation to Cd environments. This study highlights the interaction between PeCPK21 and AtNF-YC3 under Cd stress conditions, which can be utilized to improve Cd tolerance in higher plants.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Cadmium , Gene Expression Regulation, Plant , Plants, Genetically Modified , Populus , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis/drug effects , Cadmium/toxicity , Cadmium/metabolism , Populus/genetics , Populus/metabolism , Populus/drug effects , Gene Expression Regulation, Plant/drug effects , Arabidopsis Proteins/metabolism , Arabidopsis Proteins/genetics , Stress, Physiological/drug effects , Protein Kinases/metabolism , Protein Kinases/genetics , Reactive Oxygen Species/metabolism , Hydrogen Peroxide/metabolism , Plant Roots/metabolism , Plant Roots/drug effects , Plant Roots/genetics , Plant Roots/growth & development , Transcription Factors/metabolism , Transcription Factors/genetics , Protein Binding
3.
BMC Genomics ; 25(1): 657, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38956453

ABSTRACT

BACKGROUND: Histone deacetylases (HDACs) and histone acetyltransferases (HATs) are involved in plant growth and development as well as in response to environmental changes, by dynamically regulating gene acetylation levels. Although there have been numerous reports on the identification and function of HDAC and HAT in herbaceous plants, there are fewer report related genes in woody plants under drought stress. RESULTS: In this study, we performed a genome-wide analysis of the HDAC and HAT families in Populus trichocarpa, including phylogenetic analysis, gene structure, conserved domains, and expression analysis. A total of 16 PtrHDACs and 12 PtrHATs were identified in P. trichocarpa genome. Analysis of cis-elements in the promoters of PtrHDACs and PtrHATs revealed that both gene families could respond to a variety of environmental signals, including hormones and drought. Furthermore, real time quantitative PCR indicated that PtrHDA906 and PtrHAG3 were significantly responsive to drought. PtrHDA906, PtrHAC1, PtrHAC3, PtrHAG2, PtrHAG6 and PtrHAF1 consistently responded to abscisic acid, methyl jasmonate and salicylic acid under drought conditions. CONCLUSIONS: Our study demonstrates that PtrHDACs and PtrHATs may respond to drought through hormone signaling pathways, which helps to reveal the hub of acetylation modification in hormone regulation of abiotic stress.


Subject(s)
Droughts , Gene Expression Regulation, Plant , Histone Acetyltransferases , Histone Deacetylases , Phylogeny , Populus , Histone Deacetylases/genetics , Histone Deacetylases/metabolism , Histone Acetyltransferases/genetics , Histone Acetyltransferases/metabolism , Populus/genetics , Populus/enzymology , Stress, Physiological/genetics , Gene Expression Profiling , Promoter Regions, Genetic , Genome, Plant , Plant Proteins/genetics , Plant Proteins/metabolism
4.
Planta ; 260(2): 47, 2024 Jul 06.
Article in English | MEDLINE | ID: mdl-38970694

ABSTRACT

MAIN CONCLUSION: Transcription of PagMYB147 was induced in poplar infected by Melampsora magnusiana, and a decline in its expression levels increases the host's susceptibility, whereas its overexpression promotes resistance to rust disease. Poplars are valuable tree species with diverse industrial and silvicultural applications. The R2R3-MYB subfamily of transcription factors plays a crucial role in response to biotic stresses. However, the functional studies on poplar R2R3-MYB genes in resistance to leaf rust disease are still insufficient. We identified 191 putative R2R3-MYB genes in the Populus trichocarpa genome. A phylogenetic analysis grouped poplar R2R3-MYBs and Arabidopsis R2R3-MYBs into 33 subgroups. We detected 12 tandem duplication events and 148 segmental duplication events, with the latter likely being the main contributor to the expansion of poplar R2R3-MYB genes. The promoter regions of these genes contained numerous cis-acting regulatory elements associated with response to stress and phytohormones. Analyses of RNA-Seq data identified a multiple R2R3-MYB genes response to Melampsora magnusiana (Mmag). Among them, PagMYB147 was significantly up-regulated under Mmag inoculation, salicylic acid (SA) and methyl jasmonate (MeJA) treatment, and its encoded product was primarily localized to the cell nucleus. Silencing of PagMYB147 exacerbated the severity of Mmag infection, likely because of decreased reactive oxygen species (ROS) production and phenylalanine ammonia-lyase (PAL) enzyme activity, and up-regulation of genes related to ROS scavenging and down-regulation of genes related to PAL, SA and JA signaling pathway. In contrast, plants overexpressing PagMYB147 showed the opposite ROS accumulation, PAL enzyme activity, SA and JA-related gene expressions, and improved Mmag resistance. Our findings suggest that PagMYB147 acts as a positive regulatory factor, affecting resistance in poplar to Mmag by its involvement in the regulation of ROS homeostasis, SA and JA signaling pathway.


Subject(s)
Basidiomycota , Cyclopentanes , Disease Resistance , Gene Expression Regulation, Plant , Phylogeny , Plant Diseases , Plant Proteins , Populus , Transcription Factors , Populus/genetics , Populus/microbiology , Plant Diseases/microbiology , Plant Diseases/genetics , Transcription Factors/genetics , Transcription Factors/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Basidiomycota/physiology , Disease Resistance/genetics , Cyclopentanes/metabolism , Cyclopentanes/pharmacology , Oxylipins/metabolism , Oxylipins/pharmacology , Genome-Wide Association Study , Plant Growth Regulators/metabolism , Reactive Oxygen Species/metabolism , Acetates/pharmacology , Arabidopsis/genetics , Arabidopsis/microbiology
5.
New Phytol ; 243(5): 1776-1794, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38978318

ABSTRACT

Rare variants contribute significantly to the 'missing heritability' of quantitative traits. The genome-wide characteristics of rare variants and their roles in environmental adaptation of woody plants remain unexplored. Utilizing genome-wide rare variant association study (RVAS), expression quantitative trait loci (eQTL) mapping, genetic transformation, and molecular experiments, we explored the impact of rare variants on stomatal morphology and drought adaptation in Populus. Through comparative analysis of five world-wide Populus species, we observed the influence of mutational bias and adaptive selection on the distribution of rare variants. RVAS identified 75 candidate genes correlated with stomatal size (SS)/stomatal density (SD), and a rare haplotype in the promoter of serine/arginine-rich splicing factor PtoRSZ21 emerged as the foremost association signal governing SS. As a positive regulator of drought tolerance, PtoRSZ21 can recruit the core splicing factor PtoU1-70K to regulate alternative splicing (AS) of PtoATG2b (autophagy-related 2). The rare haplotype PtoRSZ21hap2 weakens binding affinity to PtoMYB61, consequently affecting PtoRSZ21 expression and SS, ultimately resulting in differential distribution of Populus accessions in arid and humid climates. This study enhances the understanding of regulatory mechanisms that underlie AS induced by rare variants and might provide targets for drought-tolerant varieties breeding in Populus.


Subject(s)
Adaptation, Physiological , Droughts , Gene Expression Regulation, Plant , Haplotypes , Plant Proteins , Plant Stomata , Populus , Populus/genetics , Populus/physiology , Populus/anatomy & histology , Plant Stomata/physiology , Plant Stomata/genetics , Haplotypes/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Adaptation, Physiological/genetics , Quantitative Trait Loci/genetics , Serine-Arginine Splicing Factors/genetics , Serine-Arginine Splicing Factors/metabolism , Genome-Wide Association Study , Alternative Splicing/genetics , Genetic Variation , Drought Resistance
6.
Plant Sci ; 346: 112138, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38825043

ABSTRACT

Vascular cambium in tree species is a cylindrical domain of meristematic cells that are responsible for producing secondary xylem (also called wood) inward and secondary phloem outward. The poplar (Populus trichocarpa) WUSCHEL (WUS)-RELATED HOMEOBOX (WOX) family members, PtrWUSa and PtrWOX13b, were previously shown to be expressed in vascular cambium and differentiating xylem cells in poplar stems, but their functions remain unknown. Here, we investigated roles of PtrWUSa, PtrWOX13b and their close homologs in vascular organization and wood formation. Expression analysis showed that like PtrWUSa and PtrWOX13b, their close homologs, PtrWUSb, PtrWUS4a/b and PtrWOX13a/c, were also expressed in vascular cambium and differentiating xylem cells in poplar stems. PtrWUSa also exhibited a high level of expression in developing phloem fibers. Expression of PtrWUSa fused with the dominant EAR repression domain (PtrWUSa-DR) in transgenic poplar caused retarded growth of plants with twisted stems and curled leaves and a severe disruption of vascular organization. In PtrWUSa-DR stems, a drastic proliferation of cells occurred in the phloem region between vascular cambium and phloem fibers and they formed islands of ectopic vascular tissues or phloem fiber-like sclerenchyma cells. A similar proliferation of cells was also observed in PtrWUSa-DR leaf petioles and midveins. On the other hand, overexpression of PtrWOX4a-DR caused ectopic formation of vascular bundles in the cortical region, and overexpression of PtrWOX13a-DR and PtrWOX13b-DR led to a reduction in wood formation without affecting vascular organization in transgenic poplar plants. Together, these findings indicate crucial roles of PtrWUSa and PtrWOX13a/b in regulating vascular organization and wood formation, which furthers our understanding of the functions of WOX genes in regulating vascular cambium activity in tree species.


Subject(s)
Cambium , Gene Expression Regulation, Plant , Plant Proteins , Plants, Genetically Modified , Populus , Wood , Xylem , Populus/genetics , Populus/growth & development , Populus/metabolism , Wood/growth & development , Wood/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Xylem/growth & development , Xylem/metabolism , Xylem/genetics , Cambium/genetics , Cambium/growth & development , Plants, Genetically Modified/genetics , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism , Genes, Homeobox , Phloem/genetics , Phloem/growth & development , Phloem/metabolism , Plant Stems/growth & development , Plant Stems/genetics , Plant Stems/metabolism
7.
Plant Sci ; 346: 112159, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38901779

ABSTRACT

Wood production is largely determined by the activity of cambial cell proliferation, and the secondary cell wall (SCW) thickening of xylem cells determines the wood property. In this study, we identified an INDETERMINATE DOMAIN (IDD) type C2H2 zinc finger transcription factor PagIDD15A as a regulator of wood formation in Populus alba × Populus glandulosa. Downregulation of PagIDD15A expression by RNA interference (RNAi) inhibited xylem development and xylem cell secondary wall thickening. RNA-seq analysis showed that PagPAL1, PagCCR2 and PagCCoAOMT1 were downregulated in the differentiating xylem of the PagIDD15A-RNAi transgenic plants, showing that PagIDD15A may regulate SCW biosynthesis through inhibiting lignin biosynthesis. The downregulation of PagVND6-B2, PagMYB10 and PagMYC4 and upregulation of PagWRKY12 in the differentiating xylem of RNAi transgenic plants suggest that PagIDD15A may also regulate these transcription factor (TF) genes to affect SCW thickening. RT-qPCR analysis in the phloem-cambium of RNAi transgenic demonstrates that PagIDD15A may regulate the expression of the genes associated with cell proliferation, including, PagSHR (SHORTROOT), PagSCR (SCARECROW), PagCYCD3;1 (CYCLIN D3;1) and PagSMR4 (SIAMESE-RELATED4), to affect the cambial activity. This study provides the knowledge of the IDD-type C2H2 zinc finger protein in regulating wood formation.


Subject(s)
Cell Wall , Gene Expression Regulation, Plant , Lignin , Plant Proteins , Plants, Genetically Modified , Populus , Populus/genetics , Populus/metabolism , Populus/growth & development , Cell Wall/metabolism , Lignin/metabolism , Lignin/biosynthesis , Plant Proteins/genetics , Plant Proteins/metabolism , Xylem/metabolism , Xylem/genetics , Wood/metabolism , Wood/genetics , Wood/growth & development , Transcription Factors/metabolism , Transcription Factors/genetics , CYS2-HIS2 Zinc Fingers , Zinc Fingers
8.
Plant Sci ; 346: 112170, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38906181

ABSTRACT

Plant tau glutathione S-transferase (GSTU) is a kind of multiple functions enzyme, but its specific roles in poplar disease resistance remain uncertain. In this study, 27 PdbGSTU-encoding genes from Populus davidiana × P. bollena were cloned and their protein architectures and phylogenetic relationships were subsequently analyzed. Expression analysis revealed that PdbGSTUs were differentially expressed under Alternaria alternate infection. Then, the PdbGSTU10 was further induced by phytohormones and H2O2, especially salicylic acid (SA), indicating its potential role in the pathogen defense of poplar. Subsequently, gain- and loss-of-function assays showed that overexpressed PdbGSTU10 activated antioxidant enzymes and significantly decreased reactive oxygen species (ROS) content, ultimately improving the resistance to A. alternate in poplar. Conversely, silencing PdbGSTU10 had the opposite effect. Moreover, overexpressed PdbGSTU10 also increased the content of SA and induced the expression of SA signal-related genes. These results showed that PdbGSTU10 may enhance disease resistance in poplar by scavenging ROS and affecting the SA signaling pathway. Our findings contribute to the understanding of the functions of GSTU in woody plants, particularly in disease resistance.


Subject(s)
Alternaria , Disease Resistance , Plant Diseases , Plant Proteins , Populus , Populus/genetics , Populus/microbiology , Populus/enzymology , Populus/metabolism , Populus/immunology , Alternaria/physiology , Disease Resistance/genetics , Plant Diseases/microbiology , Plant Diseases/genetics , Plant Diseases/immunology , Plant Proteins/genetics , Plant Proteins/metabolism , Gene Expression Regulation, Plant , Glutathione Transferase/genetics , Glutathione Transferase/metabolism , Phylogeny , Reactive Oxygen Species/metabolism , Salicylic Acid/metabolism
9.
Int J Mol Sci ; 25(11)2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38892311

ABSTRACT

Plants and insects coevolved as an evolutionarily successful and enduring association. The molecular arms race led to evolutionary novelties regarding unique mechanisms of defence and detoxification in plants and insects. While insects adopt mechanisms to conquer host defence, trees develop well-orchestrated and species-specific defence strategies against insect herbivory. However, current knowledge on the molecular underpinnings of fine-tuned tree defence responses against different herbivore insects is still restricted. In the current study, using a multi-omics approach, we unveiled the defence response of Populus tremula against aphids (Chaitophorus populialbae) and spongy moths (Lymantria dispar) herbivory. Comparative differential gene expression (DGE) analyses revealed that around 272 and 1203 transcripts were differentially regulated in P. tremula after moth and aphid herbivory compared to uninfested controls. Interestingly, 5716 transcripts were differentially regulated in P. tremula between aphids and moth infestation. Further investigation showed that defence-related stress hormones and their lipid precursors, transcription factors, and signalling molecules were over-expressed, whereas the growth-related counterparts were suppressed in P. tremula after aphid and moth herbivory. Metabolomics analysis documented that around 37% of all significantly abundant metabolites were associated with biochemical pathways related to tree growth and defence. However, the metabolic profiles of aphid and moth-fed trees were quite distinct, indicating species-specific response optimization. After identifying the suitable reference genes in P. tremula, the omics data were further validated using RT-qPCR. Nevertheless, our findings documented species-specific fine-tuning of the defence response of P. tremula, showing conservation on resource allocation for defence overgrowth under aphid and moth herbivory. Such findings can be exploited to enhance our current understanding of molecular orchestration of tree responses against herbivory and aid in developing insect pest resistance P. tremula varieties.


Subject(s)
Aphids , Gene Expression Regulation, Plant , Herbivory , Moths , Populus , Transcriptome , Populus/genetics , Populus/parasitology , Populus/metabolism , Animals , Aphids/physiology , Moths/physiology , Moths/genetics , Metabolomics/methods , Gene Expression Profiling , Metabolome
10.
Plant Physiol Biochem ; 212: 108776, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38843683

ABSTRACT

Alternative splicing (AS) serves as a crucial post-transcriptional regulator in plants that contributes to the resistance to salt stress. However, the underlying mechanism is largely unknown. In this research, we identified an important AS transcript in Populus euphratica, PeuHKT1:3a, generated by alternative 3' splice site splicing mode that resulted in the removal of 252 bases at the 5' end of the first exon in PeuHKT1:3. Protein sequence comparison showed that the site of AS occurred in PeuHKT1:3 is located at a crucial Ser residue within the first pore-loop domain, which leads to inefficient K+ transport in HKT I-type transporters. Expressing PeuHKT1;3a in an axt3 mutant yeast strain can effectively compensate for the lack of intracellular K+, whereas the expression of PeuHKT1;3 cannot yield the effect. Furthermore, in transgenic Arabidopsis and poplar plants, it was observed that lines expressing PeuHKT1;3a exhibited greater salt tolerance compared to those expressing the PeuHKT1;3 strain. Analysis of ion content and flux demonstrated that the transgenic PeuHKT1;3a line exhibited significantly higher K+ content compared to the PeuHKT1;3 line, while there was no significant difference in Na+ content. In conclusion, our findings revealed that AS can give rise to novel variants of HKT I-type proteins in P. euphratica with modified K+ selectivity to keep a higher K+/Na+ ratio to enhanced salt tolerance.


Subject(s)
Alternative Splicing , Plant Proteins , Plants, Genetically Modified , Populus , Potassium , Populus/genetics , Populus/metabolism , Potassium/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Alternative Splicing/genetics , Arabidopsis/genetics , Arabidopsis/metabolism , Salt Stress/genetics , Salt Tolerance/genetics , Cation Transport Proteins/genetics , Cation Transport Proteins/metabolism , Gene Expression Regulation, Plant , RNA Splice Sites/genetics , Symporters
11.
Sci Rep ; 14(1): 12592, 2024 06 01.
Article in English | MEDLINE | ID: mdl-38824196

ABSTRACT

The plant cell wall serves as a critical interface between the plant and its environment, offering protection against various stresses and contributing to biomass production. Hemicellulose is one of the major components of the cell wall, and understanding the transcriptional regulation of its production is essential to fully understanding cell wall formation. This study explores the regulatory mechanisms underlying one of the genes involved in hemicellulose biosynthesis, PtrPARVUS2. Six transcription factors (TFs) were identified from a xylem-biased library to negatively regulate PtrPARVUS2 expression. These TFs, belonging to diverse TF families, were confirmed to bind to specific cis-elements in the PtrPARVUS2 promoter region, as validated by Yeast One-Hybrid (Y1H) assays, transient expression analysis, and Chromatin Immunoprecipitation sequencing (ChIP-seq) assays. Furthermore, motif analysis identified putative cis-regulatory elements bound by these TFs, shedding light on the transcriptional regulation of SCW biosynthesis genes. Notably, several TFs targeted genes encoding uridine diphosphate glycosyltransferases (UGTs), crucial enzymes involved in hemicellulose glycosylation. Phylogenetic analysis of UGTs regulated by these TFs highlighted their diverse roles in modulating hemicellulose synthesis. Overall, this study identifies a set of TFs that regulate PARVUS2 in poplar, providing insights into the intricate coordination of TFs and PtrPARVUS2 in SCW formation. Understanding these regulatory mechanisms enhances our ability to engineer plant biomass for tailored applications, including biofuel production and bioproduct development.


Subject(s)
Gene Expression Regulation, Plant , Polysaccharides , Populus , Promoter Regions, Genetic , Transcription Factors , Populus/genetics , Populus/metabolism , Polysaccharides/metabolism , Polysaccharides/biosynthesis , Transcription Factors/metabolism , Transcription Factors/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Phylogeny , Cell Wall/metabolism , Cell Wall/genetics
12.
Tree Physiol ; 44(7)2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38857382

ABSTRACT

Nonstructural carbohydrate reserves of stems and roots underpin overall tree fitness and productivity under short-rotation management practices such as coppicing for bioenergy. While sucrose and starch comprise the predominant stem carbohydrate reserves of Populus, utilization for fitness and agricultural productivity is understood primarily in terms of starch turnover. The tonoplast sucrose transport protein SUT4 modulates sucrose export from source leaves to distant sinks during photoautotrophic growth, but the possibility of its involvement in remobilizing carbohydrates from storage organs during heterotrophic growth has not been explored. Here, we used PtaSUT4-knockout mutants of Populus tremula × P. alba (INRA 717-1B4) in winter (cool) and summer (warm) glasshouse coppicing experiments to assess SUT4 involvement in reserve utilization. Conditions preceding and supporting summer sprouting were considered favorable for growth, while those preceding and supporting cool temperature sprouting were suboptimal akin to conditions associated with coppicing as generally practiced. Epicormic bud emergence was delayed in sut4 mutants following lower temperature 'winter' but not summer coppicing. Winter xylem hexose increases were observed in control but not in sut4 stumps after coppicing. The magnitude of starch and sucrose reserve depletion was similar in control and sut4 stumps during the winter and did not explain the sprouting and xylem hexose differences. However, winter maintenance costs appeared higher in sut4 based partly on Krebs cycle intermediate levels. In control plants, bark accrual of abundant defense metabolites, including salicinoids and condensed tannins, was higher in summer than in winter, but this increase of summer defense allocations was attenuated in sut4 mutants. Temperature-sensitive trade-offs between growth and other priorities may therefore depend on SUT4 in Populus.


Subject(s)
Carbohydrate Metabolism , Plant Proteins , Populus , Seasons , Sucrose , Populus/metabolism , Populus/growth & development , Populus/genetics , Sucrose/metabolism , Plant Proteins/metabolism , Plant Proteins/genetics , Starch/metabolism , Biological Transport , Plant Stems/metabolism , Plant Stems/growth & development
13.
Mol Ecol ; 33(14): e17430, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38867593

ABSTRACT

Population demographic changes, alongside landscape, geographic and climate heterogeneity, can influence the timing, stability and extent of introgression where species hybridise. Thus, quantifying interactions across diverged lineages, and the relative contributions of interspecific genetic exchange and selection to divergence at the genome-wide level is needed to better understand the drivers of hybrid zone formation and maintenance. We used seven latitudinally arrayed transects to quantify the contributions of climate, geography and landscape features to broad patterns of genetic structure across the hybrid zone of Populus trichocarpa and P. balsamifera and evaluated the demographic context of hybridisation over time. We found genetic structure differed among the seven transects. While ancestry was structured by climate, landscape features influenced gene flow dynamics. Demographic models indicated a secondary contact event may have influenced contemporary hybrid zone formation with the origin of a putative hybrid lineage that inhabits regions with higher aridity than either of the ancestral groups. Phylogenetic relationships based on chloroplast genomes support the origin of this hybrid lineage inferred from demographic models based on the nuclear data. Our results point towards the importance of climate and landscape patterns in structuring the contact zones between P. trichocarpa and P. balsamifera and emphasise the value whole genome sequencing can have to advancing our understanding of how neutral processes influence divergence across space and time.


Subject(s)
Climate , Gene Flow , Genetics, Population , Hybridization, Genetic , Phylogeny , Populus , Populus/genetics , Genome, Chloroplast , Geography , Genomics
14.
New Phytol ; 243(4): 1455-1471, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38874377

ABSTRACT

Wood is resulted from the radial growth paced by the division and differentiation of vascular cambium cells in woody plants, and phytohormones play important roles in cambium activity. Here, we identified that PagJAZ5, a key negative regulator of jasmonate (JA) signaling, plays important roles in enhancing cambium cell division and differentiation by mediating cytokinin signaling in poplar 84K (Populus alba × Populus glandulosa). PagJAZ5 is preferentially expressed in developing phloem and cambium, weakly in developing xylem cells. Overexpression (OE) of PagJAZ5m (insensitive to JA) increased cambium activity and xylem differentiation, while jaz mutants showed opposite results. Transcriptome analyses revealed that cytokinin oxidase/dehydrogenase (CKXs) and type-A response regulators (RRs) were downregulated in PagJAZ5m OE plants. The bioactive cytokinins were significantly increased in PagJAZ5m overexpressing plants and decreased in jaz5 mutants, compared with that in 84K plants. The PagJAZ5 directly interact with PagMYC2a/b and PagWOX4b. Further, we found that the PagRR5 is regulated by PagMYC2a and PagWOX4b and involved in the regulation of xylem development. Our results showed that PagJAZ5 can increase cambium activity and promote xylem differentiation through modulating cytokinin level and type-A RR during wood formation in poplar.


Subject(s)
Cambium , Cyclopentanes , Cytokinins , Gene Expression Regulation, Plant , Oxylipins , Plant Proteins , Populus , Signal Transduction , Xylem , Populus/genetics , Populus/growth & development , Populus/metabolism , Cambium/genetics , Cambium/growth & development , Cambium/metabolism , Cytokinins/metabolism , Plant Proteins/metabolism , Plant Proteins/genetics , Xylem/metabolism , Cyclopentanes/metabolism , Oxylipins/metabolism , Oxylipins/pharmacology , Mutation/genetics , Protein Binding/drug effects , Cell Differentiation
15.
Tree Physiol ; 44(7)2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38905297

ABSTRACT

Plant enzymes significantly contribute to the rapidly diversified metabolic repertoire since the colonization of land by plants. Carboxylesterase is just one of the ubiquitous, multifunctional and ancient enzymes that has particularly diversified during plant evolution. This study provided a status on the carboxylesterase landscape within Viridiplantae. A total of 784 carboxylesterases were identified from the genome of 31 plant species representing nine major lineages of sequenced Viridiplantae and divided into five clades based on phylogenetic analysis. Clade I carboxylesterase genes may be of bacterial origin and then expanded and diversified during plant evolution. Clade II was first gained in the ancestor of bryophytes after colonization of land by plants, Clade III and Clade IV in ferns which were considered the most advanced seedless vascular plants, while Clade V was gained in seed plants. To date, the functions of carboxylesterase genes in woody plants remain unclear. In this study, 51 carboxylesterase genes were identified from the genome of Populus trichocarpa and further divided into eight classes. Tandem and segmental duplication events both contributed to the expansion of carboxylesterase genes in Populus. Although carboxylesterase genes were proven to enhance resistance to pathogens in many herbaceous species, relevant researches on forest trees are still needed. In this study, pathogen incubation assays showed that overexpressing of six Class VI carboxylesterases in Populus tomentosa, to a greater or lesser degree, reduced colonization of detached leaves by fungus Cytospora chrysosperma. A significant difference was also found in functional divergence patterns for genes derived from different gene duplication events. Functional differentiation of duplicated carboxylesterase genes in Populus was proved for the first time by in vivo physiological analysis. The identification of the potentially anti-fungal PtoCXE06 gene also laid a theoretical foundation for promoting the genetic improvement of disease-resistance traits in forest trees.


Subject(s)
Plants, Genetically Modified , Populus , Populus/genetics , Populus/microbiology , Plants, Genetically Modified/genetics , Phylogeny , Evolution, Molecular , Plant Proteins/genetics , Plant Proteins/metabolism , Plant Diseases/microbiology , Plant Diseases/genetics , Multigene Family , Carboxylic Ester Hydrolases/genetics , Carboxylic Ester Hydrolases/metabolism
16.
Plant Physiol Biochem ; 213: 108870, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38914038

ABSTRACT

Populus, a significant fast-growing tree species with global afforestation and energy potential, holds considerable economic value. The abundant production of secondary xylem by trees, which serves as a vital resource for industrial purposes and human sustenance, necessitates the orchestration of various regulatory mechanisms, encompassing transcriptional regulators and microRNAs (miRNAs). Nevertheless, the investigation of microRNA-mediated regulation of poplar secondary growth remains limited. In this study, we successfully isolated a novel microRNA (Pag-miR257) from 84 K poplar and subsequently integrated it into the 35 S overexpression vector. The overexpression of Pag-miR257 resulted in notable increases in plant height, stem diameter, and fresh weight. Additionally, the overexpression of Pag-miR257 demonstrated a significant enhancement in net photosynthetic rate. The findings from the examination of cell wall autofluorescence indicated a substantial increase in both xylem area and the number of vessels in poplar plants overexpressing Pag-miR257. Furthermore, the cell wall of the Pag-miR257 overexpressing plants exhibited thickening as observed through transmission electron microscopy. Moreover, the Fourier Transforms Infrared (FTIR) analysis and phloroglucinol-HCl staining revealed an elevation in lignin content in Pag-miR257 overexpressing poplar plants. The findings of this study suggest that microRNA257 may play a role in the control of secondary growth in poplar stems, thereby potentially enhancing the development of wood engineering techniques for improved material and energy production.


Subject(s)
MicroRNAs , Populus , Populus/genetics , Populus/growth & development , Populus/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Xylem/metabolism , Xylem/genetics , Gene Expression Regulation, Plant , Lignin/metabolism , Lignin/biosynthesis , Plants, Genetically Modified , RNA, Plant/genetics , Plant Stems/genetics , Plant Stems/metabolism , Plant Stems/growth & development , Photosynthesis/genetics , Cell Wall/metabolism , Cell Wall/genetics
17.
Pestic Biochem Physiol ; 202: 105969, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38879313

ABSTRACT

Populus pseudo-cathayana × Populus deltoides is a crucial artificial forest tree species in Northeast China. The presence of the fall webworm (Hyphantria cunea) poses a significant threat to these poplar trees, causing substantial economic and ecological damage. This study conducted an insect-feeding experiment with fall webworm on P. pseudo-cathayana × P. deltoides, examining poplar's physiological indicators, transcriptome, and metabolome under different lengths of feeding times. Results revealed significant differences in phenylalanine ammonia-lyase activity, total phenolic content, and flavonoids at different feeding durations. Transcriptomic analysis identified numerous differentially expressed genes, including AP2/ERF, MYB, and WRKY transcription factor families exhibiting the highest expression variations. Differential metabolite analysis highlighted flavonoids and phenolic acid compounds of poplar's leaves as the most abundant in our insect-feeding experiment. Enrichment analysis revealed significant enrichment in the plant hormone signal transduction and flavonoid biosynthetic pathways. The contents of jasmonic acid and jasmonoyl-L-isoleucine increased with prolonged fall webworm feeding. Furthermore, the accumulation of dihydrokaempferol, catechin, kaempferol, and naringenin in the flavonoid biosynthesis pathway varied significantly among different samples, suggesting their crucial role in response to pest infestation. These findings provide novel insights into how poplar responds to fall webworm infestation.


Subject(s)
Populus , Populus/genetics , Populus/metabolism , Animals , Flavonoids/metabolism , Coleoptera/physiology , Coleoptera/metabolism , Oxylipins/metabolism , Phenylalanine Ammonia-Lyase/metabolism , Phenylalanine Ammonia-Lyase/genetics , Cyclopentanes/metabolism , Plant Leaves/metabolism , Transcriptome , Gene Expression Regulation, Plant , Moths/genetics , Moths/physiology , Plant Growth Regulators/metabolism
18.
Plant Biol (Stuttg) ; 26(5): 764-776, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38859551

ABSTRACT

The NAC transcription factor family is one of the largest families of TFs in plants, and members of NAC gene family play important roles in plant growth and stress response. Recent release of the haplotype-resolved genome assembly of P. tomentosa provide a platform for NAC protein genome-wide analysis. A total of 270 NAC genes were identified and a comprehensive overview of the PtoNAC gene family is presented, including gene promoter, structure and conserved motif analyses, chromosome localization and collinearity analysis, protein phylogeny, expression pattern, and interaction analysis. The results indicate that protein length, molecular weight, and theoretical isoelectric points of the NAC TF family vary, while gene structure and motif are relatively conserved. Chromosome mapping analysis showed that the P. tomentosa NAC genes are unevenly distributed on 19 chromosomes. The interchromosomal evolutionary results indicate 12 pairs of tandem and 280 segmental duplications. Segmental duplication is possibly related to amplification of P. tomentosa NAC gene family. Expression patterns of 35 PtoNAC genes from P. tomentosa subgroup were analysed under high salinity, and seven NAC genes were induced by this treatment. Promoter and protein interaction network analyses showed that PtoNAC genes are closely associated with growth, development, and abiotic and biotic stress, especially salt stress. These results provide a meaningful reference for follow-up studies of the functional characteristics of NAC genes in the mechanism of stress response and their potential roles in development of P. tomentosa.


Subject(s)
Gene Expression Regulation, Plant , Multigene Family , Phylogeny , Plant Proteins , Populus , Salt Stress , Transcription Factors , Populus/genetics , Populus/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Salt Stress/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Promoter Regions, Genetic/genetics , Genome, Plant , Chromosomes, Plant/genetics , Chromosome Mapping
19.
Int J Mol Sci ; 25(11)2024 May 30.
Article in English | MEDLINE | ID: mdl-38892187

ABSTRACT

Thaumatin-like proteins (TLPs) in plants are involved in diverse biotic and abiotic stresses, including antifungal activity, low temperature, drought, and high salinity. However, the roles of the TLP genes are rarely reported in early flowering. Here, the TLP gene family was identified in P. trichocarpa. The 49 PtTLP genes were classified into 10 clusters, and gene structures, conserved motifs, and expression patterns were analyzed in these PtTLP genes. Among 49 PtTLP genes, the PtTLP6 transcription level is preferentially high in stems, and GUS staining signals were mainly detected in the phloem tissues of the PtTLP6pro::GUS transgenic poplars. We generated transgenic Arabidopsis plants overexpressing the PtTLP6 gene, and its overexpression lines showed early flowering phenotypes. However, the expression levels of main flowering regulating genes were not significantly altered in these PtTLP6-overexpressing plants. Our data further showed that overexpression of the PtTLP6 gene led to a reactive oxygen species (ROS) burst in Arabidopsis, which might advance the development process of transgenic plants. In addition, subcellular localization of PtTLP6-fused green fluorescent protein (GFP) was in peroxisome, as suggested by tobacco leaf transient transformation. Overall, this work provides a comprehensive analysis of the TLP gene family in Populus and an insight into the role of TLPs in woody plants.


Subject(s)
Gene Expression Regulation, Plant , Phloem , Plant Proteins , Populus , Arabidopsis/genetics , Arabidopsis/metabolism , Flowers/genetics , Flowers/metabolism , Genome, Plant , Multigene Family , Phloem/metabolism , Phloem/genetics , Phylogeny , Plant Proteins/genetics , Plant Proteins/metabolism , Plants, Genetically Modified/genetics , Populus/genetics , Populus/metabolism , Reactive Oxygen Species/metabolism
20.
Plant J ; 119(2): 735-745, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38741374

ABSTRACT

As a promising model, genome-based plant breeding has greatly promoted the improvement of agronomic traits. Traditional methods typically adopt linear regression models with clear assumptions, neither obtaining the linkage between phenotype and genotype nor providing good ideas for modification. Nonlinear models are well characterized in capturing complex nonadditive effects, filling this gap under traditional methods. Taking populus as the research object, this paper constructs a deep learning method, DCNGP, which can effectively predict the traits including 65 phenotypes. The method was trained on three datasets, and compared with other four classic models-Bayesian ridge regression (BRR), Elastic Net, support vector regression, and dualCNN. The results show that DCNGP has five typical advantages in performance: strong prediction ability on multiple experimental datasets; the incorporation of batch normalization layers and Early-Stopping technology enhancing the generalization capabilities and prediction stability on test data; learning potent features from the data and thus circumventing the tedious steps of manual production; the introduction of a Gaussian Noise layer enhancing predictive capabilities in the case of inherent uncertainties or perturbations; fewer hyperparameters aiding to reduce tuning time across datasets and improve auto-search efficiency. In this way, DCNGP shows powerful predictive ability from genotype to phenotype, which provide an important theoretical reference for building more robust populus breeding programs.


Subject(s)
Genome, Plant , Neural Networks, Computer , Phenotype , Plant Breeding , Populus , Populus/genetics , Genome, Plant/genetics , Plant Breeding/methods , Deep Learning , Genotype , Bayes Theorem
SELECTION OF CITATIONS
SEARCH DETAIL