Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.345
Filter
1.
Can Vet J ; 65(7): 707-711, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38952762

ABSTRACT

A swine production system had 3 sections located a few kilometers apart. Sections A and C contained several thousand sows and nursery and finishing pigs. Section B, located between the other 2 sections, was the smallest and had 6 finishing sites and 2 sow sites. The entire system was infected with porcine reproductive and respiratory syndrome virus, Mycoplasma hyopneumoniae, and Actinobacillus pleuropneumoniae. Section B was depopulated, cleaned, disinfected, and repopulated with negative gilts. Despite extreme measures, recontamination occurred for each pathogen, with aerosol considered the most plausible contamination source.


Transmission suspectée d'agents pathogènes porcins par aérosol : un cas de terrainUn système de production porcine comportait 3 sections situées à quelques kilomètres l'une de l'autre. Les sections A et C contenaient plusieurs milliers de truies et de porcs en maternité et en finition. La section B, située entre les 2 autres sections, était la plus petite et comptait 6 sites de finition et 2 sites de truies. L'ensemble du système était infecté par le virus du syndrome reproducteur et respiratoire porcin, Mycoplasma hyopneumoniae et Actinobacillus pleuropneumoniae. La section B a été dépeuplée, nettoyée, désinfectée et repeuplée de cochettes négatives. Malgré des mesures extrêmes, une recontamination s'est produite pour chaque agent pathogène, les aérosols étant considérés comme la source de contamination la plus plausible.(Traduit par Dr Serge Messier).


Subject(s)
Actinobacillus pleuropneumoniae , Aerosols , Mycoplasma hyopneumoniae , Porcine respiratory and reproductive syndrome virus , Swine Diseases , Animals , Swine , Swine Diseases/transmission , Swine Diseases/microbiology , Swine Diseases/virology , Mycoplasma hyopneumoniae/isolation & purification , Actinobacillus pleuropneumoniae/isolation & purification , Porcine respiratory and reproductive syndrome virus/isolation & purification , Actinobacillus Infections/veterinary , Actinobacillus Infections/transmission , Actinobacillus Infections/microbiology , Pneumonia of Swine, Mycoplasmal/transmission , Female , Porcine Reproductive and Respiratory Syndrome/transmission , Animal Husbandry
2.
Virol J ; 21(1): 150, 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38965549

ABSTRACT

Porcine reproductive and respiratory syndrome (PRRS) is endemic worldwide, seriously affecting the development of the pig industry, but vaccines have limited protective effects against PRRSV transmission. The aim of this study was to identify potential anti-PRRSV drugs. We examined the cytotoxicity of seven compounds formulated based on the mass ratio of glycyrrhizic acid to matrine and calculated their inhibition rates against PRRSV in vitro. The results showed that the seven compounds all had direct killing and therapeutic effects on PRRSV, and the compounds inhibited PRRSV replication in a time- and dose-dependent manner. The compound with the strongest anti-PRRSV effect was selected for subsequent in vivo experiments. Pigs were divided into a control group and a medication group for the in vivo evaluation. The results showed that pigs treated with the 4:1 compound had 100% morbidity after PRRSV challenge, and the mortality rate reached 75% on the 8th day of the virus challenge. These results suggest that this compound has no practical anti-PRRSV effect in vivo and can actually accelerate the death of infected pigs. Next, we further analyzed the pigs that exhibited semiprotective effects following vaccination with the compound to determine whether the compound can synergize with the vaccine in vivo. The results indicated that pigs treated with the compound had higher mortality rates and more severe clinical reactions after PRRSV infection (p < 0.05). The levels of proinflammatory cytokines (IL-6, IL-8, IL-1ß, IFN-γ, and TNF-α) were significantly greater in the compound-treated pigs than in the positive control-treated pigs (p < 0.05), and there was no synergistic enhancement with the live attenuated PRRSV vaccine (p < 0.05). The compound enhanced the inflammatory response, prompted the body to produce excessive levels of inflammatory cytokines and caused body damage, preventing a therapeutic effect. In conclusion, the present study revealed that the in vitro effectiveness of these agents does not indicate that they are effective in vivo or useful for developing anti-PRRSV drugs. Our findings also showed that, to identify effective anti-PRRSV drugs, comprehensive drug screening is needed, for compounds with solid anti-inflammatory effects both in vitro and in vivo. Our study may aid in the development of new anti-PRRSV drugs.


Subject(s)
Alkaloids , Antiviral Agents , Glycyrrhizic Acid , Matrines , Porcine Reproductive and Respiratory Syndrome , Porcine respiratory and reproductive syndrome virus , Quinolizines , Virus Replication , Animals , Porcine respiratory and reproductive syndrome virus/drug effects , Alkaloids/pharmacology , Quinolizines/pharmacology , Quinolizines/therapeutic use , Swine , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Glycyrrhizic Acid/pharmacology , Glycyrrhizic Acid/therapeutic use , Porcine Reproductive and Respiratory Syndrome/drug therapy , Porcine Reproductive and Respiratory Syndrome/virology , Porcine Reproductive and Respiratory Syndrome/prevention & control , Virus Replication/drug effects , Cytokines/metabolism , Survival Analysis
3.
Vet Med Sci ; 10(4): e1540, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38967727

ABSTRACT

BACKGROUND: This field evaluation was designed to evaluate the efficacy of a new porcine reproductive and respiratory syndrome virus-2 (PRRSV-2) modified live virus vaccine at three independent pig farms. METHODS: Three farms were selected for this study based on their respiratory disease status caused by PRRSV-2 infection in post-weaning and growing pigs. Each farm housed a total of 40, 18-day-old pigs that were randomly allocated to one of two treatment groups. Pigs were administered a 1.0 mL dose of the bivalent vaccine intramuscularly at 21 days of age in accordance with the manufacturer's recommendations, whereas unvaccinated pigs were administered a single dose of phosphate buffered saline at the same age. RESULTS: Vaccinated groups were measured and calculated significantly (p < 0.05) higher in body weight and average daily weight gain on all three farms compared with unvaccinated groups. Vaccinated groups elicited PRRS antibodies and PRRSV-2-specific interferon-γ secreting cells, which reduced the amount of PRRSV-2 genomic copies in the blood and reduced macroscopic and microscopic lung lesions severity when compared with unvaccinated groups. CONCLUSIONS: The field evaluation data demonstrated that a new PRRSV-2 modified live virus vaccine was efficacious in swine herds suffering from respiratory diseases caused by PRRSV-2 infection.


Subject(s)
Porcine Reproductive and Respiratory Syndrome , Porcine respiratory and reproductive syndrome virus , Vaccines, Attenuated , Viral Vaccines , Animals , Porcine respiratory and reproductive syndrome virus/immunology , Porcine Reproductive and Respiratory Syndrome/prevention & control , Swine , Viral Vaccines/immunology , Viral Vaccines/administration & dosage , Vaccines, Attenuated/administration & dosage , Vaccines, Attenuated/immunology , Sus scrofa , Random Allocation
4.
J Nanobiotechnology ; 22(1): 388, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38956618

ABSTRACT

BACKGROUND: Porcine reproductive and respiratory syndrome virus (PRRSV) is a prevalent swine pathogen, which has caused adverse impact on the global swine industry for almost 30 years. However, due to the immune suppression caused by the virus and the genetic diversity in PRRSV, no virus-targeting broad neutralizing strategy has been successfully developed yet. Antiviral peptide and nanobody have attracted extensive attention with the ease in production and the efficacy in practice. In this study, four new fusion proteins named nanobody peptide conjugates (NPCs) were developed by combining PRRSV specific non-neutralizing nanobodies with CD163-derived peptides targeting the receptor binding domain (RBD) of PRRSV proteins. RESULTS: Four NPCs were successfully constructed using two nanobodies against PRRSV N and nsp9 individually, recombining with two antiviral peptides 4H7 or 8H2 from porcine CD163 respectively. All four NPCs demonstrated specific capability of binding to PRRSV and broad inhibitory effect against various lineages of PRRSV in a dose-dependent manner. NPCs interfere with the binding of the RBD of PRRSV proteins to CD163 in the PRRSV pre-attachment stage by CD163 epitope peptides in the assistance of Nb components. NPCs also suppress viral replication during the stage of post-attachment, and the inhibitory effects depend on the antiviral functions of Nb parts in NPCs, including the interference in long viral RNA synthesis, NF-κB and IFN-ß activation. Moreover, an interaction was predicted between aa K31 and T32 sites of neutralizing domain 4H7 of NPC-N/nsp9-4H7 and the motif 171NLRLTG176 of PRRSV GP2a. The motif 28SSS30 of neutralizing domain 8H2 of NPC-N/nsp9-8H2 could also form hydrogens to bind with the motif 152NAFLP156 of PRRSV GP3. The study provides valuable insights into the structural characteristics and potential functional implications of the RBD of PRRSV proteins. Finally, as indicated in a mouse model, NPC intranasally inoculated in vivo for 12-24 h sustains the significant neutralizing activity against PRRSV. These findings inspire the potential of NPC as a preventive measure to reduce the transmission risk in the host population against respiratory infectious agents like PRRSV. CONCLUSION: The aim of the current study was to develop a peptide based bioactive compound to neutralize various PRRSV strains. The new antiviral NPC (nanobody peptide conjugate) consists of a specific nanobody targeting the viral protein and a neutralizing CD163 epitope peptide for virus blocking and provides significant antiviral activity. The study will greatly promote the antiviral drug R&D against PRRSV and enlighten a new strategy against other viral diseases.


Subject(s)
Antibodies, Neutralizing , Antigens, CD , Antigens, Differentiation, Myelomonocytic , Peptides , Porcine respiratory and reproductive syndrome virus , Receptors, Cell Surface , Single-Domain Antibodies , Porcine respiratory and reproductive syndrome virus/immunology , Porcine respiratory and reproductive syndrome virus/drug effects , Animals , Single-Domain Antibodies/immunology , Single-Domain Antibodies/pharmacology , Single-Domain Antibodies/chemistry , Swine , Antigens, Differentiation, Myelomonocytic/immunology , Antigens, Differentiation, Myelomonocytic/metabolism , Receptors, Cell Surface/immunology , Antigens, CD/immunology , Antigens, CD/metabolism , Antibodies, Neutralizing/immunology , Peptides/chemistry , Peptides/pharmacology , Peptides/immunology , Porcine Reproductive and Respiratory Syndrome/immunology , Porcine Reproductive and Respiratory Syndrome/prevention & control , Mice , Virus Replication/drug effects , Cell Line
5.
J Immunol Methods ; 530: 113697, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38823576

ABSTRACT

Porcine reproductive and respiratory syndrome (PRRS) caused by the PRRS virus (PRRSV) is one of the most severe swine diseases causing great economic losses for the international swine industry. Non-structural protein 4 (NSP4) is critical to the life cycle of PRRSV and contains dominant B cell epitopes. This study prepared a monoclonal antibody against Nsp4, and 2D11, which contained the sequence 138KQGGGIVTRPSGQFCN153, was confirmed as the epitope. A 2D11-based double antibody sandwich enzyme-linked immunosorbent assay (dasELISA) was next developed with a cut value of 0.1987. A total of 1354 pig serum samples were detected by dasELISA and compared to a commercial ELISA kit (N-coated iELISA), resulting in a positive coincidence rate of 98.8% and negative coincidence rate of 96.9%. A total of 119 sera were positive by dasELISA while negative by iELISA. Higher positive rates by dasELISA were found in pig farms where PRRSV antibody levels varied widely. These results indicated that the dasELISA was a useful tool to detect PRRSV antibody in clinical samples.


Subject(s)
Antibodies, Monoclonal , Antibodies, Viral , Enzyme-Linked Immunosorbent Assay , Porcine Reproductive and Respiratory Syndrome , Porcine respiratory and reproductive syndrome virus , Viral Nonstructural Proteins , Porcine respiratory and reproductive syndrome virus/immunology , Animals , Enzyme-Linked Immunosorbent Assay/methods , Swine , Antibodies, Monoclonal/immunology , Porcine Reproductive and Respiratory Syndrome/immunology , Porcine Reproductive and Respiratory Syndrome/diagnosis , Porcine Reproductive and Respiratory Syndrome/blood , Antibodies, Viral/blood , Antibodies, Viral/immunology , Viral Nonstructural Proteins/immunology , Immunodominant Epitopes/immunology , Epitopes, B-Lymphocyte/immunology
6.
BMC Vet Res ; 20(1): 255, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38867209

ABSTRACT

BACKGROUND: Porcine reproductive and respiratory syndrome virus 2 (PRRSV-2) infection during late gestation substantially lowers fetal viability and survival. In a previous genome-wide association study, a single nucleotide polymorphism on chromosome 7 was significantly associated with probability of fetuses being viable in response to maternal PRRSV-2 infection at 21 days post maternal inoculation. The iodothyronine deiodinase 2 (DIO2) gene, located ~ 14 Kilobase downstream of this SNP, was selected as a priority candidate related to fetal susceptibility following maternal PRRSV-2 infection. Our objectives were to identify mutation(s) within the porcine DIO2 gene and to determine if they were associated with fetal outcomes after PRRSV-2 challenge. Sequencing of the DIO2, genotyping identified variants, and association of DIO2 genotypes with fetal phenotypes including DIO2 mRNA levels, viability, survival, viral loads, cortisol and thyroid hormone levels, and growth measurements were conducted. RESULTS: A missense variant (p.Asn91Ser) was identified in the parental populations from two independent PRRSV-2 challenge trials. This variant was further genotyped to determine association with fetal PRRS outcomes. DIO2 mRNA levels in fetal heart and kidney differed by the genotypes of Asn91Ser substitution with significantly greater DIO2 mRNA expression in heterozygotes compared with wild-type homozygotes (P < 0.001 for heart, P = 0.002 for kidney). While Asn91Ser did not significantly alter fetal viability and growth measurements, interaction effects of the variant with fetal sex or trial were identified for fetal viability or crown rump length, respectively. However, this mutation was not related to dysregulation of the hypothalamic-pituitary-adrenal and thyroid axis, indicated by no differences in circulating cortisol, T4, and T3 levels in fetuses of the opposing genotypes following PRRSV-2 infection. CONCLUSIONS: The present study suggests that a complex relationship among DIO2 genotype, DIO2 expression, fetal sex, and fetal viability may exist during the course of fetal PRRSV infection. Our study also proposes the increase in cortisol levels, indicative of fetal stress response, may lead to fetal complications, such as fetal compromise, fetal death, or premature farrowing, during PRRSV infection.


Subject(s)
Iodide Peroxidase , Mutation, Missense , Porcine Reproductive and Respiratory Syndrome , Porcine respiratory and reproductive syndrome virus , Animals , Porcine Reproductive and Respiratory Syndrome/genetics , Porcine Reproductive and Respiratory Syndrome/virology , Female , Swine , Porcine respiratory and reproductive syndrome virus/genetics , Iodide Peroxidase/genetics , Iodide Peroxidase/metabolism , Pregnancy , Iodothyronine Deiodinase Type II , Genotype , Fetus/virology
7.
Nat Commun ; 15(1): 4813, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38844461

ABSTRACT

Porcine Reproductive and Respiratory Syndrome Virus (PRRSV) poses a major threat to the global swine industry, yet effective prevention and control measures remain elusive. This study unveils Nitazoxanide (NTZ) as a potent inhibitor of PRRSV both in vitro and in vivo. Through High-Throughput Screening techniques, 16 potential anti-PRRSV compounds are identified from a library comprising FDA-approved and pharmacopeial drugs. We show that NTZ displays strong efficacy in reducing PRRSV proliferation and transmission in a swine model, alleviating viremia and lung damage. Additionally, Tizoxanide (TIZ), the primary metabolite of NTZ, has been identified as a facilitator of NMRAL1 dimerization. This finding potentially sheds light on the underlying mechanism contributing to TIZ's role in augmenting the sensitivity of the IFN-ß pathway. These results indicate the promising potential of NTZ as a repurposed therapeutic agent for Porcine Reproductive and Respiratory Syndrome (PRRS). Additionally, they provide valuable insights into the antiviral mechanisms underlying NTZ's effectiveness.


Subject(s)
Antiviral Agents , High-Throughput Screening Assays , Nitro Compounds , Porcine Reproductive and Respiratory Syndrome , Porcine respiratory and reproductive syndrome virus , Thiazoles , Animals , Porcine respiratory and reproductive syndrome virus/drug effects , Nitro Compounds/pharmacology , Swine , Antiviral Agents/pharmacology , High-Throughput Screening Assays/methods , Porcine Reproductive and Respiratory Syndrome/drug therapy , Porcine Reproductive and Respiratory Syndrome/virology , Thiazoles/pharmacology , Virus Replication/drug effects , Cell Line , Viremia/drug therapy , Viremia/virology
8.
J Vis Exp ; (207)2024 May 17.
Article in English | MEDLINE | ID: mdl-38829112

ABSTRACT

The construction of gene expression vectors is an important component of laboratory work in experimental biology. With technical advancements like Gibson Assembly, vector construction becomes relatively simple and efficient. However, when the full-length genome of Porcine Reproductive and Respiratory Syndrome Virus (PRRSV) cannot be easily amplified by a single polymerase chain reaction (PCR) from cDNA, or it is difficult to acquire a full-length gene expression vector by homologous recombination of multiple inserts in vitro, the current Gibson Assembly technique fails to achieve this goal. Consequently, we aimed to divide the PRRSV genome into several fragments and introduce appropriate restriction sites into the reverse primer for obtaining PCR-amplified fragments. After joining the previous DNA fragment into the vector by homologous recombination technology, the new vector acquired the restriction enzyme cleavage site. Thus, we can linearize the vector by using the newly added enzyme cleavage site and introduce the next DNA fragment downstream of the upstream DNA fragment. The introduced restriction enzyme cleavage site at the 3' end of the upstream DNA fragment will be eliminated, and a new cleavage site will be introduced into the 3' end of the downstream DNA fragment. In this way, we can join DNA fragments to the vector one by one. This method is applicable to successfully construct the PRRSV expression vector and is an effective method for assembling a large number of fragments into the expression vector.


Subject(s)
Cloning, Molecular , Genetic Vectors , Porcine respiratory and reproductive syndrome virus , Porcine respiratory and reproductive syndrome virus/genetics , Genetic Vectors/genetics , Cloning, Molecular/methods , Animals , Polymerase Chain Reaction/methods , Swine , Genome, Viral/genetics
9.
Viruses ; 16(6)2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38932221

ABSTRACT

Recombination is a pervasive phenomenon in RNA viruses and an important strategy for accelerating the evolution of RNA virus populations. Recombination in the porcine reproductive and respiratory syndrome virus (PRRSV) was first reported in 1999, and many case reports have been published in recent years. In this review, all the existing reports on PRRSV recombination events were collected, and the genotypes, parental strains, and locations of the recombination breakpoints have been summarized and analyzed. The results showed that the recombination pattern constantly changes; whether inter- or intra-lineage recombination, the recombination hotspots vary in different recombination patterns. The virulence of recombinant PRRSVs was higher than that of the parental strains, and the emergence of virulence reversion was caused by recombination after using MLV vaccines. This could be attributed to the enhanced adaptability of recombinant PRRSV for entry and replication, facilitating their rapid propagation. The aim of this paper was to identify common features of recombinant PRRSV strains, reduce the recombination risk, and provide a foundation for future research into the mechanism of PRRSV recombination.


Subject(s)
Porcine Reproductive and Respiratory Syndrome , Porcine respiratory and reproductive syndrome virus , Recombination, Genetic , Porcine respiratory and reproductive syndrome virus/genetics , Porcine respiratory and reproductive syndrome virus/classification , Porcine respiratory and reproductive syndrome virus/pathogenicity , Animals , Swine , Porcine Reproductive and Respiratory Syndrome/virology , Genotype , Virulence , Genome, Viral , Virus Replication , Phylogeny
10.
Viruses ; 16(6)2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38932282

ABSTRACT

Porcine reproductive and respiratory syndrome virus (PRRSV) presents a significant threat to the global swine industry. The development of highly effective subunit nanovaccines is a promising strategy for preventing PRRSV variant infections. In this study, two different types of ferritin (Ft) nanovaccines targeting the major glycoprotein GP5, named GP5m-Ft and (Bp-IVp)3-Ft, were constructed and evaluated as vaccine candidates for PRRSV. Transmission electron microscopy (TEM) and dynamic light scattering (DLS) demonstrated that both purified GP5m-Ft and (Bp-IVp)3-Ft proteins could self-assemble into nanospheres. A comparison of the immunogenicity of GP5m-Ft and (Bp-IVp)3-Ft with an inactivated PRRSV vaccine in BALB/c mice revealed that mice immunized with GP5m-Ft exhibited the highest ELISA antibody levels, neutralizing antibody titers, the lymphocyte proliferation index, and IFN-γ levels. Furthermore, vaccination with the GP5m-Ft nanoparticle effectively protected piglets against a highly pathogenic PRRSV challenge. These findings suggest that GP5m-Ft is a promising vaccine candidate for controlling PRRS.


Subject(s)
Antibodies, Neutralizing , Antibodies, Viral , Ferritins , Mice, Inbred BALB C , Nanoparticles , Porcine Reproductive and Respiratory Syndrome , Porcine respiratory and reproductive syndrome virus , Viral Envelope Proteins , Viral Vaccines , Animals , Porcine respiratory and reproductive syndrome virus/immunology , Ferritins/immunology , Swine , Mice , Antibodies, Viral/immunology , Antibodies, Viral/blood , Antibodies, Neutralizing/immunology , Antibodies, Neutralizing/blood , Nanoparticles/chemistry , Porcine Reproductive and Respiratory Syndrome/prevention & control , Porcine Reproductive and Respiratory Syndrome/immunology , Viral Vaccines/immunology , Viral Vaccines/administration & dosage , Viral Envelope Proteins/immunology , Viral Envelope Proteins/genetics , Female , Interferon-gamma/metabolism , Nanovaccines
11.
Viruses ; 16(6)2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38932283

ABSTRACT

Since it was first reported in 2013, the NADC30-like PRRSV has been epidemic in China. Hubei Province is known as China's key hog-exporting region. To understand the prevalence and genetic variation of PRRSV, herein, we detected and analyzed 317 lung tissue samples from pigs with respiratory disease in Hubei Province, and demonstrated that the NADC30-like strain was the second-most predominant strain during 2017-2018, following the highly pathogenic PRRSV (HP-PRRSV). Additionally, we isolated a new NADC30-like PRRSV strain, named CHN-HB-2018, which could be stably passaged in Marc-145 cells. Genetic characterization analysis showed that compared with the NADC30 strain, the CHN-HB-2018 strain had several amino acid variations in glycoprotein (GP) 3, GP5, and nonstructural protein 2 (NSP2). Moreover, the CHN-HB-2018 strain showed a unique 5-amino acid (aa) deletion in NSP2, which has not previously been reported. Gene recombination analysis identified the CHN-HB-2018 strain as a potentially recombinant PRRSV of the NADC30-like strain and HP-PRRSV. Animal experiments indicated that the CHN-HB-2018 strain has a mild pathogenicity, with no mortality and only mild fever observed in piglets. This study contributes to defining the evolutionary characteristics of PRRSV and its molecular epidemiology in Hubei Province, and provides a potential candidate strain for PRRSV vaccine development.


Subject(s)
Phylogeny , Porcine Reproductive and Respiratory Syndrome , Porcine respiratory and reproductive syndrome virus , Porcine respiratory and reproductive syndrome virus/genetics , Porcine respiratory and reproductive syndrome virus/pathogenicity , Porcine respiratory and reproductive syndrome virus/classification , Animals , Swine , Porcine Reproductive and Respiratory Syndrome/virology , Porcine Reproductive and Respiratory Syndrome/epidemiology , China/epidemiology , Virulence , Genome, Viral , Recombination, Genetic , Genetic Variation , Lung/virology , Lung/pathology
12.
Vet Res ; 55(1): 56, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38715098

ABSTRACT

The chemokine CXCL8, also known as the neutrophil chemotactic factor, plays a crucial role in mediating inflammatory responses and managing cellular immune reactions during viral infections. Porcine reproductive and respiratory syndrome virus (PRRSV) primarily infects pulmonary alveolar macrophages (PAMs), leading to acute pulmonary infections. In this study, we explored a novel long non-coding RNA (lncRNA), termed lnc-CAST, situated within the Cxcl8 gene locus. This lncRNA was found to be highly expressed in porcine macrophages. We observed that both lnc-CAST and CXCL8 were significantly upregulated in PAMs following PRRSV infection, and after treatments with lipopolysaccharide (LPS) or lipoteichoic acid (LTA). Furthermore, we noticed a concurrent upregulation of lnc-CAST and CXCL8 expression in lungs of PRRSV-infected pigs. We then determined that lnc-CAST positively influenced CXCL8 expression in PAMs. Overexpression of lnc-CAST led to an increase in CXCL8 production, which in turn enhanced the migration of epithelial cells and the recruitment of neutrophils. Conversely, inhibiting lnc-CAST expression resulted in reduced CXCL8 production in PAMs, leading to decreased migration levels of epithelial cells and neutrophils. From a mechanistic perspective, we found that lnc-CAST, localized in the nucleus, facilitated the enrichment of histone H3K27ac in CXCL8 promoter region, thereby stimulating CXCL8 transcription in a cis-regulatory manner. In conclusion, our study underscores the pivotal critical role of lnc-CAST in regulating CXCL8 production, offering valuable insights into chemokine regulation and lung damage during PRRSV infection.


Subject(s)
Histones , Interleukin-8 , Porcine Reproductive and Respiratory Syndrome , Porcine respiratory and reproductive syndrome virus , RNA, Long Noncoding , Animals , Swine , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Porcine respiratory and reproductive syndrome virus/physiology , Interleukin-8/metabolism , Interleukin-8/genetics , Porcine Reproductive and Respiratory Syndrome/genetics , Porcine Reproductive and Respiratory Syndrome/immunology , Porcine Reproductive and Respiratory Syndrome/virology , Histones/metabolism , Histones/genetics , Macrophages, Alveolar/virology , Macrophages, Alveolar/metabolism , Gene Expression Regulation
13.
mBio ; 15(6): e0064024, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38727246

ABSTRACT

Interleukin-18 binding protein (IL-18BP), a natural regulator molecule of the pro-inflammatory cytokine interleukin-18 (IL-18), plays an important role in regulating the expression of the cellular immunity factor interferon-γ (IFN-γ). In a previous RNA-seq analysis of porcine alveolar macrophages (PAM) infected with the TIM and TJ strains of porcine reproductive and respiratory syndrome virus (PRRSV), we unexpectedly found that the mRNA expression of porcine interleukin 18-binding protein (pIL-18BP) in PAM cells infected with the TJM strain was significantly higher than that infected with the TJ strain. Studies have shown that human interleukin-18 binding protein (hIL-18bp) plays an important role in regulating cellular immunity in the course of the disease. However, there is a research gap on pIL-18BP. At the same time, PRRSV infection in pigs triggers weak cellular immune response problems. To explore the expression and the role of pIL-18BP in the cellular immune response induced by PRRSV, we strived to acquire the pIL-18BP gene from PAM or peripheral blood mononuclear cell (PBMC) with RT-PCR and sequencing. Furthermore, pIL-18BP and pIL-18 were both expressed prokaryotically and eukaryotically. The colocalization and interaction based on recombinant pIL-18BP and pIL-18 on cells were confirmed in vitro. Finally, the expression of pIL-18BP, pIL-18, and pIFN-γ was explored in pigs with different PRRSV infection states to interpret the biological function of pIL-18BP in vivo. The results showed there were five shear mutants of pIL-18BP. The mutant with the longest coding region was selected for subsequent functional validation. First, it was demonstrated that TJM-induced pIL-18BP mRNA expression was higher than that of TJ. A direct interaction between pIL-18BP and pIL-18 was confirmed through fluorescence colocalization, bimolecular fluorescent complimentary (BIFC), and co-immunoprecipitation (CO-IP). pIL-18BP also can regulate pIFN-γ mRNA expression. Finally, the expression of pIL-18BP, pIL-18, and pIFN-γ was explored in different PRRSV infection states. Surprisingly, both mRNA and protein expression of pIL-18 were suppressed. These findings fill the gap in understanding the roles played by pIL-18BP in PRRSV infection and provide a foundation for further research.IMPORTANCEPRRSV-infected pigs elicit a weak cellular immune response and the mechanisms of cellular immune regulation induced by PRRSV have not yet been fully elucidated. In this study, we investigated the role of pIL-18BP in PRRSV-induced immune response referring to the regulation of human IL-18BP to human interferon-gamma (hIFN-γ). This is expected to be used as a method to enhance the cellular immune response induced by the PRRSV vaccine. Here, we mined five transcripts of the pIL-18BP gene and demonstrated that it interacts with pIL-18 and regulates pIFN-γ mRNA expression. Surprisingly, we also found that both mRNA and protein expression of pIL-18 were suppressed under different PRRSV strains of infection status. These results have led to a renewed understanding of the roles of pIL-18BP and pIL-18 in cellular immunity induced by PRRSV infection, which has important implications for the prevention and control of PRRS.


Subject(s)
Porcine respiratory and reproductive syndrome virus , RNA, Messenger , Animals , Swine , Porcine respiratory and reproductive syndrome virus/genetics , Porcine respiratory and reproductive syndrome virus/immunology , RNA, Messenger/genetics , RNA, Messenger/metabolism , Intercellular Signaling Peptides and Proteins/genetics , Intercellular Signaling Peptides and Proteins/metabolism , Porcine Reproductive and Respiratory Syndrome/virology , Porcine Reproductive and Respiratory Syndrome/immunology , Porcine Reproductive and Respiratory Syndrome/genetics , Porcine Reproductive and Respiratory Syndrome/metabolism , Macrophages, Alveolar/virology , Macrophages, Alveolar/immunology , Macrophages, Alveolar/metabolism , Host-Pathogen Interactions/genetics , Interferon-gamma/genetics , Interferon-gamma/metabolism , Interferon-gamma/immunology , Transcription, Genetic
14.
Vet Microbiol ; 294: 110125, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38795404

ABSTRACT

Porcine reproductive and respiratory syndrome virus (PRRSV) is a major pathogen affecting pigs and belongs to the enveloped plus-stranded RNA virus family Arteriviridae. A unique feature of Arteriviruses is that the genes encoding the structural proteins overlap at their 3` and 5` ends. This impedes mutagenesis opportunities and precludes the binding of short peptides for antibody detection, as this would alter the amino acids encoded by the overlapping gene. In this study, we aimed to generate infectious PRRSV variants with separated genes encoding the minor glycoproteins Gp2, Gp3, and Gp4, accompanied by appended tags for detection. All recombinant genomes facilitate the release of infectious virus particles into the supernatant of transfected 293 T cells, as evidenced by immunofluorescence of infected MARC-145 cells using anti-nucleocapsid antibodies. Furthermore, expression of Gp2-Myc and Gp3-HA was confirmed through immunofluorescence and western blot analysis with tag-specific antibodies. However, after two passages of Gp2-Myc and Gp3-HA viruses, the appended tags were completely removed as indicated by sequencing the viral genome. Recombinant viruses with separated Gp2 and Gp3 genes remained stable for at least nine passages, while those with Gp3 and Gp4 genes separated reverted to wild type after only four passages. Notably, this virus exhibited significantly reduced titers in growth assays. Furthermore, we introduced a tag to the C-terminus of Gp4. The Gp4-HA virus was consistently stable for at least 10 passages, and the HA-tag was detectable by western blotting and immunofluorescence.


Subject(s)
Glycoproteins , Porcine respiratory and reproductive syndrome virus , Porcine respiratory and reproductive syndrome virus/genetics , Animals , Swine , Glycoproteins/genetics , Humans , Cell Line , Porcine Reproductive and Respiratory Syndrome/virology , Genome, Viral , HEK293 Cells , Genetic Engineering , Viral Envelope Proteins/genetics
15.
Vet Microbiol ; 294: 110120, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38749211

ABSTRACT

Pig production is increasing annually in Africa as it is recognized as a significant source of income, livelihood and food security, particularly in rural communities. Understanding the circulating swine pathogens is crucial for the success of this emerging industry. Although there is extensive data available on the African swine fever virus due to its devastating impact on pig production, knowledge about the presence of other viral swine pathogens on the continent is still extremely limited. This review discusses what is currently known about six swine pathogens in Africa: classical swine fever virus, porcine reproductive and respiratory syndrome virus, porcine circovirus-2, porcine circovirus-3, porcine parvovirus-1, and pseudorabies virus. Gaps in our knowledge are identified and topics of future focus discussed.


Subject(s)
Animals, Wild , Circovirus , Swine Diseases , Animals , Swine , Swine Diseases/virology , Swine Diseases/epidemiology , Africa/epidemiology , Circovirus/isolation & purification , Circovirus/genetics , Circovirus/classification , Animals, Wild/virology , Parvovirus, Porcine/isolation & purification , Parvovirus, Porcine/genetics , Virus Diseases/veterinary , Virus Diseases/epidemiology , Virus Diseases/virology , Porcine respiratory and reproductive syndrome virus/isolation & purification , Porcine respiratory and reproductive syndrome virus/genetics , African Swine Fever Virus/isolation & purification , Animals, Domestic/virology , Herpesvirus 1, Suid/isolation & purification , Circoviridae Infections/veterinary , Circoviridae Infections/epidemiology , Circoviridae Infections/virology , Domestication
16.
J Gen Virol ; 105(5)2024 May.
Article in English | MEDLINE | ID: mdl-38776134

ABSTRACT

Porcine reproductive and respiratory syndrome (PRRSV) is an enveloped single-stranded positive-sense RNA virus and one of the main pathogens that causes the most significant economical losses in the swine-producing countries. PRRSV is currently divided into two distinct species, PRRSV-1 and PRRSV-2. The PRRSV virion envelope is composed of four glycosylated membrane proteins and three non-glycosylated envelope proteins. Previous work has suggested that PRRSV-linked glycans are critical structural components for virus assembly. In addition, it has been proposed that PRRSV glycans are implicated in the interaction with host cells and critical for virus infection. In contrast, recent findings showed that removal of N-glycans from PRRSV does not influence virus infection of permissive cells. Thus, there are not sufficient evidences to indicate compellingly that N-glycans present in the PRRSV envelope play a direct function in viral infection. To gain insights into the role of N-glycosylation in PRRSV infection, we analysed the specific contribution of the envelope protein-linked N-glycans to infection of permissive cells. For this purpose, we used a novel strategy to modify envelope protein-linked N-glycans that consists of production of monoglycosylated PRRSV and viral glycoproteins with different glycan states. Our results showed that removal or alteration of N-glycans from PRRSV affected virus infection. Specifically, we found that complex N-glycans are required for an efficient infection in cell cultures. Furthermore, we found that presence of high mannose type glycans on PRRSV surface is the minimal requirement for a productive viral infection. Our findings also show that PRRSV-1 and PRRSV-2 have different requirements of N-glycan structure for an optimal infection. In addition, we demonstrated that removal of N-glycans from PRRSV does not affect viral attachment, suggesting that these carbohydrates played a major role in regulating viral entry. In agreement with these findings, by performing immunoprecipitation assays and colocalization experiments, we found that N-glycans present in the viral envelope glycoproteins are not required to bind to the essential viral receptor CD163. Finally, we found that the presence of N-glycans in CD163 is not required for PRRSV infection.


Subject(s)
Polysaccharides , Porcine Reproductive and Respiratory Syndrome , Porcine respiratory and reproductive syndrome virus , Porcine respiratory and reproductive syndrome virus/physiology , Porcine respiratory and reproductive syndrome virus/metabolism , Porcine respiratory and reproductive syndrome virus/genetics , Glycosylation , Animals , Swine , Polysaccharides/metabolism , Porcine Reproductive and Respiratory Syndrome/virology , Porcine Reproductive and Respiratory Syndrome/metabolism , Viral Envelope Proteins/metabolism , Viral Envelope Proteins/genetics , Cell Line , Receptors, Cell Surface/metabolism , Antigens, Differentiation, Myelomonocytic/metabolism , Antigens, CD/metabolism , Viral Envelope/metabolism
17.
Microb Pathog ; 192: 106682, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38750776

ABSTRACT

Porcine reproductive and respiratory syndrome virus (PRRSV) causes a highly transmissible disease of significant concern in the pig industry. Previous studies have demonstrated that the XM-2020 strain (a lineage 1.8 PRRSV IA/2012/NADC30) can induce special hemorrhagic injury in the small intestines. However, the specific mechanism underlying this injurious effect remains incompletely understood. In this study, we examined the pathogenic properties of XM-2020 and YC-2020 strains (a lineage 1.5 PRRSV IA/2014/NADC34) in piglets. Animal pathogenic tests revealed that with either Lineage 1 PRRSVs strains XM-2020 or YC-2020 demonstrated pronounced intestinal hemorrhage and suppression of peripheral immunological organs, comparing to JXA1 infection. Transcriptome analysis of diseased small intestines unveiled that PRRSV infection stimulated oxidative and inflammatory reactions. Remarkably, we also observed activation of the complement system alongside a notable down-regulation of complement and coagulation cascade pathways in the Lineage 1 PRRSVs infection group. Based on these findings, we propose that the primary mechanism driving the hemorrhagic injury of the small intestine caused by Lineage 1 PRRSVs is the suppression of complement and coagulation cascades resulting from immunosuppression. This discovery deepens our understanding of the pathogenicity of PRRSV in the small intestine and provides promising ways out for the development of innovative strategies aimed at controlling PRRSV.


Subject(s)
Complement System Proteins , Porcine Reproductive and Respiratory Syndrome , Porcine respiratory and reproductive syndrome virus , Animals , Swine , Complement System Proteins/immunology , Complement System Proteins/metabolism , Porcine respiratory and reproductive syndrome virus/pathogenicity , Porcine Reproductive and Respiratory Syndrome/virology , Porcine Reproductive and Respiratory Syndrome/pathology , Blood Coagulation , Intestine, Small/virology , Intestine, Small/pathology , Intestines/virology , Intestines/pathology , Gene Expression Profiling , Hemorrhage
18.
Cell Mol Life Sci ; 81(1): 240, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38806818

ABSTRACT

The pulmonary endothelium is a dynamic and metabolically active monolayer of endothelial cells. Dysfunction of the pulmonary endothelial barrier plays a crucial role in the acute lung injury (ALI) and acute respiratory distress syndrome (ARDS), frequently observed in the context of viral pneumonia. Dysregulation of tight junction proteins can lead to the disruption of the endothelial barrier and subsequent leakage. Here, the highly pathogenic porcine reproductive and respiratory syndrome virus (HP-PRRSV) served as an ideal model for studying ALI and ARDS. The alveolar lavage fluid of pigs infected with HP-PRRSV, and the supernatant of HP-PRRSV infected pulmonary alveolar macrophages were respectively collected to treat the pulmonary microvascular endothelial cells (PMVECs) in Transwell culture system to explore the mechanism of pulmonary microvascular endothelial barrier leakage caused by viral infection. Cytokine screening, addition and blocking experiments revealed that proinflammatory cytokines IL-1ß and TNF-α, secreted by HP-PRRSV-infected macrophages, disrupt the pulmonary microvascular endothelial barrier by downregulating claudin-8 and upregulating claudin-4 synergistically. Additionally, three transcription factors interleukin enhancer binding factor 2 (ILF2), general transcription factor III C subunit 2 (GTF3C2), and thyroid hormone receptor-associated protein 3 (THRAP3), were identified to accumulate in the nucleus of PMVECs, regulating the transcription of claudin-8 and claudin-4. Meanwhile, the upregulation of ssc-miR-185 was found to suppress claudin-8 expression via post-transcriptional inhibition. This study not only reveals the molecular mechanisms by which HP-PRRSV infection causes endothelial barrier leakage in acute lung injury, but also provides novel insights into the function and regulation of tight junctions in vascular homeostasis.


Subject(s)
Claudins , Endothelial Cells , Lung , Porcine respiratory and reproductive syndrome virus , Animals , Swine , Porcine respiratory and reproductive syndrome virus/physiology , Lung/metabolism , Lung/virology , Lung/pathology , Lung/blood supply , Endothelial Cells/metabolism , Endothelial Cells/virology , Claudins/metabolism , Claudins/genetics , Porcine Reproductive and Respiratory Syndrome/metabolism , Porcine Reproductive and Respiratory Syndrome/virology , Porcine Reproductive and Respiratory Syndrome/pathology , Claudin-4/metabolism , Claudin-4/genetics , Macrophages, Alveolar/metabolism , Macrophages, Alveolar/virology , Endothelium, Vascular/metabolism , Endothelium, Vascular/virology , Endothelium, Vascular/pathology , Cells, Cultured , Capillary Permeability , Acute Lung Injury/metabolism , Acute Lung Injury/virology , Acute Lung Injury/pathology , Cytokines/metabolism
19.
Vet Res ; 55(1): 61, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38750508

ABSTRACT

Porcine reproductive and respiratory syndrome (PRRS), a highly contagious disease caused by Porcine reproductive and respiratory syndrome virus (PRRSV), results in huge economic losses to the world pig industry. MiRNAs have been reported to be involved in regulation of viral infection. In our study, miR-320 was one of 21 common differentially expressed miRNAs of Meishan, Pietrain, and Landrace pig breeds at 9-h post-infection (hpi). Bioinformatics and experiments found that PRRSV replication was inhibited by miR-320 through directly targeting PRRSV ORF6. In addition, the expression of CCAAT enhancer binding protein beta (CEBPB) was also inhibited by miR-320 by targeting the 3' UTR of CEBPB, which significantly promotes PRRSV replication. Intramuscular injection of pEGFP-N1-miR-320 verified that miR-320 significantly inhibited the replication of PRRSV and alleviated the symptoms caused by PRRSV in piglets. Taken together, miR-320 have significant roles in the infection and may be promising therapeutic target for PRRS.


Subject(s)
MicroRNAs , Porcine Reproductive and Respiratory Syndrome , Porcine respiratory and reproductive syndrome virus , Virus Replication , Animals , MicroRNAs/genetics , MicroRNAs/metabolism , Swine , Porcine respiratory and reproductive syndrome virus/physiology , Porcine Reproductive and Respiratory Syndrome/virology , CCAAT-Enhancer-Binding Protein-beta/metabolism , CCAAT-Enhancer-Binding Protein-beta/genetics
20.
Viruses ; 16(5)2024 04 25.
Article in English | MEDLINE | ID: mdl-38793560

ABSTRACT

Porcine reproductive and respiratory syndrome virus (PRRSV), a member of the Arteriviridae family, represents a persistent menace to the global pig industry, causing reproductive failure and respiratory disease in pigs. In this study, we delved into the role of histone deacetylases (HDAC2) during PRRSV infection. Our findings revealed that HDAC2 expression is downregulated upon PRRSV infection. Notably, suppressing HDAC2 activity through specific small interfering RNA led to an increase in virus production, whereas overexpressing HDAC2 effectively inhibited PRRSV replication by boosting the expression of IFN-regulated antiviral molecules. Furthermore, we identified the virus's nonstructural protein 11 (nsp11) as a key player in reducing HDAC2 levels. Mutagenic analyses of PRRSV nsp11 revealed that its antagonistic effect on the antiviral activity of HDAC2 is dependent on its endonuclease activity. In summary, our research uncovered a novel immune evasion mechanism employed by PRRSV, providing crucial insights into the pathogenesis of this virus and guiding the development of innovative prevention strategies against PRRSV infection.


Subject(s)
Endoribonucleases , Histone Deacetylase 2 , Immune Evasion , Immunity, Innate , Porcine Reproductive and Respiratory Syndrome , Porcine respiratory and reproductive syndrome virus , Viral Nonstructural Proteins , Virus Replication , Porcine respiratory and reproductive syndrome virus/immunology , Porcine respiratory and reproductive syndrome virus/genetics , Animals , Viral Nonstructural Proteins/metabolism , Viral Nonstructural Proteins/genetics , Swine , Porcine Reproductive and Respiratory Syndrome/virology , Porcine Reproductive and Respiratory Syndrome/immunology , Endoribonucleases/metabolism , Endoribonucleases/genetics , Histone Deacetylase 2/metabolism , Histone Deacetylase 2/genetics , Cell Line , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...