Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 10.581
Filter
1.
Nat Commun ; 15(1): 5216, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38890331

ABSTRACT

Hyperpolarization and cyclic nucleotide (HCN) activated ion channels are critical for the automaticity of action potentials in pacemaking and rhythmic electrical circuits in the human body. Unlike most voltage-gated ion channels, the HCN and related plant ion channels activate upon membrane hyperpolarization. Although functional studies have identified residues in the interface between the voltage-sensing and pore domain as crucial for inverted electromechanical coupling, the structural mechanisms for this unusual voltage-dependence remain unclear. Here, we present cryo-electron microscopy structures of human HCN1 corresponding to Closed, Open, and a putative Intermediate state. Our structures reveal that the downward motion of the gating charges past the charge transfer center is accompanied by concomitant unwinding of the inner end of the S4 and S5 helices, disrupting the tight gating interface observed in the Closed state structure. This helix-coil transition at the intracellular gating interface accompanies a concerted iris-like dilation of the pore helices and underlies the reversed voltage dependence of HCN channels.


Subject(s)
Cryoelectron Microscopy , Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels , Ion Channel Gating , Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels/metabolism , Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels/chemistry , Humans , Potassium Channels/chemistry , Potassium Channels/metabolism , Models, Molecular , Membrane Potentials/physiology
2.
J Chem Inf Model ; 64(12): 4727-4738, 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38830626

ABSTRACT

Hyperpolarization-activated cyclic nucleotide-modulated (HCN) channels are opened in an allosteric manner by membrane hyperpolarization and cyclic nucleotides such as cAMP. Because of conflicting reports from experimental studies on whether cAMP binding to the four available binding sites in the channel tetramer operates cooperatively in gating, we employ here a computational approach as a promising route to examine ligand-induced conformational changes after binding to individual sites. By combining an elastic network model (ENM) with linear response theory (LRT) for modeling the apo-holo transition of the cyclic nucleotide-binding domain (CNBD) in HCN channels, we observe a distinct pattern of cooperativity matching the "positive-negative-positive" cooperativity reported from functional studies. This cooperativity pattern is highly conserved among HCN subtypes (HCN4, HCN1), but only to a lesser extent visible in structurally related channels, which are only gated by voltage (KAT1) or cyclic nucleotides (TAX4). This suggests an inherent cooperativity between subunits in HCN channels as part of a ligand-triggered gating mechanism in these channels.


Subject(s)
Cyclic AMP , Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels , Ion Channel Gating , Models, Molecular , Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels/metabolism , Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels/chemistry , Cyclic AMP/metabolism , Anisotropy , Protein Subunits/metabolism , Protein Subunits/chemistry , Protein Conformation , Humans , Potassium Channels/metabolism , Potassium Channels/chemistry , Binding Sites
3.
Int J Mol Sci ; 25(11)2024 May 23.
Article in English | MEDLINE | ID: mdl-38891889

ABSTRACT

The sodium-glucose co-transporter-2 (SGLT2) inhibitor dapagliflozin is increasingly used in the treatment of diabetes and heart failure. Dapagliflozin has been associated with reduced incidence of atrial fibrillation (AF) in clinical trials. We hypothesized that the favorable antiarrhythmic outcome of dapagliflozin use may be caused in part by previously unrecognized effects on atrial repolarizing potassium (K+) channels. This study was designed to assess direct pharmacological effects of dapagliflozin on cloned ion channels Kv11.1, Kv1.5, Kv4.3, Kir2.1, K2P2.1, K2P3.1, and K2P17.1, contributing to IKur, Ito, IKr, IK1, and IK2P K+ currents. Human channels coded by KCNH2, KCNA5, KCND3, KCNJ2, KCNK2, KCNK3, and KCNK17 were heterologously expressed in Xenopus laevis oocytes, and currents were recorded using the voltage clamp technique. Dapagliflozin (100 µM) reduced Kv11.1 and Kv1.5 currents, whereas Kir2.1, K2P2.1, and K2P17.1 currents were enhanced. The drug did not significantly affect peak current amplitudes of Kv4.3 or K2P3.1 K+ channels. Biophysical characterization did not reveal significant effects of dapagliflozin on current-voltage relationships of study channels. In conclusion, dapagliflozin exhibits direct functional interactions with human atrial K+ channels underlying IKur, IKr, IK1, and IK2P currents. Substantial activation of K2P2.1 and K2P17.1 currents could contribute to the beneficial antiarrhythmic outcome associated with the drug. Indirect or chronic effects remain to be investigated in vivo.


Subject(s)
Benzhydryl Compounds , Glucosides , Sodium-Glucose Transporter 2 Inhibitors , Xenopus laevis , Humans , Glucosides/pharmacology , Sodium-Glucose Transporter 2 Inhibitors/pharmacology , Benzhydryl Compounds/pharmacology , Animals , Potassium Channels/metabolism , Oocytes/metabolism , Oocytes/drug effects , Sodium-Glucose Transporter 2/metabolism , Sodium-Glucose Transporter 2/genetics
4.
Theranostics ; 14(8): 3282-3299, 2024.
Article in English | MEDLINE | ID: mdl-38855179

ABSTRACT

Rationale: Pharmacological targeting of mitochondrial ion channels is developing as a new direction in cancer therapy. The opening or closing of these channels can impact mitochondrial function and structure by interfering with intracellular ion homeostasis, thereby regulating cell fate. Nevertheless, their abnormal expression or regulation poses challenges in eliminating cancer cells, and further contributes to metastasis, recurrence, and drug resistance. Methods: We developed an engineered mitochondrial targeted delivery system with self-reinforcing potassium ion (K+) influx via amphiphilic mitochondrial targeting polymer (TMP) as carriers to co-deliver natural K+ channel agonists (Dinitrogen oxide, DZX) and artificial K+ channel molecules (5F8). Results: Using this method, DZX specifically activated natural K+ channels, whereas 5F8 assembled artificial K+ channels on the mitochondrial membrane, leading to mitochondrial K+ influx, as well as oxidative stress and activation of the mitochondrial apoptotic pathway. Conclusion: The synergistic effect of 5F8 and DZX presents greater effectiveness in killing cancer cells than DZX alone, and effectively inhibited tumor recurrence and lung metastasis following surgical resection of breast cancer tumors in animal models. This strategy innovatively integrates antihypertensive drugs with artificial ion channel molecules for the first time to effectively inhibit tumor recurrence and metastasis by disrupting intracellular ion homeostasis, which will provide a novel perspective for postoperative tumor therapy.


Subject(s)
Homeostasis , Mitochondria , Animals , Mitochondria/metabolism , Mitochondria/drug effects , Humans , Homeostasis/drug effects , Mice , Cell Line, Tumor , Female , Neoplasm Recurrence, Local/prevention & control , Breast Neoplasms/drug therapy , Breast Neoplasms/pathology , Breast Neoplasms/metabolism , Apoptosis/drug effects , Potassium/metabolism , Lung Neoplasms/drug therapy , Lung Neoplasms/secondary , Lung Neoplasms/pathology , Lung Neoplasms/metabolism , Mice, Inbred BALB C , Ion Channels/metabolism , Potassium Channels/metabolism , Mice, Nude , Neoplasm Metastasis
5.
Methods Mol Biol ; 2796: 1-21, 2024.
Article in English | MEDLINE | ID: mdl-38856892

ABSTRACT

Cell membranes are highly intricate systems comprising numerous lipid species and membrane proteins, where channel proteins, lipid molecules, and lipid bilayers, as continuous elastic fabric, collectively engage in multi-modal interplays. Owing to the complexity of the native cell membrane, studying the elementary processes of channel-membrane interactions necessitates a bottom-up approach starting from forming simplified synthetic membranes. This is the rationale for establishing an in vitro membrane reconstitution system consisting of a lipid bilayer with a defined lipid composition and a channel molecule. Recent technological advancements have facilitated the development of asymmetric membranes, and the contact bubble bilayer (CBB) method allows single-channel current recordings under arbitrary lipid compositions in asymmetric bilayers. Here, we present an experimental protocol for the formation of asymmetric membranes using the CBB method. The KcsA potassium channel is a prototypical model channel with huge structural and functional information and thus serves as a reporter of membrane actions on the embedded channels. We demonstrate specific interactions of anionic lipids in the inner leaflet. Considering that the local lipid composition varies steadily in cell membranes, we `present a novel lipid perfusion technique that allows rapidly changing the lipid composition while monitoring the single-channel behavior. Finally, we demonstrate a leaflet perfusion method for modifying the composition of individual leaflets. These techniques with custom synthetic membranes allow for variable experiments, providing crucial insights into channel-membrane interplay in cell membranes.


Subject(s)
Lipid Bilayers , Potassium Channels , Lipid Bilayers/chemistry , Lipid Bilayers/metabolism , Potassium Channels/chemistry , Potassium Channels/metabolism , Cell Membrane/metabolism , Cell Membrane/chemistry , Bacterial Proteins/chemistry , Bacterial Proteins/metabolism
6.
Methods Mol Biol ; 2796: 73-86, 2024.
Article in English | MEDLINE | ID: mdl-38856895

ABSTRACT

Structural studies require the production of target proteins in large quantities and with a high degree of purity. For membrane proteins, the bottleneck in determining their structure is the extraction of the target protein from the cell membranes. A detergent that improperly mimics the hydrophobic environment of the protein of interest can also significantly alter its structure. Recently, using lipodiscs with styrene-maleic acid (SMA), copolymers became a promising strategy for the purification of membrane proteins. Here, we describe in detail the one-step affinity purification of potassium ion channels solubilized in SMA and sample preparation for future structural studies.


Subject(s)
Maleates , Polystyrenes , Potassium Channels , Maleates/chemistry , Potassium Channels/chemistry , Potassium Channels/metabolism , Polystyrenes/chemistry , Chromatography, Affinity/methods , Styrene/chemistry , Polymers/chemistry , Detergents/chemistry , Humans
7.
Methods Mol Biol ; 2796: 35-72, 2024.
Article in English | MEDLINE | ID: mdl-38856894

ABSTRACT

Fluorescence techniques have been widely used to shed light over the structure-function relationship of potassium channels for the last 40-50 years. In this chapter, we describe how a Förster resonance energy transfer between identical fluorophores (homo-FRET) approach can be applied to study the gating behavior of the prokaryotic channel KcsA. Two different gates have been described to control the K+ flux across the channel's pore, the helix-bundle crossing and the selectivity filter, located at the opposite sides of the channel transmembrane section. Both gates can be studied individually or by using a double-reporter system. Due to its homotetrameric structural arrangement, KcsA presents a high degree of symmetry that fulfills the first requisite to calculate intersubunit distances through this technique. The results obtained through this work have helped to uncover the conformational plasticity of the selectivity filter under different experimental conditions and the importance of its allosteric coupling to the opening of the activation (inner) gate. This biophysical approach usually requires low protein concentration and presents high sensitivity and reproducibility, complementing the high-resolution structural information provided by X-ray crystallography, cryo-EM, and NMR studies.


Subject(s)
Bacterial Proteins , Fluorescence Resonance Energy Transfer , Potassium Channels , Protein Conformation , Fluorescence Resonance Energy Transfer/methods , Potassium Channels/metabolism , Potassium Channels/chemistry , Bacterial Proteins/metabolism , Bacterial Proteins/chemistry , Ion Channel Gating , Models, Molecular
8.
Methods Mol Biol ; 2796: 211-227, 2024.
Article in English | MEDLINE | ID: mdl-38856904

ABSTRACT

The dynamic clamp technique has emerged as a powerful tool in the field of cardiac electrophysiology, enabling researchers to investigate the intricate dynamics of ion currents in cardiac cells. Potassium channels play a critical role in the functioning of cardiac cells and the overall electrical stability of the heart. This chapter provides a comprehensive overview of the methods and applications of dynamic clamp in the study of key potassium currents in cardiac cells. A step-by-step guide is presented, detailing the experimental setup and protocols required for implementing the dynamic clamp technique in cardiac cell studies. Special attention is given to the design and construction of a dynamic clamp setup with Real Time eXperimental Interface, configurations, and the incorporation of mathematical models to mimic ion channel behavior. The chapter's core focuses on applying dynamic clamp to elucidate the properties of various potassium channels in cardiac cells. It discusses how dynamic clamp can be used to investigate channel kinetics, voltage-dependent properties, and the impact of different potassium channel subtypes on cardiac electrophysiology. The chapter will also include examples of specific dynamic clamp experiments that studied potassium currents or their applications in cardiac cells.


Subject(s)
Myocytes, Cardiac , Patch-Clamp Techniques , Potassium Channels , Patch-Clamp Techniques/methods , Potassium Channels/metabolism , Myocytes, Cardiac/metabolism , Animals , Humans , Ion Channel Gating , Potassium/metabolism , Kinetics
9.
Methods Mol Biol ; 2796: 185-190, 2024.
Article in English | MEDLINE | ID: mdl-38856902

ABSTRACT

The potassium channels are one of the key regulators of cell membrane potential and permeability properties of blood cells. The changes in functioning of potassium channels control crucial cell processes such as proliferation, viability, migration, and invasion. The correct estimation of these processes is important for the characterization of physiological and pathophysiological cell states. Here, we present the experimental protocol for evaluation of the role of potassium ion channels in the proliferation, migration, and invasion of blood cells.


Subject(s)
Cell Movement , Cell Proliferation , Potassium Channels , Humans , Potassium Channels/metabolism , Blood Cells/metabolism , Blood Cells/cytology , Membrane Potentials
10.
Acta Biochim Pol ; 71: 13126, 2024.
Article in English | MEDLINE | ID: mdl-38863652

ABSTRACT

Mitochondrial investigations have extended beyond their traditional functions, covering areas such as ATP synthesis and metabolism. Mitochondria are now implicated in new functional areas such as cytoprotection, cellular senescence, tumor function and inflammation. The basis of these new areas still relies on fundamental biochemical/biophysical mitochondrial functions such as synthesis of reactive oxygen species, mitochondrial membrane potential, and the integrity of the inner mitochondrial membrane i.e., the passage of various molecules through the mitochondrial membranes. In this view transport of potassium cations, known as the potassium cycle, plays an important role. It is believed that K+ influx is mediated by various potassium channels present in the inner mitochondrial membrane. In this article, we present an overview of the key findings and characteristics of mitochondrial potassium channels derived from research of many groups conducted over the past 33 years. We propose a list of six fundamental observations and most important ideas dealing with mitochondrial potassium channels. We also discuss the contemporary challenges and future prospects associated with research on mitochondrial potassium channels.


Subject(s)
Mitochondria , Potassium Channels , Potassium , Humans , Mitochondria/metabolism , Potassium Channels/metabolism , Animals , Potassium/metabolism , Mitochondrial Membranes/metabolism , Membrane Potential, Mitochondrial , Reactive Oxygen Species/metabolism
11.
Proc Natl Acad Sci U S A ; 121(27): e2402259121, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38917012

ABSTRACT

HCN1-4 channels are the molecular determinants of the If/Ih current that crucially regulates cardiac and neuronal cell excitability. HCN dysfunctions lead to sinoatrial block (HCN4), epilepsy (HCN1), and chronic pain (HCN2), widespread medical conditions awaiting subtype-specific treatments. Here, we address the problem by solving the cryo-EM structure of HCN4 in complex with ivabradine, to date the only HCN-specific drug on the market. Our data show ivabradine bound inside the open pore at 3 Å resolution. The structure unambiguously proves that Y507 and I511 on S6 are the molecular determinants of ivabradine binding to the inner cavity, while F510, pointing outside the pore, indirectly contributes to the block by controlling Y507. Cysteine 479, unique to the HCN selectivity filter (SF), accelerates the kinetics of block. Molecular dynamics simulations further reveal that ivabradine blocks the permeating ion inside the SF by electrostatic repulsion, a mechanism previously proposed for quaternary ammonium ions.


Subject(s)
Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels , Ivabradine , Molecular Dynamics Simulation , Ivabradine/chemistry , Ivabradine/pharmacology , Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels/chemistry , Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels/metabolism , Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels/antagonists & inhibitors , Humans , Cryoelectron Microscopy , Animals , Potassium Channels/chemistry , Potassium Channels/metabolism , Muscle Proteins/chemistry , Muscle Proteins/metabolism
12.
Int J Mol Sci ; 25(9)2024 May 03.
Article in English | MEDLINE | ID: mdl-38732215

ABSTRACT

We explored the functional redundancy of three structurally related KCTD (Potassium Channel Tetramerization Domain) proteins, KCTD2, KCTD5, and KCTD17, by progressively knocking them out in HEK 293 cells using CRISPR/Cas9 genome editing. After validating the knockout, we assessed the effects of progressive knockout on cell growth and gene expression. We noted that the progressive effects of knockout of KCTD isoforms on cell growth were most pervasive when all three isoforms were deleted, suggesting some functions were conserved between them. This was also reflected in progressive changes in gene expression. Our previous work indicated that Gß1 was involved in the transcriptional control of gene expression, so we compared the gene expression patterns between GNB1 and KCTD KO. Knockout of GNB1 led to numerous changes in the expression levels of other G protein subunit genes, while knockout of KCTD isoforms had the opposite effect, presumably because of their role in regulating levels of Gß1. Our work demonstrates a unique relationship between KCTD proteins and Gß1 and a global role for this subfamily of KCTD proteins in maintaining the ability of cells to survive and proliferate.


Subject(s)
Cell Proliferation , Potassium Channels , Humans , Cell Proliferation/genetics , CRISPR-Cas Systems , Gene Editing , Gene Expression Regulation , Gene Knockout Techniques , HEK293 Cells , Potassium Channels/metabolism , Potassium Channels/genetics , Protein Isoforms/genetics , Protein Isoforms/metabolism
13.
Inflamm Res ; 73(7): 1137-1155, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38733398

ABSTRACT

BACKGROUND AND AIM: Sepsis-induced acute lung injury (ALI) is a complex and life-threatening condition lacking specific and efficient clinical treatments. Extracellular histones, identified as a novel type of damage-associated molecular patterns, have been implicated in the inflammatory process of ALI. However, further elucidation is needed regarding the precise mechanism through which extracellular histones induce inflammation. The aim of this study was to investigate whether extracellular histones can activate NLRP3 inflammasome-mediated inflammation in alveolar macrophages (AMs) by affecting TWIK2-dependent potassium efflux. METHODS AND RESULTS: We conducted experiments using cecal ligation and puncture (CLP) C57BL/6 mice and extracellular histone-stimulated LPS-primed MH-S cells. The results demonstrated a significant increase in the levels of extracellular histones in the plasma and bronchoalveolar lavage fluid (BALF) of CLP mice. Furthermore, neutralizing extracellular histone mitigated lung injury and inflammation in CLP-induced ALI mice. In vitro studies confirmed that extracellular histones upregulated the expression of NLRP3 inflammasome activation-related proteins in MH-S cells, and this effect was dependent on increased potassium efflux mediated by the TWIK2 channel on the plasma membrane. Moreover, extracellular histones directly triggered a substantial influx of calcium, leading to increased Rab11 activity and facilitating the trafficking and location of TWIK2 to the plasma membrane. CONCLUSION: These findings underscore the critical role of extracellular histone-induced upregulation of TWIK2 expression on the plasma membrane of alveolar macrophages (AMs). This upregulation leads to potassium efflux and subsequent activation of the NLRP3 inflammasome, ultimately exacerbating lung inflammation and injury during sepsis.


Subject(s)
Acute Lung Injury , Histones , Macrophages, Alveolar , Mice, Inbred C57BL , NLR Family, Pyrin Domain-Containing 3 Protein , Potassium , Sepsis , Animals , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Sepsis/complications , Sepsis/metabolism , Sepsis/immunology , Potassium/metabolism , Macrophages, Alveolar/metabolism , Macrophages, Alveolar/immunology , Acute Lung Injury/metabolism , Acute Lung Injury/etiology , Acute Lung Injury/immunology , Acute Lung Injury/pathology , Histones/metabolism , Male , Mice , Bronchoalveolar Lavage Fluid , Potassium Channels, Tandem Pore Domain/metabolism , Cell Line , Potassium Channels/metabolism , rab GTP-Binding Proteins/metabolism , Inflammasomes/metabolism , Lipopolysaccharides
14.
Biochim Biophys Acta Biomembr ; 1866(6): 184338, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38763269

ABSTRACT

The molecular structures of the various intrinsic lipids in membranes regulate lipid-protein interactions. These different lipid structures with unique volumes produce different lipid molecular packing stresses/lateral stresses in lipid membranes. Most studies examining lipid packing effects have used phosphatidylcholine and phosphatidylethanolamine (PE), which are the main phospholipids of eukaryotic cell membranes. In contrast, Gram-negative or Gram-positive bacterial membranes are composed primarily of phosphatidylglycerol (PG) and PE, and the physical and thermodynamic properties of each acyl chain in PG at the molecular level remain unresolved. In this study, we used 1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-(1'-rac-glycerol) (POPG, 16:0-18:1 PG) and 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phospho-(1'-rac-glycerol) (PAPG, 16:0-20:4 PG) to prepare lipid bilayers (liposome) with the rod-type fluorescence probe DPH. We measured the lipid packing conditions by determining the rotational freedom of DPH in POPG or PAPG bilayers. Furthermore, we investigated the effect of different monoacyl chains on a K+ channel (KcsA) structure when embedded in POPG or PAPG membranes. The results revealed that differences in the number of double bonds and carbon chain length in the monoacyl chain at sn-2 affected the physicochemical properties of the membrane and the structure and orientation of KcsA.


Subject(s)
Bacterial Proteins , Lipid Bilayers , Phosphatidylglycerols , Potassium Channels , Lipid Bilayers/chemistry , Potassium Channels/chemistry , Potassium Channels/metabolism , Phosphatidylglycerols/chemistry , Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Phosphatidylethanolamines/chemistry , Membrane Lipids/chemistry , Membrane Lipids/metabolism , Cell Membrane/chemistry , Thermodynamics , Liposomes/chemistry , Phosphatidylcholines/chemistry
15.
Neuroreport ; 35(10): 638-647, 2024 07 01.
Article in English | MEDLINE | ID: mdl-38813908

ABSTRACT

Danshensu, also known as salvianic acid A, is a primary active compound extracted from a traditional Chinese herb Danshen (Salvia miltiorrhiza). While its antioxidative and neuroprotective effects are well-documented, the underlying mechanisms are poorly understood. In this study, we sought out to investigate if and how Danshensu modulates neuronal excitability and voltage-gated ionic currents in the central nervous system. We prepared brain slices of the mouse brainstem and performed patch-clamp recording in bushy cells in the anteroventral cochlear nucleus, with or without Danshensu incubation for 1 h. QX-314 was used internally to block Na+ current, while tetraethylammonium and 4-aminopyridine were used to isolate different subtypes of K+ current. We found that Danshensu of 100 µm decreased the input resistance of bushy cells by approximately 60% and shifted the voltage threshold of spiking positively by approximately 7 mV, resulting in significantly reduced excitability. Furthermore, we found this reduced excitability by Danshensu was caused by enhanced voltage-gated K+ currents in these neurons, including both low voltage-activated IK,A, by approximately 100%, and high voltage-activated IK,dr, by approximately 30%. Lastly, we found that the effect of Danshensu on K+ currents was dose-dependent in that no enhancement was found for Danshensu of 50 µm and Danshensu of 200 µm failed to cause significantly more enhancement on K+ currents when compared to that of 100 µm. We found that Danshensu reduced neuronal excitability in the central nervous system by enhancing voltage-gated K+ currents, providing mechanistic support for its neuroprotective effect widely seen in vivo.


Subject(s)
Cochlear Nucleus , Lactates , Neurons , Animals , Mice , Neurons/drug effects , Neurons/physiology , Lactates/pharmacology , Cochlear Nucleus/drug effects , Cochlear Nucleus/physiology , Patch-Clamp Techniques , Action Potentials/drug effects , Action Potentials/physiology , Male , Potassium Channels/drug effects , Potassium Channels/metabolism , Mice, Inbred C57BL
16.
Gene ; 926: 148576, 2024 Oct 30.
Article in English | MEDLINE | ID: mdl-38763364

ABSTRACT

Potassium ion (K+) is one of the most essential nutrients for the growth and development of tobacco (Nicotiana tabacum L.), however, the molecular regulation of K+ concentration in tobacco remains unclear. In this study, a two-pore K (TPK) channel gene NtTPKa was cloned from tobacco, and NtTPKa protein contains the unique K+ selection motif GYGD and its transmembrane region primarily locates in the tonoplast membrane. The expression of NtTPKa gene was significantly increased under low-potassium stress conditions. The concentrations of K+ in tobacco were significantly increased in the NtTPKa RNA interference lines and CRISPR/Cas9 knockout mutants. In addition, the transport of K+ by NtTPKa was validated using patch clamp technique, and the results showed that NtTPKa channel protein exclusively transported K+ in a concentration-dependent manner. Together, our results strongly suggested that NtTPKa is a key gene in maintaining K+ homeostasis in tobacco, and it could provide a new genetic resource for increasing the concentration of K+ in tobacco.


Subject(s)
Gene Expression Regulation, Plant , Nicotiana , Plant Proteins , Potassium , Nicotiana/genetics , Nicotiana/metabolism , Potassium/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Potassium Channels, Tandem Pore Domain/metabolism , Potassium Channels, Tandem Pore Domain/genetics , CRISPR-Cas Systems , Potassium Channels/metabolism , Potassium Channels/genetics
17.
Acta Biomater ; 181: 391-401, 2024 06.
Article in English | MEDLINE | ID: mdl-38704114

ABSTRACT

Potassium ion transport across myocardial cell membrane is essential for type 2 long QT syndrome (LQT2). However, the dysfunction of potassium ion transport due to genetic mutations limits the therapeutic effect in treating LQT2. Biomimetic ion channels that selectively and efficiently transport potassium ions across the cellular membranes are promising for the treatment of LQT2. To corroborate this, we synthesized a series of foldamer-based ion channels with different side chains, and found a biomimetic ion channel of K+ (BICK) with the highest transport activity among them. The selected BICK can restore potassium ion transport and increase transmembrane potassium ion current, thus shortening phase 3 of action potential (AP) repolarization and QT interval in LQT2. Moreover, BICK does not affect heart rate and cardiac rhythm in treating LQT2 model induced by E4031 in isolated heart as well as in guinea pigs. By restoring ion transmembrane transport tactic, biomimetic ion channels, such as BICK, will show great potential in treating diseases related to ion transport blockade. STATEMENT OF SIGNIFICANCE: Type 2 long QT syndrome (LQT2) is a disease caused by K+ transport disorder, which can cause malignant arrhythmia and even death. There is currently no radical cure, so it is critical to explore ways to improve K+ transmembrane transport. In this study, we report that a small-molecule biomimetic ion channel BICK can efficiently simulate natural K+ channel proteins on the cardiomyocyte and cure E4031-induced LQT2 in guinea pig by restoring K+ transport function for the first time. This study found that the potassium transmembrane transport by BICK significantly reduced the QT interval, which provides a conceptually new strategy for the treatment of LQT2 disease.


Subject(s)
Long QT Syndrome , Potassium , Long QT Syndrome/metabolism , Animals , Potassium/metabolism , Guinea Pigs , Humans , Action Potentials/drug effects , Ion Transport/drug effects , Male , Biomimetic Materials/chemistry , Biomimetic Materials/pharmacology , Potassium Channels/metabolism , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , Heart Rate/drug effects
18.
Elife ; 122024 May 03.
Article in English | MEDLINE | ID: mdl-38700926

ABSTRACT

The gain-of-function mutation in the TALK-1 K+ channel (p.L114P) is associated with maturity-onset diabetes of the young (MODY). TALK-1 is a key regulator of ß-cell electrical activity and glucose-stimulated insulin secretion. The KCNK16 gene encoding TALK-1 is the most abundant and ß-cell-restricted K+ channel transcript. To investigate the impact of KCNK16 L114P on glucose homeostasis and confirm its association with MODY, a mouse model containing the Kcnk16 L114P mutation was generated. Heterozygous and homozygous Kcnk16 L114P mice exhibit increased neonatal lethality in the C57BL/6J and the CD-1 (ICR) genetic background, respectively. Lethality is likely a result of severe hyperglycemia observed in the homozygous Kcnk16 L114P neonates due to lack of glucose-stimulated insulin secretion and can be reduced with insulin treatment. Kcnk16 L114P increased whole-cell ß-cell K+ currents resulting in blunted glucose-stimulated Ca2+ entry and loss of glucose-induced Ca2+ oscillations. Thus, adult Kcnk16 L114P mice have reduced glucose-stimulated insulin secretion and plasma insulin levels, which significantly impairs glucose homeostasis. Taken together, this study shows that the MODY-associated Kcnk16 L114P mutation disrupts glucose homeostasis in adult mice resembling a MODY phenotype and causes neonatal lethality by inhibiting islet insulin secretion during development. These data suggest that TALK-1 is an islet-restricted target for the treatment for diabetes.


Subject(s)
Diabetes Mellitus, Type 2 , Glucagon , Glucose , Insulin Secretion , Mice, Inbred C57BL , Animals , Male , Mice , Animals, Newborn , Diabetes Mellitus, Type 2/genetics , Diabetes Mellitus, Type 2/metabolism , Disease Models, Animal , Glucagon/metabolism , Glucose/metabolism , Homeostasis , Insulin/metabolism , Insulin Secretion/drug effects , Insulin Secretion/genetics , Islets of Langerhans/metabolism , Mutation , Potassium Channels/metabolism , Potassium Channels/genetics
19.
Int J Mol Sci ; 25(10)2024 May 14.
Article in English | MEDLINE | ID: mdl-38791387

ABSTRACT

Oocyte-cumulus cell interaction is essential for oocyte maturation and competence. The bidirectional crosstalk network mediated by gap junctions is fundamental for the metabolic cooperation between these cells. As cumulus cells exhibit a more glycolytic phenotype, they can provide metabolic substrates that the oocyte can use to produce ATP via oxidative phosphorylation. The impairment of mitochondrial activity plays a crucial role in ovarian aging and, thus, in fertility, determining the success or failure of assisted reproductive techniques. This review aims to deepen the knowledge about the electro-metabolic coupling of the cumulus-oocyte complex and to hypothesize a putative role of potassium channel modulators in order to improve fertility, promote intracellular Ca2+ influx, and increase the mitochondrial biogenesis and resulting ATP levels in cumulus cells.


Subject(s)
Cumulus Cells , Oocytes , Oocytes/metabolism , Cumulus Cells/metabolism , Cumulus Cells/cytology , Humans , Animals , Female , Mitochondria/metabolism , Adenosine Triphosphate/metabolism , Gap Junctions/metabolism , Oxidative Phosphorylation , Calcium/metabolism , Potassium Channels/metabolism , Cell Communication
20.
Article in English | MEDLINE | ID: mdl-38723703

ABSTRACT

Mollusks, including snails, possess two chambered hearts. The heart and cardiomyocytes of snails have many similarities with those of mammals. Also, the biophysics and pharmacology of Ca, K, and Na ion channels resemble. Similar to mammals, in mollusks, the ventricular cardiomyocytes and K channels are often studied, which are selectively sensitive to antagonists such as 4-AP, E-4031, and TEA. Since the physiological properties of the ventricular cardiac cells of snails are well characterized, the enzymatically dissociated atrial cardiomyocytes of Cornu aspersum (Müller, 1774) were studied using the whole-cell patch-clamp technique for detailed comparisons with mice, Mus musculus. The incubation of tissues in a solution simultaneously containing two enzymes, collagenase and papain, enabled the isolation of single cells. Recordings in the atrial cardiomyocytes of snails revealed outward K+ currents closely resembling those of the ventricle. The latter was consistent, whether the voltage ramp or steps and long or short pulses were used. Interestingly, under identical conditions, the current waveforms of atrial cardiomyocytes in snails were similar to those of mice left ventricles, albeit the kinetics and the absence of inward rectifier K channel (IK1) activation. Therefore, the heart of mollusks could be used as a simple and accessible experimental model, particularly for pharmacology and toxicology studies.


Subject(s)
Heart Atria , Heart Ventricles , Myocytes, Cardiac , Animals , Heart Atria/drug effects , Heart Atria/metabolism , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/metabolism , Heart Ventricles/drug effects , Heart Ventricles/metabolism , Heart Ventricles/cytology , Mice , Patch-Clamp Techniques , Potassium Channels/metabolism , Snails
SELECTION OF CITATIONS
SEARCH DETAIL
...