Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.719
Filter
1.
Antonie Van Leeuwenhoek ; 117(1): 102, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-39012584

ABSTRACT

This study represents the first analysis of the bacterial community in chickens affected by swollen head syndrome, utilizing 16S rRNA gene sequencing. Samples were obtained from clinical laying chickens and were examined for the presence of Avibacterium paragallinarum (APG) and Ornithobacterium rhinotracheale (ORT) using conventional polymerase chain reaction (PCR). From the samples, five APG-positive (APG) and APG-negative (N-APG) samples were chosen, along with five specific pathogen-free chickens, for 16S rRNA gene sequencing. Results showed that APG and ORT were widely detected in the chicken samples with swollen head syndrome (SHS, 9/10), while APG was detected in all five specific pathogen-free (SPF) samples. In contrast, conventional PCR sensitivity was found to be inadequate for diagnosis, with only 35.7% (5/14) and 11.1% (1/9) sensitivity for APG and ORT, respectively, based on 16S rRNA gene sequencing data. Furthermore, 16S rRNA gene sequencing was able to quantify the bacteria in the samples, revealing that the relative abundance of APG in the APG group ranged from 2.7 to 81.3%, while the relative abundance of APG in the N-APG group ranged from 0.1 to 21.0%. Notably, a low level of APG was also detected in all 5 SPF samples. The study also identified a significant number of animal and human common bacterial pathogens, including but not limited to Gallibacterium anatis, Riemerella columbina, Enterococcus cecorum, Mycoplasma synoviae, Helicobacter hepaticus, and Staphylococcus lentus. In conclusion, 16S rRNA gene sequencing is a valuable tool for bacterial pathogen diagnosis and the discovery of novel bacterial pathogens, while conventional PCR is not reliable for diagnosis.


Subject(s)
Chickens , Polymerase Chain Reaction , Poultry Diseases , RNA, Ribosomal, 16S , RNA, Ribosomal, 16S/genetics , Animals , Chickens/microbiology , Polymerase Chain Reaction/methods , Poultry Diseases/microbiology , Poultry Diseases/diagnosis , Bacteria/genetics , Bacteria/classification , Bacteria/isolation & purification , DNA, Bacterial/genetics , Sequence Analysis, DNA , Phylogeny
2.
Appl Microbiol Biotechnol ; 108(1): 414, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38985204

ABSTRACT

Airborne animal viral pathogens can rapidly spread and become a global threat, resulting in substantial socioeconomic and health consequences. To prevent and control potential epidemic outbreaks, accurate, fast, and affordable point-of-care (POC) tests are essential. As a proof-of-concept, we have developed a molecular system based on the loop-mediated isothermal amplification (LAMP) technique for avian metapneumovirus (aMPV) detection, an airborne communicable agent mainly infecting turkeys and chickens. For this purpose, a colorimetric system was obtained by coupling the LAMP technique with specific DNA-functionalized AuNPs (gold nanoparticles). The system was validated using 50 different samples (pharyngeal swabs and tracheal tissue) collected from aMPV-infected and non-infected chickens and turkeys. Viral detection can be achieved in about 60 min with the naked eye, with 100% specificity and 87.88% sensitivity for aMPV. In summary, this novel molecular detection system allows suitable virus testing in the field, with accuracy and limit of detection (LOD) values highly close to qRT-PCR-based diagnosis. Furthermore, this system can be easily scalable to a platform for the detection of other viruses, addressing the current gap in the availability of POC tests for viral detection in poultry farming. KEY POINTS: •aMPV diagnosis using RT-LAMP is achieved with high sensitivity and specificity. •Fifty field samples have been visualized using DNA-nanoprobe validation. •The developed system is a reliable, fast, and cost-effective option for POCT.


Subject(s)
Chickens , Gold , Metapneumovirus , Molecular Diagnostic Techniques , Nucleic Acid Amplification Techniques , Paramyxoviridae Infections , Poultry Diseases , Sensitivity and Specificity , Metapneumovirus/genetics , Metapneumovirus/isolation & purification , Animals , Nucleic Acid Amplification Techniques/methods , Nucleic Acid Amplification Techniques/economics , Chickens/virology , Molecular Diagnostic Techniques/methods , Molecular Diagnostic Techniques/economics , Paramyxoviridae Infections/diagnosis , Paramyxoviridae Infections/veterinary , Paramyxoviridae Infections/virology , Poultry Diseases/virology , Poultry Diseases/diagnosis , Gold/chemistry , Turkeys , Metal Nanoparticles/chemistry , Limit of Detection , Colorimetry/methods , DNA, Viral/genetics
3.
J Med Microbiol ; 73(6)2024 Jun.
Article in English | MEDLINE | ID: mdl-38935078

ABSTRACT

Introduction. Avian reovirus (ARV) is associated with arthritis/tenosynovitis and malabsorption syndrome in chickens. The σC and σB proteins, both exposed to the virus capsid, are highly immunogenic and could form the basis for diagnostic devices designed to assess the immunological status of the flock.Gap Statement. Commercial ARV ELISAs cannot distinguish between vaccinated and infected animals and might not detect circulating ARV strains.Aim. We aimed to develop a customized test to detect the circulating field ARV strains as well as distinguish between vaccinated and unvaccinated animals.Methodology. We developed ELISA assays based on recombinant (r) σB, σC and the nonstructural protein σNS and tested them using antisera of vaccinated and unvaccinated chickens as well as negative controls. Fragments of σB and σC proteins were also used to study regions that could be further exploited in diagnostic tests.Results. Vaccinated and unvaccinated birds were positive by commercial ELISA, with no difference in optical density values. In contrast, samples of unvaccinated animals showed lower absorbance in the rσB and rσC ELISA tests and higher absorbance in the rσNS ELISA test than the vaccinated animals. Negative control samples were negative in all tests. Fragmentation of σB and σC proteins showed that some regions can differentiate between vaccinated and unvaccinated animals. For example, σB amino acids 128-179 (σB-F4) and σC amino acids 121-165 (σC-F4) exhibited 85 and 95% positivity among samples of vaccinated animals but only 5% and zero positivity among samples of unvaccinated animals, respectively.Conclusion. These data suggest that unvaccinated birds might have been exposed to field strains of ARV. The reduction in absorbance in the recombinant tests possibly reflects an increased specificity of our test since unvaccinated samples showed less cross-reactivity with the vaccine proteins immobilized on ELISAs. The discrepant results obtained with the protein fragment tests between vaccinated and unvaccinated animals are discussed in light of the diversity between ARV strains.


Subject(s)
Chickens , Enzyme-Linked Immunosorbent Assay , Orthoreovirus, Avian , Poultry Diseases , Recombinant Proteins , Reoviridae Infections , Animals , Orthoreovirus, Avian/immunology , Orthoreovirus, Avian/genetics , Orthoreovirus, Avian/isolation & purification , Enzyme-Linked Immunosorbent Assay/methods , Enzyme-Linked Immunosorbent Assay/veterinary , Reoviridae Infections/veterinary , Reoviridae Infections/diagnosis , Poultry Diseases/virology , Poultry Diseases/diagnosis , Recombinant Proteins/immunology , Antibodies, Viral/blood , Capsid Proteins/immunology , Capsid Proteins/genetics , Viral Proteins/immunology , Viral Proteins/genetics
4.
Poult Sci ; 103(7): 103848, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38843610

ABSTRACT

Pigeons infected with aviadenoviruses have been found worldwide. Recently, pigeon adenovirus 2 (PiAdV-2) has been widely distributed in racing pigeons in Germany. However, the epidemiology of this virus remains unclear due to the lack of a specific detection platform for PiAdV-2. In this study, we first detected PiAdV-2 positivity in racing pigeons (designated FJ21125 and FJ21128, which share 100% nucleotide identity with each other based on the fiber 2 gene) in Fujian, Southeast China. These genes shared 99.8% nucleotide identity with PiAdV-2 (GenBank No. NC_031501) but only 54.1% nucleotide identity with PiAdV-1 (GenBank No. NC024474). Then, the TaqMan-qPCR assay for the detection of PiAdV-2 was established based on fiber 2 gene characterization. The established assay had a correlation coefficient of 1.00, with an amplification efficiency of 99.0%. The minimum detection limit was 34.6 copies/µL. Only PiAdV-2 exhibited a positive fluorescent signal, and no signal was detected for other pathogens (including PiCV, FAdV-4, FAdV-8a, EDSV, PPMV-1, RVA and PiHV). The assay has good reproducibility, with a coefficient of variation less than 2.42% both intragroup and intergroup. The distributions of PiAdV-2 in fecal samples from YPDS (35 samples) and healthy (43 samples) racing pigeons from different geographical areas were investigated and were 37.14% (YPDS) and 20.93% (healthy), respectively. In summary, we developed a TaqMan-qPCR platform for the detection of PiAdV-2 infection with high sensitivity, specificity, and reproducibility. We confirmed the presence of PiAdV-2 in China, and our data suggested that there is no indication of a correlation between YPDS and PiAdV-2. This study provides more information on the pathogenesis mechanism and epidemiological surveillance of PiAdV-2.


Subject(s)
Adenoviridae Infections , Aviadenovirus , Columbidae , Real-Time Polymerase Chain Reaction , Animals , Adenoviridae Infections/veterinary , Adenoviridae Infections/diagnosis , Adenoviridae Infections/virology , Adenoviridae Infections/epidemiology , Real-Time Polymerase Chain Reaction/veterinary , Real-Time Polymerase Chain Reaction/methods , China/epidemiology , Aviadenovirus/isolation & purification , Aviadenovirus/genetics , Bird Diseases/virology , Bird Diseases/diagnosis , Poultry Diseases/virology , Poultry Diseases/diagnosis
5.
Viruses ; 16(5)2024 05 10.
Article in English | MEDLINE | ID: mdl-38793634

ABSTRACT

Avian influenza viruses (AIVs) of the H5 subtype rank among the most serious pathogens, leading to significant economic losses in the global poultry industry and posing risks to human health. Therefore, rapid and accurate virus detection is crucial for the prevention and control of H5 AIVs. In this study, we established a novel detection method for H5 viruses by utilizing the precision of CRISPR/Cas12a and the efficiency of RT-RPA technologies. This assay facilitates the direct visualization of detection results through blue light and lateral flow strips, accurately identifying H5 viruses with high specificity and without cross-reactivity against other AIV subtypes, NDV, IBV, and IBDV. With detection thresholds of 1.9 copies/µL (blue light) and 1.9 × 103 copies/µL (lateral flow strips), our method not only competes with but also slightly surpasses RT-qPCR, demonstrating an 80.70% positive detection rate across 81 clinical samples. The RT-RPA/CRISPR-based detection method is characterized by high sensitivity, specificity, and independence from specialized equipment. The immediate field applicability of the RT-RPA/CRISPR approach underscores its importance as an effective tool for the early detection and management of outbreaks caused by the H5 subtype of AIVs.


Subject(s)
CRISPR-Cas Systems , Influenza in Birds , Sensitivity and Specificity , Animals , Influenza in Birds/virology , Influenza in Birds/diagnosis , Influenza A Virus, H5N1 Subtype/genetics , Influenza A Virus, H5N1 Subtype/isolation & purification , Influenza A Virus, H5N1 Subtype/classification , Influenza A virus/genetics , Influenza A virus/isolation & purification , Influenza A virus/classification , Poultry/virology , Poultry Diseases/virology , Poultry Diseases/diagnosis , Chickens/virology , Birds/virology
6.
Viruses ; 16(5)2024 05 11.
Article in English | MEDLINE | ID: mdl-38793646

ABSTRACT

(1) Goose astrovirus (GAstV) is a novel emerging pathogen that causes significant economic losses in waterfowl farming. A convenient, sensitive, and specific detection method for GAstV in field samples is important in order to effectively control GAstV. Droplet digital polymerase chain reaction (ddPCR) is a novel, sensitive, good-precision, and absolute quantitation PCR technology which does not require calibration curves. (2) In this study, we developed a ddPCR system for the sensitive and accurate quantification of GAstV using the conserved region of the ORF2 gene. (3) The detection limit of ddPCR was 10 copies/µL, ~28 times greater sensitivity than quantitative real-time PCR (qPCR). The specificity of the test was determined by the failure of amplification of other avian viruses. Both ddPCR and qPCR tests showed good repeatability and linearity, and the established ddPCR method had high sensitivity and good specificity to GAstV. Clinical sample test results showed that the positive rate of ddPCR (88.89%) was higher than that of qPCR (58.33%). (4) As a result, our results suggest that the newly developed ddPCR method might offer improved analytical sensitivity and specificity in its GAstV measurements. The ddPCR could be widely applied in clinical tests for GAstV infections.


Subject(s)
Astroviridae Infections , Avastrovirus , Geese , Sensitivity and Specificity , Animals , Astroviridae Infections/veterinary , Astroviridae Infections/diagnosis , Astroviridae Infections/virology , Geese/virology , Avastrovirus/genetics , Avastrovirus/isolation & purification , Poultry Diseases/virology , Poultry Diseases/diagnosis , Real-Time Polymerase Chain Reaction/methods , Polymerase Chain Reaction/methods , Reproducibility of Results , Astroviridae/genetics , Astroviridae/isolation & purification , Limit of Detection
7.
BMC Vet Res ; 20(1): 203, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38755641

ABSTRACT

BACKGROUND: Avian influenza virus (AIV) not only causes huge economic losses to the poultry industry, but also threatens human health. Reverse transcription recombinase-aided amplification (RT-RAA) is a novel isothermal nucleic acid amplification technology. This study aimed to improve the detection efficiency of H5, H7, and H9 subtypes of AIV and detect the disease in time. This study established RT-RAA-LFD and real-time fluorescence RT-RAA (RF-RT-RAA) detection methods, which combined RT-RAA with lateral flow dipstick (LFD) and exo probe respectively, while primers and probes were designed based on the reaction principle of RT-RAA. RESULTS: The results showed that RT-RAA-LFD could specifically amplify H5, H7, and H9 subtypes of AIV at 37 °C, 18 min, 39 °C, 20 min, and 38 °C, 18 min, respectively. The sensitivity of all three subtypes for RT-RAA-LFD was 102 copies/µL, which was 10 ∼100 times higher than that of reverse transcription polymerase chain reaction (RT-PCR) agarose electrophoresis method. RF-RT-RAA could specifically amplify H5, H7, and H9 subtypes of AIV at 40 °C, 20 min, 38 °C, 16 min, and 39 °C, 17 min, respectively. The sensitivity of all three subtypes for RF-RT-RAA was 101 copies/µL, which was consistent with the results of real-time fluorescence quantification RT-PCR, and 100 ∼1000 times higher than that of RT-PCR-agarose electrophoresis method. The total coincidence rate of the two methods and RT-PCR-agarose electrophoresis in the detection of clinical samples was higher than 95%. CONCLUSIONS: RT-RAA-LFD and RF-RT-RAA were successfully established in this experiment, with quick response, simple operation, strong specificity, high sensitivity, good repeatability, and stability. They are suitable for the early and rapid diagnosis of Avian influenza and they have positive significance for the prevention, control of the disease, and public health safety.


Subject(s)
Chickens , Influenza A virus , Influenza in Birds , Nucleic Acid Amplification Techniques , Recombinases , Reverse Transcription , Animals , Influenza in Birds/virology , Influenza in Birds/diagnosis , Nucleic Acid Amplification Techniques/veterinary , Nucleic Acid Amplification Techniques/methods , Influenza A virus/genetics , Influenza A virus/classification , Influenza A virus/isolation & purification , Recombinases/metabolism , Sensitivity and Specificity , Poultry Diseases/virology , Poultry Diseases/diagnosis
8.
J Virol Methods ; 328: 114955, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38768869

ABSTRACT

Infectious bronchitis (IB) is an acute, highly contagious contact respiratory disease of chickens caused by infectious bronchitis virus (IBV). IBV is very prone to mutation, which brings great difficulties to the prevention and control of the disease. Therefore, there is a pressing need for a method that is fast, sensitive, specific, and convenient for detecting IBV. In this study, a real-time fluorescence-based recombinase-aided amplification (RF-RAA) method was established. Primers and probe were designed based on the conserved regions of the IBV M gene and the reaction concentrations were optimized, then the specificity, sensitivity, and reproducibility of this assay were tested. The results showed that the RF-RAA method could be completed at 39℃ within 20 min, during which the results could be interpreted visually in real-time. The RF-RAA method had good specificity, no cross-reaction with common poultry pathogens, and it detected a minimum concentration of template of 2 copies/µL for IBV. Besides, its reproducibility was stable. A total of 144 clinical samples were tested by RF-RAA and real-time quantitative PCR (qPCR), 132 samples of which were positive and 12 samples were negative, and the coincidence rate of the two methods was 100 %. In conclusion, the developed RF-RAA detection method is rapid, specific, sensitive, reproducible, and convenient, which can be utilized for laboratory detection and clinical diagnosis of IBV.


Subject(s)
Chickens , Coronavirus Infections , Infectious bronchitis virus , Nucleic Acid Amplification Techniques , Poultry Diseases , Recombinases , Sensitivity and Specificity , Infectious bronchitis virus/genetics , Infectious bronchitis virus/isolation & purification , Animals , Chickens/virology , Poultry Diseases/virology , Poultry Diseases/diagnosis , Coronavirus Infections/diagnosis , Coronavirus Infections/veterinary , Coronavirus Infections/virology , Recombinases/metabolism , Recombinases/genetics , Reproducibility of Results , Nucleic Acid Amplification Techniques/methods , Nucleic Acid Amplification Techniques/veterinary , DNA Primers/genetics , Real-Time Polymerase Chain Reaction/methods , Real-Time Polymerase Chain Reaction/veterinary , Fluorescence , Molecular Diagnostic Techniques/methods
9.
Avian Dis ; 68(1): 33-37, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38687105

ABSTRACT

The aim of this study was to develop a multiplex PCR assay capable of rapidly differentiating two major Avipoxvirus (APV) species, Fowlpox virus (FWPV) and Pigeonpox virus (PGPV), which cause disease in bird species. Despite the importance of a rapid differentiation assay, no such assay exists that can differentiate the APV species without sequencing. To achieve this, species-specific target DNA fragments were selected from the fpv122 gene of FWPV and the HM89_gp120 gene of PGPV, which are unique to each genome. Nine samples collected from unvaccinated chickens, pigeons, and a turkey with typical pox lesions were genetically identified as FWPV and PGPV. The designed primers and target DNA fragments were validated using in silico analyses with the nucleotide Basic Local Alignment Search Tool. The multiplex PCR assay consisted of species-specific primers and previously described PanAPV primers (genus-specific) and was able to differentiate FWPV and PGPV, consistent with the phylogenetic outputs. This study represents the first successful differentiation of FWPV and PGPV genomes using a conventional multiplex PCR test. This assay has the potential to facilitate the rapid diagnosis and control of APV infections.


Desarrollo de un ensayo de PCR múltiple para la diferenciación rápida de los virus de la viruela aviar y la viruela de paloma. El objetivo de este estudio fue desarrollar un ensayo de PCR múltiple capaz de diferenciar rápidamente dos especies principales de Avipoxvirus (APV) (viruela del pollo), el Fowlpox virus (FWPV) y el Pigeonpox virus (PGPV), (viruela de la gallina), que causan enfermedades en especies de aves. A pesar de la importancia de un ensayo de diferenciación rápida, no existe ningún ensayo que pueda diferenciar las especies de APV sin secuenciación. Para lograr esto, se seleccionaron fragmentos blanco de ADN específicos de especie del gene fpv122 de FWPV y el gene HM89_gp120 de Pigeonpox virus, que son únicos para cada genoma. Nueve muestras recolectadas de pollos, palomas y un pavo que no fueron vacunados con lesiones típicas de la viruela se identificaron genéticamente como FWPV y PGPV. Los iniciadores diseñados y los fragmentos de ADN blanco se validaron mediante análisis in silico mediante la herramienta de búsqueda de alineación local básica de nucleótidos (BLAST). El ensayo de PCR múltiple consistió en iniciadores específicos de especie y cebadores PanAPV previamente descritos (específicos de género) y fue capaz de diferenciar entre Fowlpox virus y Pigeonpox virus, de acuerdo con los resultados filogenéticos. Este estudio representa la primera diferenciación exitosa de los genomas de Fowlpox virus y Pigeonpox virus utilizando una prueba de PCR múltiple convencional. Este ensayo tiene el potencial de facilitar el diagnóstico rápido y el control de las infecciones por Avipoxvirus.


Subject(s)
Avipoxvirus , Chickens , Columbidae , Fowlpox virus , Multiplex Polymerase Chain Reaction , Poultry Diseases , Poxviridae Infections , Animals , Multiplex Polymerase Chain Reaction/veterinary , Multiplex Polymerase Chain Reaction/methods , Fowlpox virus/genetics , Fowlpox virus/isolation & purification , Poxviridae Infections/veterinary , Poxviridae Infections/virology , Poxviridae Infections/diagnosis , Poultry Diseases/virology , Poultry Diseases/diagnosis , Avipoxvirus/genetics , Avipoxvirus/isolation & purification , Avipoxvirus/classification , Turkeys , Fowlpox/virology , Fowlpox/diagnosis , Species Specificity , Phylogeny , Bird Diseases/virology , Bird Diseases/diagnosis
10.
J Virol Methods ; 327: 114942, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38670532

ABSTRACT

H5, H7 and H9 are the major subtypes of avian influenza virus (AIV) that cause economic losses in the poultry industry and sporadic zoonotic infection. Early detection of AIV is essential for preventing disease spread. Therefore, molecular diagnosis and subtyping of AIV via real-time RT-PCR (rRT-PCR) is preferred over other classical diagnostic methods, such as egg inoculation, RT-PCR and HI test, due to its high sensitivity, specificity and convenience. The singleplex rRT-PCRs for the Matrix, H5 and H7 gene used for the national surveillance program in Korea have been developed in 2017; however, these methods were not designed for multiplexing, and does not reflect the sequences of currently circulating strains completely. In this study, the multiplex H5/7/9 rRT-PCR assay was developed with sets of primers and probe updated or newly designed to simultaneously detect the H5, H7 and H9 genes. Multiplex H5/7/9 rRT-PCR showed 100% specificity without cross-reactivity with other subtypes of AIVs and avian disease-causing viruses or bacteria, and the limit of detection was 1-10 EID50/0.1 ml (50% egg infectious dose). Artificial mixed infections with the three different subtypes could be detected accurately with high analytical sensitivity even under highly biased relative molecular ratios by balancing the reactivities of each subtype by modifying the concentration of the primers and probes. The multiplex H5/7/9 rRT-PCR assay developed in this study could be a useful tool for large-scale surveillance programs for viral detection as well as subtyping due to its high specificity, sensitivity and robustness in discriminating viruses in mixed infections, and this approach would greatly decrease the time, cost, effort and chance of cross-contamination compared to the conventional method of testing three subtypes by different singleplex rRT-PCR methods in parallel or in series.


Subject(s)
Chickens , Influenza A virus , Influenza in Birds , Multiplex Polymerase Chain Reaction , Real-Time Polymerase Chain Reaction , Sensitivity and Specificity , Influenza in Birds/virology , Influenza in Birds/diagnosis , Animals , Multiplex Polymerase Chain Reaction/methods , Influenza A virus/genetics , Influenza A virus/classification , Influenza A virus/isolation & purification , Real-Time Polymerase Chain Reaction/methods , Chickens/virology , Republic of Korea , Poultry Diseases/virology , Poultry Diseases/diagnosis , DNA Primers/genetics , Poultry/virology , Hemagglutinin Glycoproteins, Influenza Virus/genetics , Birds/virology
11.
Vet Parasitol ; 328: 110174, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38579608

ABSTRACT

Raillietina species and Ascaridia galli are two of the significant intestinal parasites that affect chickens in a free-range system production. They destroy the intestinal mucosa layer, leading to several clinical symptoms such as weight loss, a slowed growth rate, and economic value loss. Thus, the objective of this study was to develop an assay for simultaneously detecting Raillietina spp. (R. echinobothrida, R. tetragona, and R. cesticillus) and A. galli in a single reaction using duplex loop-mediated isothermal amplification (dLAMP) coupled with a lateral flow dipstick (LFD) assay. The analytical specificity of the dLAMP-LFD assay showed a high specific amplification of Raillietina spp. and A. galli without non-target amplification. Regarding the analytical sensitivity, this approach was capable of simultaneously detecting concentrations as low as 5 pg/µL of mixed-targets. To evaluate the efficiency of the dLAMP assay, 30 faecal samples of chickens were verified and compared through microscopic examination. The dLAMP-LFD assay and microscopic examination results showed kappa values of Raillietina spp. and A. galli with moderate (K= 0.615) to high (K= 1) agreements, respectively, while the McNemar's test indicated that the efficiency between assays was not significantly different. Therefore, the developed dLAMP-LFD assay can be used as an alternative screening method to the existing classical method for epidemiological investigation, epidemic control, and farm management, as well as for addressing poultry health problems.


Subject(s)
Ascaridia , Ascaridiasis , Chickens , Nucleic Acid Amplification Techniques , Poultry Diseases , Sensitivity and Specificity , Animals , Chickens/parasitology , Nucleic Acid Amplification Techniques/veterinary , Nucleic Acid Amplification Techniques/methods , Poultry Diseases/parasitology , Poultry Diseases/diagnosis , Ascaridia/isolation & purification , Ascaridia/genetics , Ascaridiasis/veterinary , Ascaridiasis/diagnosis , Ascaridiasis/parasitology , Feces/parasitology , Molecular Diagnostic Techniques/veterinary , Molecular Diagnostic Techniques/methods
12.
J Vet Diagn Invest ; 36(4): 529-537, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38571400

ABSTRACT

The spread of antimicrobial-resistant bacteria is a significant concern, as it can lead to increased morbidity and mortality in both humans and animals. Whole-genome sequencing (WGS) is a powerful tool that can be used to conduct a comprehensive analysis of the genetic basis of antimicrobial resistance (AMR). We compared the phenotypic and genotypic AMR profiles of 97 Salmonella isolates derived from chicken and turkey diagnostic samples. We focused AMR analysis on 5 antimicrobial classes: aminoglycoside, beta-lactam, phenicol, tetracycline, and trimethoprim. The overall sensitivity and specificity of WGS in predicting phenotypic antimicrobial resistance in the Salmonella isolates were 93.4% and 99.8%, respectively. There were 16 disagreement instances, including 15 that were phenotypically resistant but genotypically susceptible; the other instance involved phenotypic susceptibility but genotypic resistance. Of the isolates examined, 67 of 97 (69%) carried at least 1 resistance gene, with 1 isolate carrying as many as 12 resistance genes. Of the 31 AMR genes analyzed, 16 were identified as aminoglycoside-resistance genes, followed by 4 beta-lactam-resistance, 3 tetracycline-resistance, 2 sulfonamide-resistance, and 1 each of fosfomycin-, quinolone-, phenicol-, trimethoprim-, bleomycin-, and colistin-resistance genes. Most of the resistance genes found were located on plasmids.


Subject(s)
Anti-Bacterial Agents , Chickens , Genotype , Poultry Diseases , Salmonella Infections, Animal , Salmonella enterica , Turkeys , Animals , Poultry Diseases/microbiology , Poultry Diseases/diagnosis , Anti-Bacterial Agents/pharmacology , Salmonella enterica/drug effects , Salmonella enterica/genetics , Salmonella enterica/isolation & purification , Salmonella Infections, Animal/microbiology , Salmonella Infections, Animal/diagnosis , Turkeys/microbiology , Chickens/microbiology , Drug Resistance, Bacterial/genetics , Whole Genome Sequencing/veterinary , Microbial Sensitivity Tests/veterinary , Phenotype
13.
Poult Sci ; 103(7): 103729, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38676965

ABSTRACT

Since 2015, an outbreak of an infectious disease in broilers caused by fowl adenovirus serotype 4 (FAdV-4) has occurred in China, resulting in substantial economic losses. Rapid, accurate, and specific detection are significant in the prevention and control of FAdV-4. In this study, an FAdV-4 detection method combining loop-mediated isothermal amplification (LAMP) and Pyrococcus furiosus Argonaute (PfAgo) was established. Specific primers, guide DNAs (gDNAs), and molecular beacons were designed to target a conserved region of the FAdV-4 hexon gene. After optimizing the reaction conditions, the minimum detection of this assay could reach 5 copies. It only amplified FAdV-4, and there was no cross-reactivity with other pathogens. The assay took about only 50 min, and the results could be visualized with the naked eye under ultraviolet or blue light, getting rid of specialized instruments. This novel LAMP-PfAgo assay was validated by using 20 clinical samples and the results were identical to gold-standard real-time polymerase chain reaction method. In summary, the LAMP-PfAgo assay established in the paper provides a rapid, reliable, convenient, ultra-sensitive and highly specific tool for the on-site detection and clinical diagnosis of FAdV-4.


Subject(s)
Adenoviridae Infections , Aviadenovirus , Chickens , Nucleic Acid Amplification Techniques , Poultry Diseases , Pyrococcus furiosus , Nucleic Acid Amplification Techniques/veterinary , Nucleic Acid Amplification Techniques/methods , Adenoviridae Infections/veterinary , Adenoviridae Infections/virology , Adenoviridae Infections/diagnosis , Animals , Poultry Diseases/virology , Poultry Diseases/diagnosis , Pyrococcus furiosus/genetics , Aviadenovirus/genetics , Aviadenovirus/isolation & purification , Aviadenovirus/classification , Sensitivity and Specificity , Serogroup , Argonaute Proteins/genetics , Molecular Diagnostic Techniques/veterinary , Molecular Diagnostic Techniques/methods
14.
Poult Sci ; 103(7): 103780, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38688138

ABSTRACT

Cage-free (CF) housing systems are expected to be the dominant egg production system in North America and European Union countries by 2030. Within these systems, bumblefoot (a common bacterial infection and chronic inflammatory reaction) is mostly observed in hens reared on litter floors. It causes pain and stress in hens and is detrimental to their welfare. For instance, hens with bumblefoot have difficulty moving freely, thus hindering access to feeders and drinkers. However, it is technically challenging to detect hens with bumblefoot, and no automatic methods have been applied for hens' bumblefoot detection (BFD), especially in its early stages. This study aimed to develop and test artificial intelligence methods (i.e., deep learning models) to detect hens' bumblefoot condition in a CF environment under various settings such as epochs (number of times the entire dataset passes through the network during training), batch size (number of data samples processed per iteration during training), and camera height. The performance of 3 newly developed deep learning models (i.e., YOLOv5s-BFD, YOLOv5m-BFD, & YOLOv5x-BFD) were compared in detecting hens with bumblefoot of hens in CF environments. The result shows that the YOLOv5m-BFD model had the highest precision (93.7%), recall (84.6%), mAP@0.50 (90.9%), mAP@0.50:0.95 (51.8%), and F1-score (89.0%) compared with other models. The observed YOLOv5m-BFD model trained at 400 epochs and batch size 16 is recommended for bumblefoot detection in laying hens. This study provides a basis for developing an automatic bumblefoot detection system in commercial CF houses. This model will be modified and trained to detect the occurrence of broilers with bumblefoot in the future.


Subject(s)
Chickens , Housing, Animal , Animals , Chickens/physiology , Female , Poultry Diseases/diagnosis , Animal Husbandry/methods , Deep Learning , Animal Welfare , Artificial Intelligence
15.
Poult Sci ; 103(6): 103680, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38564836

ABSTRACT

White Striping (WS), Wooden Breast (WB), and Spaghetti Meat (SM) are documented breast muscle myopathies (BMM) affecting broiler chickens' product quality, profitability and welfare. This study evaluated the efficacy of our newly developed deep learning-based automated image analysis tool for early detection of morphometric parameters related to BMM in broiler chickens. Male chicks were utilized, and muscle samples were collected on d 14 of rearing. Histological procedures, including microscopic scoring, blood vessel count, and collagen quantification, were conducted. A previous study demonstrated our automated image analysis as a reliable tool for evaluating myofiber size, conforming with manual histological measurements. A threshold for BMM detection was established by normalizing and consolidating myofiber diameter and area into a unified metric based on automated measurements, also termed as "relative myofiber size value." Results show that severe myopathy broilers consistently exhibited lower relative myofiber size values, effectively detecting myopathy severity. Our study, aimed as proof of concept, underscores the potential of our automated image analysis tool as an early detection method for BMM.


Subject(s)
Chickens , Image Processing, Computer-Assisted , Muscular Diseases , Pectoralis Muscles , Poultry Diseases , Animals , Muscular Diseases/veterinary , Muscular Diseases/pathology , Muscular Diseases/diagnosis , Poultry Diseases/pathology , Poultry Diseases/diagnosis , Male , Pectoralis Muscles/pathology , Image Processing, Computer-Assisted/methods , Deep Learning , Meat/analysis , Early Diagnosis
16.
Poult Sci ; 103(6): 103648, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38574460

ABSTRACT

Avian infectious bronchitis virus (IBV) still causes serious economic losses in the poultry industry. Currently, there are multiple prevalent genotypes and serotypes of IBVs. It is imperative to develop a new diagnosis method that is fast, sensitive, specific, simple, and broad-spectrum. A monoclonal hybridoma cell, N2D5, against the IBV N protein was obtained after fusion of myeloma SP2/0 cells with spleen cells isolated from the immunized Balb/c mice. The N2D5 monoclonal antibody (mAb) and the previously prepared mouse polyclonal antibody against the IBV N protein were used to target IBV as a colloidal gold-mAb conjugate and a captured antibody, respectively, in order to develop an immunochromatographic strip. The optimal pH and minimum antibody concentration in the reaction system for colloidal gold-mAb N2D5 conjugation were pH 6.5 and 30 µg/mL, respectively. Common avian pathogens were tested to evaluate the specificity of the strip and no cross-reaction was observed. The sensitivity of the strip for detecting IBV was 10-1.4522 EID50/mL. The strip showed a broad-spectrum cross-reactive capacity for detecting IBV antigens, including multiple IBV genotypes in China and all of the seven serotypes of IBV that are currently prevalent in southern China. Additionally, the result can be observed within 2 min without any equipment. The throat and cloacal swab samples of chickens that were artificially infected with three IBV strains were tested using the developed strip and the qPCR method; the strip test demonstrated a high consistency in detecting IBV via qPCR gene detection. In conclusion, the immunochromatographic strip that was established is rapid, sensitive, specific, simple, practical, and broad-spectrum; additionally, it has the potential to serve as an on-site rapid detection method of IBV and can facilitate the surveillance and control of the disease, especially in resource-limited areas.


Subject(s)
Antibodies, Monoclonal , Chickens , Coronavirus Infections , Gold Colloid , Infectious bronchitis virus , Mice, Inbred BALB C , Poultry Diseases , Infectious bronchitis virus/isolation & purification , Infectious bronchitis virus/immunology , Animals , Gold Colloid/chemistry , Poultry Diseases/diagnosis , Poultry Diseases/virology , Coronavirus Infections/veterinary , Coronavirus Infections/diagnosis , Coronavirus Infections/virology , Antibodies, Monoclonal/immunology , Chromatography, Affinity/veterinary , Chromatography, Affinity/methods , Mice , Sensitivity and Specificity , Reagent Strips
17.
Poult Sci ; 103(6): 103681, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38603932

ABSTRACT

Cellulitis is an important disease in commercial turkey farms associated with significant economic loss. Although the etiology of cellulitis is not fully elucidated, Clostridium septicum (C. septicum) is one of the main causes of this infectious disease. In this study, we report the development of a quantitative real-time PCR (qRT PCR) assay targeting the alpha-toxin gene (csa), which involves a prior 15-cyle PCR using a nested pair of primers to increase the detection sensitivity. Additionally, the TaqMan probe was employed to increase the target-specificity of the assay. The performance of our nested qRT-PCR assay was evaluated using Clostridium isolates from turkey farms, representing both septicum and non-septicum species, as well as sponge swab samples from turkey farms. Our step-by-step development of the assay showed that the csa gene is a suitable target for specific detection of C. septicum strains and that the inclusion of nested PCR step significantly increased the detection sensitivity of the final qRT PCR assay. The performance of the assay was also validated by a high correlation of the threshold cycle numbers of the qRT PCR assay with the relative abundance of C. septicum read counts in 16S rRNA gene microbiota profiles of the C. septicum-containing samples from turkey farms.


Subject(s)
Clostridium Infections , Clostridium septicum , Poultry Diseases , Real-Time Polymerase Chain Reaction , Turkeys , Real-Time Polymerase Chain Reaction/veterinary , Real-Time Polymerase Chain Reaction/methods , Animals , Turkeys/microbiology , Clostridium Infections/veterinary , Clostridium Infections/microbiology , Clostridium Infections/diagnosis , Clostridium septicum/isolation & purification , Clostridium septicum/genetics , Poultry Diseases/microbiology , Poultry Diseases/diagnosis , Sensitivity and Specificity , RNA, Ribosomal, 16S/genetics , RNA, Ribosomal, 16S/analysis
18.
Poult Sci ; 103(5): 103611, 2024 May.
Article in English | MEDLINE | ID: mdl-38471226

ABSTRACT

The aim of this study was to develop an efficient and accurate platform for the detection of the newly identified goose megrivirus (GoMV). To achieve this goal, we developed a TaqMan real-time PCR technology for the rapid detection and identification of GoMV. Our data showed that the established TaqMan real-time PCR assay had high sensitivity, with the lowest detection limit of 67.3 copies/µL. No positive signal can be observed from other goose origin viruses (including AIV, GPV, GoCV, GHPyV, and GoAstV), with strong specificity. The coefficients of variation of repeated intragroup and intergroup tests were all less than 1.5%, with excellent repeatability. Clinical sample investigation data from domestic Minbei White geese firstly provided evidence that GoMV can be transmitted both horizontally and vertically. In conclusion, since the TaqMan real-time PCR method has high sensitivity, specificity, and reproducibility, it can be a useful candidate tool for GoMV epidemiological investigation.


Subject(s)
Geese , Poultry Diseases , Real-Time Polymerase Chain Reaction , Animals , Real-Time Polymerase Chain Reaction/veterinary , Real-Time Polymerase Chain Reaction/methods , Geese/virology , Poultry Diseases/virology , Poultry Diseases/diagnosis , Sensitivity and Specificity , RNA Virus Infections/veterinary , RNA Virus Infections/virology , RNA Virus Infections/diagnosis , Reproducibility of Results
19.
Avian Dis ; 67(4): 340-344, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38300655

ABSTRACT

Histomoniasis is a deadly disease of turkeys causing devastating economic losses to the poultry industry. In field outbreaks, a presumptive diagnosis is made based on gross pathology lesions and confirmed by histopathology. An early detection tool with quick turnaround time is needed to prevent the spread of histomoniasis. With this objective, two studies were conducted in turkeys. In Study 1, 40 poults were housed in two pens (20 poults/pen) and challenged at 14 days of age with Histomonas meleagridis by intracloacal route. Blood samples were collected 4 days postchallenge. Fifty-five percent (22/40) of the blood samples tested positive for H. meleagridis based on PCR using primers targeted against the 18S rRNA gene and confirmed by sequencing. In Study 2, 40 poults were housed in two groups and raised in floor pens. Groups 1 and 2 served as negative and challenge controls, respectively. At 14 days of age, the birds in Group 2 were challenged with H. meleagridis by intracloacal route. Blood samples were collected 2 days postchallenge. Five percent (1/20) of the blood samples tested positive for H. meleagridis, based on PCR and confirmed by sequencing. The results from both studies indicate that H. meleagridis DNA can be detected in the blood samples by PCR and confirmed by sequencing as early as 4 days postchallenge. This early detection method could be applied in field outbreaks to detect and confirm histomoniasis as early as possible.


Detección temprana de histomoniasis en muestras de sangre mediante PCR y secuenciación La histomoniasis es una enfermedad mortal de los pavos que causa pérdidas económicas devastadoras a la industria avícola. En los brotes de campo, se realiza un diagnóstico presuntivo basado en lesiones patológicas macroscópicas y se confirma mediante histopatología. Se necesita una herramienta de detección temprana con un tiempo de respuesta rápido para prevenir la propagación de la histomoniasis. Con este objetivo, se realizaron dos estudios en pavos. En el Estudio 1, se alojaron 40 pavipollos en dos corrales (20 pavipollos/corral) y se desafiaron a los 14 días de edad con Histomonas meleagridis por vía intracloacal. Se recolectaron muestras de sangre a los cuatro días después del desafío. El cincuenta y cinco por ciento (22/40) de las muestras de sangre resultaron positivas para H. meleagridis según el método de PCR utilizando iniciadores dirigidos contra el gene 18S rRNA y confirmado mediante secuenciación. En el Estudio 2, se alojaron 40 pavipollos en dos grupos y se criaron en corrales en piso. Los grupos 1 y 2 sirvieron como controles negativos y de desafío, respectivamente. A los 14 días de edad, las aves del Grupo 2 fueron expuestas a H. meleagridis por vía intracloacal. Se recolectaron muestras de sangre dos días después del desafío. El cinco por ciento (1/20) de las muestras de sangre dieron positivo para H. meleagridis, según el método de PCR y confirmado mediante secuenciación. Los resultados de ambos estudios indican que el ADN de H. meleagridis puede detectarse en las muestras de sangre mediante PCR y confirmarse mediante secuenciación tan pronto como cuatro días después de la exposición. Este método de detección temprana podría aplicarse en brotes de campo para detectar y confirmar la histomoniasis lo antes posible.


Subject(s)
Poultry Diseases , Protozoan Infections , Animals , Turkeys , Poultry Diseases/diagnosis , Disease Outbreaks , Polymerase Chain Reaction/veterinary
20.
Avian Dis ; 67(4): 345-348, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38300656

ABSTRACT

Developer ducks are ducks being reared for breeding. Like breeder candidate chickens, they are raised with appropriate light and feed programs. A commercial Pekin duck (Anas platyrhynchos domesticus) developer flock experienced an extraordinary, elevated mortality event at 6 wk of age. Weekly mortality rate that week was 162 ducklings out of a flock of 6420 (2.5%). Mortality jumped to 988 (15.4%) ducklings the next week. On first elevated mortality, six dead ducks from that flock were submitted for diagnostic investigation at Michigan State University Veterinary Diagnostic Laboratory. Myocarditis, pale striping or diffuse pallor of the epicardium, was grossly evident in five of the six submitted ducklings. All of the ducklings had hydropericardium, three had ascites, and three had congested meninges. Histology confirmed myocarditis with myocardial necrosis. Cerebrum and brainstem had lymphocytic vasculitis with rare neuronal necrosis in affected areas, as well as Purkinje cells in the cerebellum. West Nile virus was confirmed by PCR the day after submittal and by immunohistochemistry soon thereafter.


Reporte de caso- Infección por el virus del Nilo occidental en una parvada en desarrollo de patos Pekin (Anas platyrhynchos domesticus) reproductores. Los patos reproductores en desarrollo son patos que se crían para la reproducción. Al igual que los pollos candidatos para reproducción, se crían con programas de iluminación y alimentación adecuados. Una parvada comercial en desarrollo de pato Pekín (Anas platyrhynchos domesticus) experimentó un evento de mortalidad elevada y extraordinaria a las seis semanas de edad. La tasa de mortalidad semanal de esa semana fue de 162 patitos de una parvada de 6420 (2.5%). La mortalidad se elevó a 988 (15.4%) patitos la semana siguiente. En el primer aumento de mortalidad, seis patos muertos de esa bandada fueron enviados para una investigación de diagnóstico en el Laboratorio de Diagnóstico Veterinario de la Universidad Estatal de Michigan. La miocarditis, caracterizada por rayas pálidas o palidez difusa del epicardio, fue evidente en cinco de los seis patitos presentados. Todos los patitos mostraron hidropericardio, tres tenían ascitis y tres tenían meninges congestionadas. La histología confirmó miocarditis con necrosis miocárdica. El cerebro y el tronco del encéfalo tenían vasculitis linfocítica con rara necrosis neuronal en las áreas afectadas, así como de las células de Purkinje en el cerebelo. El virus del Nilo Occidental se confirmó mediante PCR el día después de la llegada al laboratorio y mediante inmunohistoquímica poco tiempo después.


Subject(s)
Myocarditis , Poultry Diseases , West Nile Fever , Animals , West Nile Fever/diagnosis , West Nile Fever/veterinary , Ducks , Myocarditis/veterinary , Chickens , Poultry Diseases/diagnosis , Necrosis/veterinary
SELECTION OF CITATIONS
SEARCH DETAIL
...