Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 5.196
Filter
1.
Proc Natl Acad Sci U S A ; 121(26): e2315100121, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38889143

ABSTRACT

Synapses containing γ-aminobutyric acid (GABA) constitute the primary centers for inhibitory neurotransmission in our nervous system. It is unclear how these synaptic structures form and align their postsynaptic machineries with presynaptic terminals. Here, we monitored the cellular distribution of several GABAergic postsynaptic proteins in a purely glutamatergic neuronal culture derived from human stem cells, which virtually lacks any vesicular GABA release. We found that several GABAA receptor (GABAAR) subunits, postsynaptic scaffolds, and major cell-adhesion molecules can reliably coaggregate and colocalize at even GABA-deficient subsynaptic domains, but remain physically segregated from glutamatergic counterparts. Genetic deletions of both Gephyrin and a Gephyrin-associated guanosine di- or triphosphate (GDP/GTP) exchange factor Collybistin severely disrupted the coassembly of these postsynaptic compositions and their proper apposition with presynaptic inputs. Gephyrin-GABAAR clusters, developed in the absence of GABA transmission, could be subsequently activated and even potentiated by delayed supply of vesicular GABA. Thus, molecular organization of GABAergic postsynapses can initiate via a GABA-independent but Gephyrin-dependent intrinsic mechanism.


Subject(s)
Carrier Proteins , Membrane Proteins , Presynaptic Terminals , Receptors, GABA-A , Synapses , gamma-Aminobutyric Acid , Humans , Membrane Proteins/metabolism , Membrane Proteins/genetics , gamma-Aminobutyric Acid/metabolism , Receptors, GABA-A/metabolism , Receptors, GABA-A/genetics , Carrier Proteins/metabolism , Carrier Proteins/genetics , Presynaptic Terminals/metabolism , Synapses/metabolism , Synaptic Transmission/physiology , Rho Guanine Nucleotide Exchange Factors/metabolism , Rho Guanine Nucleotide Exchange Factors/genetics
2.
Learn Mem ; 31(5)2024 May.
Article in English | MEDLINE | ID: mdl-38862173

ABSTRACT

The intricate molecular and structural sequences guiding the formation and consolidation of memories within neuronal circuits remain largely elusive. In this study, we investigate the roles of two pivotal presynaptic regulators, the small GTPase Rab3, enriched at synaptic vesicles, and the cell adhesion protein Neurexin-1, in the formation of distinct memory phases within the Drosophila mushroom body Kenyon cells. Our findings suggest that both proteins play crucial roles in memory-supporting processes within the presynaptic terminal, operating within distinct plasticity modules. These modules likely encompass remodeling and maturation of existing active zones (AZs), as well as the formation of new AZs.


Subject(s)
Drosophila Proteins , Memory , Mushroom Bodies , Presynaptic Terminals , rab3 GTP-Binding Proteins , Animals , Mushroom Bodies/physiology , Mushroom Bodies/metabolism , Presynaptic Terminals/physiology , Presynaptic Terminals/metabolism , Drosophila Proteins/metabolism , Memory/physiology , rab3 GTP-Binding Proteins/metabolism , rab3 GTP-Binding Proteins/genetics , Nerve Tissue Proteins/metabolism , Drosophila , Synaptic Vesicles/metabolism , Synaptic Vesicles/physiology
3.
J Biomech Eng ; 146(11)2024 Nov 01.
Article in English | MEDLINE | ID: mdl-38888293

ABSTRACT

The precise mechanism behind the supply of adenosine triphosphate (ATP) to approximately half of the presynaptic release sites in axons that lack a stationary mitochondrion is not fully understood. This paper presents a mathematical model designed to simulate the transient ATP concentration in presynaptic en passant boutons. The model is utilized to investigate how the ATP concentration responds to increased ATP demand during neuronal firing in boutons with a stationary mitochondrion and those without one. The analysis suggests that neuron firing may cause oscillations in the ATP concentrations, with peak-to-peak amplitudes ranging from 0.06% to 5% of their average values. However, this does not deplete boutons lacking a mitochondrion of ATP; for physiologically relevant values of model parameters, their concentration remains approximately 3.75 times higher than the minimum concentration required for synaptic activity. The variance in average ATP concentrations between boutons containing a stationary mitochondrion and those lacking one ranges from 0.3% to 0.8%, contingent on the distance between the boutons. The model indicates that diffusion-driven ATP transport is rapid enough to adequately supply ATP molecules to boutons lacking a stationary mitochondrion.


Subject(s)
Adenosine Triphosphate , Mitochondria , Neurons , Presynaptic Terminals , Adenosine Triphosphate/metabolism , Mitochondria/metabolism , Neurons/metabolism , Presynaptic Terminals/metabolism , Presynaptic Terminals/physiology , Models, Neurological , Animals , Action Potentials , Time Factors
4.
eNeuro ; 11(7)2024 Jul.
Article in English | MEDLINE | ID: mdl-38866497

ABSTRACT

Synapsins are highly abundant presynaptic proteins that play a crucial role in neurotransmission and plasticity via the clustering of synaptic vesicles. The synapsin III isoform is usually downregulated after development, but in hippocampal mossy fiber boutons, it persists in adulthood. Mossy fiber boutons express presynaptic forms of short- and long-term plasticity, which are thought to underlie different forms of learning. Previous research on synapsins at this synapse focused on synapsin isoforms I and II. Thus, a complete picture regarding the role of synapsins in mossy fiber plasticity is still missing. Here, we investigated presynaptic plasticity at hippocampal mossy fiber boutons by combining electrophysiological field recordings and transmission electron microscopy in a mouse model lacking all synapsin isoforms. We found decreased short-term plasticity, i.e., decreased facilitation and post-tetanic potentiation, but increased long-term potentiation in male synapsin triple knock-out (KO) mice. At the ultrastructural level, we observed more dispersed vesicles and a higher density of active zones in mossy fiber boutons from KO animals. Our results indicate that all synapsin isoforms are required for fine regulation of short- and long-term presynaptic plasticity at the mossy fiber synapse.


Subject(s)
Mice, Knockout , Mossy Fibers, Hippocampal , Neuronal Plasticity , Presynaptic Terminals , Synapsins , Animals , Synapsins/metabolism , Synapsins/genetics , Mossy Fibers, Hippocampal/physiology , Male , Neuronal Plasticity/physiology , Presynaptic Terminals/physiology , Presynaptic Terminals/metabolism , Mice, Inbred C57BL , Mice , Synaptic Vesicles/metabolism , Synaptic Vesicles/ultrastructure , Excitatory Postsynaptic Potentials/physiology
5.
Cells ; 13(11)2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38891114

ABSTRACT

Presynaptic Ca2+ influx through voltage-gated Ca2+ channels (VGCCs) is a key signal for synaptic vesicle release. Synaptic neurexins can partially determine the strength of transmission by regulating VGCCs. However, it is unknown whether neurexins modulate Ca2+ influx via all VGCC subtypes similarly. Here, we performed live cell imaging of synaptic boutons from primary hippocampal neurons with a Ca2+ indicator. We used the expression of inactive and active Cre recombinase to compare control to conditional knockout neurons lacking either all or selected neurexin variants. We found that reduced total presynaptic Ca2+ transients caused by the deletion of all neurexins were primarily due to the reduced contribution of P/Q-type VGCCs. The deletion of neurexin1α alone also reduced the total presynaptic Ca2+ influx but increased Ca2+ influx via N-type VGCCs. Moreover, we tested whether the decrease in Ca2+ influx induced by activation of cannabinoid receptor 1 (CB1-receptor) is modulated by neurexins. Unlike earlier observations emphasizing a role for ß-neurexins, we found that the decrease in presynaptic Ca2+ transients induced by CB1-receptor activation depended more strongly on the presence of α-neurexins in hippocampal neurons. Together, our results suggest that neurexins have unique roles in the modulation of presynaptic Ca2+ influx through VGCC subtypes and that different neurexin variants may affect specific VGCCs.


Subject(s)
Calcium , Hippocampus , Presynaptic Terminals , Animals , Calcium/metabolism , Presynaptic Terminals/metabolism , Hippocampus/metabolism , Hippocampus/cytology , Mice , Mice, Knockout , Calcium Channels/metabolism , Calcium Channels/genetics , Neurons/metabolism , Receptor, Cannabinoid, CB1/metabolism , Receptor, Cannabinoid, CB1/genetics , Calcium Signaling , Gene Knockout Techniques , Neurexins
6.
Acta Neuropathol ; 147(1): 98, 2024 06 11.
Article in English | MEDLINE | ID: mdl-38861157

ABSTRACT

Widespread cortical accumulation of misfolded pathological tau proteins (ptau) in the form of paired helical filaments is a major hallmark of Alzheimer's disease. Subcellular localization of ptau at various stages of disease progression is likely to be informative of the cellular mechanisms involving its spread. Here, we found that the density of ptau within several distinct rostral thalamic nuclei in post-mortem human tissue (n = 25 cases) increased with the disease stage, with the anterodorsal nucleus (ADn) consistently being the most affected. In the ADn, ptau-positive elements were present already in the pre-cortical (Braak 0) stage. Tau pathology preferentially affected the calretinin-expressing subpopulation of glutamatergic neurons in the ADn. At the subcellular level, we detected ptau immunoreactivity in ADn cell bodies, dendrites, and in a specialized type of presynaptic terminal that expresses vesicular glutamate transporter 2 (vGLUT2) and likely originates from the mammillary body. The ptau-containing terminals displayed signs of degeneration, including endosomal/lysosomal organelles. In contrast, corticothalamic axon terminals lacked ptau. The data demonstrate the involvement of a specific cell population in ADn at the onset of the disease. The presence of ptau in subcortical glutamatergic presynaptic terminals supports hypotheses about the transsynaptic spread of tau selectively affecting specialized axonal pathways.


Subject(s)
Alzheimer Disease , tau Proteins , Humans , tau Proteins/metabolism , Female , Male , Aged , Aged, 80 and over , Alzheimer Disease/pathology , Alzheimer Disease/metabolism , Middle Aged , Neurons/metabolism , Neurons/pathology , Vesicular Glutamate Transport Protein 2/metabolism , Glutamic Acid/metabolism , Anterior Thalamic Nuclei/metabolism , Anterior Thalamic Nuclei/pathology , Calbindin 2/metabolism , Neurofibrillary Tangles/pathology , Neurofibrillary Tangles/metabolism , Presynaptic Terminals/metabolism , Presynaptic Terminals/pathology
7.
EMBO Rep ; 25(6): 2610-2634, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38698221

ABSTRACT

GABAB receptors (GBRs), the G protein-coupled receptors for GABA, regulate synaptic transmission throughout the brain. A main synaptic function of GBRs is the gating of Cav2.2-type Ca2+ channels. However, the cellular compartment where stable GBR/Cav2.2 signaling complexes form remains unknown. In this study, we demonstrate that the vesicular protein synaptotagmin-11 (Syt11) binds to both the auxiliary GBR subunit KCTD16 and Cav2.2 channels. Through these dual interactions, Syt11 recruits GBRs and Cav2.2 channels to post-Golgi vesicles, thus facilitating assembly of GBR/Cav2.2 signaling complexes. In addition, Syt11 stabilizes GBRs and Cav2.2 channels at the neuronal plasma membrane by inhibiting constitutive internalization. Neurons of Syt11 knockout mice exhibit deficits in presynaptic GBRs and Cav2.2 channels, reduced neurotransmitter release, and decreased GBR-mediated presynaptic inhibition, highlighting the critical role of Syt11 in the assembly and stable expression of GBR/Cav2.2 complexes. These findings support that Syt11 acts as a vesicular scaffold protein, aiding in the assembly of signaling complexes from low-abundance components within transport vesicles. This mechanism enables insertion of pre-assembled functional signaling units into the synaptic membrane.


Subject(s)
Mice, Knockout , Signal Transduction , Synaptotagmins , Animals , Synaptotagmins/metabolism , Synaptotagmins/genetics , Mice , Humans , Neurons/metabolism , Synaptic Transmission , Receptors, GABA-B/metabolism , Receptors, GABA-B/genetics , Presynaptic Terminals/metabolism , Calcium Channels, N-Type/metabolism , Calcium Channels, N-Type/genetics , Golgi Apparatus/metabolism , Protein Binding , HEK293 Cells
8.
Commun Biol ; 7(1): 642, 2024 May 27.
Article in English | MEDLINE | ID: mdl-38802535

ABSTRACT

Alterations in the experience-dependent and autonomous elaboration of neural circuits are assumed to underlie autism spectrum disorder (ASD), though it is unclear what synaptic traits are responsible. Here, utilizing a valproic acid-induced ASD marmoset model, which shares common molecular features with idiopathic ASD, we investigate changes in the structural dynamics of tuft dendrites of upper-layer pyramidal neurons and adjacent axons in the dorsomedial prefrontal cortex through two-photon microscopy. In model marmosets, dendritic spine turnover is upregulated, and spines are generated in clusters and survived more often than in control marmosets. Presynaptic boutons in local axons, but not in commissural long-range axons, demonstrate hyperdynamic turnover in model marmosets, suggesting alterations in projection-specific plasticity. Intriguingly, nasal oxytocin administration attenuates clustered spine emergence in model marmosets. Enhanced clustered spine generation, possibly unique to certain presynaptic partners, may be associated with ASD and be a potential therapeutic target.


Subject(s)
Callithrix , Disease Models, Animal , Neuronal Plasticity , Oxytocin , Animals , Oxytocin/metabolism , Male , Synapses/metabolism , Dendritic Spines/metabolism , Dendritic Spines/pathology , Dendritic Spines/drug effects , Autism Spectrum Disorder/metabolism , Autistic Disorder/metabolism , Autistic Disorder/pathology , Prefrontal Cortex/metabolism , Prefrontal Cortex/pathology , Prefrontal Cortex/drug effects , Pyramidal Cells/metabolism , Pyramidal Cells/pathology , Valproic Acid/pharmacology , Presynaptic Terminals/metabolism , Female , Axons/metabolism
9.
Neurology ; 102(11): e209453, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38759132

ABSTRACT

BACKGROUND AND OBJECTIVES: Degeneration of the presynaptic nigrostriatal dopaminergic system is one of the main biological features of Parkinson disease (PD), multiple system atrophy (MSA), progressive supranuclear palsy (PSP), and corticobasal degeneration (CBD), which can be measured using single-photon emission CT imaging for diagnostic purposes. Despite its widespread use in clinical practice and research, the diagnostic properties of presynaptic nigrostriatal dopaminergic (DAT) imaging in parkinsonism have never been evaluated against the diagnostic gold standard of neuropathology. The aim of this study was to evaluate the diagnostic parameters of DAT imaging compared with pathologic diagnosis in patients with parkinsonism. METHODS: Retrospective cohort study of patients with DAT imaging for the investigation of a clinically uncertain parkinsonism with brain donation between 2010 and 2021 to the Queen Square Brain Bank (London). Patients with DAT imaging for investigation of pure ataxia or dementia syndromes without parkinsonism were excluded. Those with a pathologic diagnosis of PD, MSA, PSP, or CBD were considered presynaptic dopaminergic parkinsonism, and other pathologies were considered postsynaptic for the analysis. DAT imaging was performed in routine clinical practice and visually classified by hospital nuclear medicine specialists as normal or abnormal. The results were correlated with neuropathologic diagnosis to calculate diagnostic accuracy parameters for the diagnosis of presynaptic dopaminergic parkinsonism. RESULTS: All of 47 patients with PD, 41 of 42 with MSA, 68 of 73 with PSP, and 6 of 10 with CBD (sensitivity 100%, 97.6%, 93.2%, and 60%, respectively) had abnormal presynaptic dopaminergic imaging. Eight of 17 patients with presumed postsynaptic parkinsonism had abnormal scans (specificity 52.9%). DISCUSSION: DAT imaging has very high sensitivity and negative predictive value for the diagnosis of presynaptic dopaminergic parkinsonism, particularly for PD. However, patients with CBD, and to a lesser extent PSP (of various phenotypes) and MSA (with predominant ataxia), can show normal DAT imaging. A range of other neurodegenerative disorders may have abnormal DAT scans with low specificity in the differential diagnosis of parkinsonism. DAT imaging is a useful diagnostic tool in the differential diagnosis of parkinsonism, although clinicians should be aware of its diagnostic properties and limitations. CLASSIFICATION OF EVIDENCE: This study provides Class II evidence that DAT imaging does not accurately distinguish between presynaptic dopaminergic parkinsonism and non-presynaptic dopaminergic parkinsonism.


Subject(s)
Dopamine Plasma Membrane Transport Proteins , Multiple System Atrophy , Parkinsonian Disorders , Tomography, Emission-Computed, Single-Photon , Humans , Female , Aged , Male , Retrospective Studies , Dopamine Plasma Membrane Transport Proteins/metabolism , Parkinsonian Disorders/diagnostic imaging , Parkinsonian Disorders/pathology , Parkinsonian Disorders/metabolism , Tomography, Emission-Computed, Single-Photon/methods , Middle Aged , Multiple System Atrophy/diagnostic imaging , Multiple System Atrophy/pathology , Multiple System Atrophy/metabolism , Supranuclear Palsy, Progressive/diagnostic imaging , Supranuclear Palsy, Progressive/pathology , Supranuclear Palsy, Progressive/metabolism , Aged, 80 and over , Parkinson Disease/diagnostic imaging , Parkinson Disease/metabolism , Parkinson Disease/pathology , Cohort Studies , Corticobasal Degeneration/diagnostic imaging , Corticobasal Degeneration/metabolism , Dopamine/metabolism , Presynaptic Terminals/metabolism , Presynaptic Terminals/pathology , Sensitivity and Specificity , Dopaminergic Imaging
10.
Biochem Biophys Res Commun ; 716: 150010, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38704892

ABSTRACT

Calcium (Ca2+) in mitochondria plays crucial roles in neurons including modulating metabolic processes. Moreover, excessive Ca2+ in mitochondria can lead to cell death. Thus, altered mitochondrial Ca2+ regulation has been implicated in several neurodegenerative diseases including Huntington's disease (HD). HD is a progressive hereditary neurodegenerative disorder that results from abnormally expanded cytosine-adenine-guanine trinucleotide repeats in the huntingtin gene. One neuropathological hallmark of HD is neuronal loss in the striatum and cortex. However, mechanisms underlying selective loss of striatal and cortical neurons in HD remain elusive. Here, we measured the basal Ca2+ levels and Ca2+ uptake in single presynaptic mitochondria during 100 external electrical stimuli using highly sensitive mitochondria-targeted Ca2+ indicators in cultured cortical and striatal neurons of a knock-in mouse model of HD (zQ175 mice). We observed elevated presynaptic mitochondrial Ca2+ uptake during 100 electrical stimuli in HD cortical neurons compared with wild-type (WT) cortical neurons. We also found the highly elevated presynaptic mitochondrial basal Ca2+ level and Ca2+ uptake during 100 stimuli in HD striatal neurons. The elevated presynaptic mitochondrial basal Ca2+ level in HD striatal neurons and Ca2+ uptake during stimulation in HD striatal and cortical neurons can disrupt neurotransmission and induce mitochondrial Ca2+ overload, eventually leading to neuronal death in the striatum and cortex of HD.


Subject(s)
Calcium , Cerebral Cortex , Corpus Striatum , Disease Models, Animal , Gene Knock-In Techniques , Huntington Disease , Mitochondria , Presynaptic Terminals , Animals , Huntington Disease/metabolism , Huntington Disease/pathology , Huntington Disease/genetics , Calcium/metabolism , Mitochondria/metabolism , Mice , Corpus Striatum/metabolism , Corpus Striatum/pathology , Cerebral Cortex/metabolism , Cerebral Cortex/pathology , Presynaptic Terminals/metabolism , Cells, Cultured , Neurons/metabolism , Neurons/pathology , Mice, Transgenic
11.
Sci Adv ; 10(22): eado0077, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38809980

ABSTRACT

While our understanding of the nanoscale architecture of anterograde synaptic transmission is rapidly expanding, the qualitative and quantitative molecular principles underlying distinct mechanisms of retrograde synaptic communication remain elusive. We show that a particular form of tonic cannabinoid signaling is essential for setting target cell-dependent synaptic variability. It does not require the activity of the two major endocannabinoid-producing enzymes. Instead, by developing a workflow for physiological, anatomical, and molecular measurements at the same unitary synapse, we demonstrate that the nanoscale stoichiometric ratio of type 1 cannabinoid receptors (CB1Rs) to the release machinery is sufficient to predict synapse-specific release probability. Accordingly, selective decrease of extrasynaptic CB1Rs does not affect synaptic transmission, whereas in vivo exposure to the phytocannabinoid Δ9-tetrahydrocannabinol disrupts the intrasynaptic nanoscale stoichiometry and reduces synaptic variability. These findings imply that synapses leverage the nanoscale stoichiometry of presynaptic receptor coupling to the release machinery to establish synaptic strength in a target cell-dependent manner.


Subject(s)
Receptor, Cannabinoid, CB1 , Signal Transduction , Synapses , Synaptic Transmission , Animals , Synaptic Transmission/drug effects , Receptor, Cannabinoid, CB1/metabolism , Synapses/metabolism , Presynaptic Terminals/metabolism , Mice , Endocannabinoids/metabolism , Endocannabinoids/pharmacology , Dronabinol/pharmacology
12.
J Cell Biol ; 223(7)2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38748250

ABSTRACT

Dynamic presynaptic actin remodeling drives structural and functional plasticity at synapses, but the underlying mechanisms remain largely unknown. Previous work has shown that actin regulation via Rac1 guanine exchange factor (GEF) Vav signaling restrains synaptic growth via bone morphogenetic protein (BMP)-induced receptor macropinocytosis and mediates synaptic potentiation via mobilization of reserve pool vesicles in presynaptic boutons. Here, we find that Gef26/PDZ-GEF and small GTPase Rap1 signaling couples the BMP-induced activation of Abelson kinase to this Vav-mediated macropinocytosis. Moreover, we find that adenylate cyclase Rutabaga (Rut) signaling via exchange protein activated by cAMP (Epac) drives the mobilization of reserve pool vesicles during post-tetanic potentiation (PTP). We discover that Rap1 couples activation of Rut-cAMP-Epac signaling to Vav-mediated synaptic potentiation. These findings indicate that Rap1 acts as an essential, convergent node for Abelson kinase and cAMP signaling to mediate BMP-induced structural plasticity and activity-induced functional plasticity via Vav-dependent regulation of the presynaptic actin cytoskeleton.


Subject(s)
Neuronal Plasticity , Presynaptic Terminals , Signal Transduction , Animals , Actin Cytoskeleton/metabolism , Bone Morphogenetic Proteins/metabolism , Cyclic AMP/metabolism , Guanine Nucleotide Exchange Factors/metabolism , Guanine Nucleotide Exchange Factors/genetics , Presynaptic Terminals/metabolism , Proto-Oncogene Proteins c-vav/metabolism , Proto-Oncogene Proteins c-vav/genetics , rap1 GTP-Binding Proteins/metabolism , rap1 GTP-Binding Proteins/genetics , Shelterin Complex/metabolism , Pinocytosis , Drosophila
13.
Brain ; 147(7): 2289-2307, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38451707

ABSTRACT

Frontotemporal dementia and amyotrophic lateral sclerosis are common forms of neurodegenerative disease that share overlapping genetics and pathologies. Crucially, no significantly disease-modifying treatments are available for either disease. Identifying the earliest changes that initiate neuronal dysfunction is important for designing effective intervention therapeutics. The genes mutated in genetic forms of frontotemporal dementia and amyotrophic lateral sclerosis have diverse cellular functions, and multiple disease mechanisms have been proposed for both. Identification of a convergent disease mechanism in frontotemporal dementia and amyotrophic lateral sclerosis would focus research for a targetable pathway, which could potentially effectively treat all forms of frontotemporal dementia and amyotrophic lateral sclerosis (both familial and sporadic). Synaptopathies are diseases resulting from physiological dysfunction of synapses, and define the earliest stages in multiple neuronal diseases, with synapse loss a key feature in dementia. At the presynapse, the process of synaptic vesicle recruitment, fusion and recycling is necessary for activity-dependent neurotransmitter release. The unique distal location of the presynaptic terminal means the tight spatio-temporal control of presynaptic homeostasis is dependent on efficient local protein translation and degradation. Recently, numerous publications have shown that mutations associated with frontotemporal dementia and amyotrophic lateral sclerosis present with synaptopathy characterized by presynaptic dysfunction. This review will describe the complex local signalling and membrane trafficking events that occur at the presynapse to facilitate neurotransmission and will summarize recent publications linking frontotemporal dementia/amyotrophic lateral sclerosis genetic mutations to presynaptic function. This evidence indicates that presynaptic synaptopathy is an early and convergent event in frontotemporal dementia and amyotrophic lateral sclerosis and illustrates the need for further research in this area, to identify potential therapeutic targets with the ability to impact this convergent pathomechanism.


Subject(s)
Amyotrophic Lateral Sclerosis , Frontotemporal Dementia , Presynaptic Terminals , Synapses , Humans , Amyotrophic Lateral Sclerosis/genetics , Amyotrophic Lateral Sclerosis/pathology , Amyotrophic Lateral Sclerosis/physiopathology , Frontotemporal Dementia/genetics , Frontotemporal Dementia/pathology , Frontotemporal Dementia/physiopathology , Synapses/pathology , Presynaptic Terminals/pathology , Presynaptic Terminals/metabolism , Animals , Mutation
14.
Nat Neurosci ; 27(4): 629-642, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38472649

ABSTRACT

The formation of mammalian synapses entails the precise alignment of presynaptic release sites with postsynaptic receptors but how nascent cell-cell contacts translate into assembly of presynaptic specializations remains unclear. Guided by pioneering work in invertebrates, we hypothesized that in mammalian synapses, liprin-α proteins directly link trans-synaptic initial contacts to downstream steps. Here we show that, in human neurons lacking all four liprin-α isoforms, nascent synaptic contacts are formed but recruitment of active zone components and accumulation of synaptic vesicles is blocked, resulting in 'empty' boutons and loss of synaptic transmission. Interactions with presynaptic cell adhesion molecules of either the LAR-RPTP family or neurexins via CASK are required to localize liprin-α to nascent synaptic sites. Liprin-α subsequently recruits presynaptic components via a direct interaction with ELKS proteins. Thus, assembly of human presynaptic terminals is governed by a hierarchical sequence of events in which the recruitment of liprin-α proteins by presynaptic cell adhesion molecules is a critical initial step.


Subject(s)
Synapses , Synaptic Transmission , Animals , Humans , Synapses/physiology , Synaptic Transmission/physiology , Neurons/physiology , Carrier Proteins/metabolism , Presynaptic Terminals/metabolism , Cell Adhesion Molecules , Mammals/metabolism
15.
Ann Neurol ; 95(6): 1178-1192, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38466158

ABSTRACT

OBJECTIVE: To apply a machine learning analysis to clinical and presynaptic dopaminergic imaging data of patients with rapid eye movement (REM) sleep behavior disorder (RBD) to predict the development of Parkinson disease (PD) and dementia with Lewy bodies (DLB). METHODS: In this multicenter study of the International RBD study group, 173 patients (mean age 70.5 ± 6.3 years, 70.5% males) with polysomnography-confirmed RBD who eventually phenoconverted to overt alpha-synucleinopathy (RBD due to synucleinopathy) were enrolled, and underwent baseline presynaptic dopaminergic imaging and clinical assessment, including motor, cognitive, olfaction, and constipation evaluation. For comparison, 232 RBD non-phenoconvertor patients (67.6 ± 7.1 years, 78.4% males) and 160 controls (68.2 ± 7.2 years, 53.1% males) were enrolled. Imaging and clinical features were analyzed by machine learning to determine predictors of phenoconversion. RESULTS: Machine learning analysis showed that clinical data alone poorly predicted phenoconversion. Presynaptic dopaminergic imaging significantly improved the prediction, especially in combination with clinical data, with 77% sensitivity and 85% specificity in differentiating RBD due to synucleinopathy from non phenoconverted RBD patients, and 85% sensitivity and 86% specificity in discriminating PD-converters from DLB-converters. Quantification of presynaptic dopaminergic imaging showed that an empirical z-score cutoff of -1.0 at the most affected hemisphere putamen characterized RBD due to synucleinopathy patients, while a cutoff of -1.0 at the most affected hemisphere putamen/caudate ratio characterized PD-converters. INTERPRETATION: Clinical data alone poorly predicted phenoconversion in RBD due to synucleinopathy patients. Conversely, presynaptic dopaminergic imaging allows a good prediction of forthcoming phenoconversion diagnosis. This finding may be used in designing future disease-modifying trials. ANN NEUROL 2024;95:1178-1192.


Subject(s)
Dopamine , Lewy Body Disease , Machine Learning , Parkinson Disease , REM Sleep Behavior Disorder , Synucleinopathies , Humans , REM Sleep Behavior Disorder/diagnostic imaging , Male , Female , Aged , Synucleinopathies/diagnostic imaging , Middle Aged , Lewy Body Disease/diagnostic imaging , Parkinson Disease/diagnostic imaging , Parkinson Disease/complications , Dopamine/metabolism , Tomography, Emission-Computed, Single-Photon , Presynaptic Terminals/metabolism , Dopaminergic Imaging
16.
J Neurosci ; 44(17)2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38471782

ABSTRACT

Cytoplasmic protein tyrosine phosphatase nonreceptor type 11 (PTPN11) and Drosophila homolog Corkscrew (Csw) regulate the mitogen-activated protein kinase (MAPK) pathway via a conserved autoinhibitory mechanism. Disease-causing loss-of-function (LoF) and gain-of-function (GoF) mutations both disrupt this autoinhibition to potentiate MAPK signaling. At the Drosophila neuromuscular junction glutamatergic synapse, LoF/GoF mutations elevate transmission strength and reduce activity-dependent synaptic depression. In both sexes of LoF/GoF mutations, the synaptic vesicles (SV)-colocalized synapsin phosphoprotein tether is highly elevated at rest, but quickly reduced with stimulation, suggesting a larger SV reserve pool with greatly heightened activity-dependent recruitment. Transmission electron microscopy of mutants reveals an elevated number of SVs clustered at the presynaptic active zones, suggesting that the increased vesicle availability is causative for the elevated neurotransmission. Direct neuron-targeted extracellular signal-regulated kinase (ERK) GoF phenocopies both increased local presynaptic MAPK/ERK signaling and synaptic transmission strength in mutants, confirming the presynaptic regulatory mechanism. Synapsin loss blocks this elevation in both presynaptic PTPN11 and ERK mutants. However, csw null mutants cannot be rescued by wild-type Csw in neurons: neurotransmission is only rescued by expressing Csw in both neurons and glia simultaneously. Nevertheless, targeted LoF/GoF mutations in either neurons or glia alone recapitulate the elevated neurotransmission. Thus, PTPN11/Csw mutations in either cell type are sufficient to upregulate presynaptic function, but a dual requirement in neurons and glia is necessary for neurotransmission. Taken together, we conclude that PTPN11/Csw acts in both neurons and glia, with LoF and GoF similarly upregulating MAPK/ERK signaling to enhance presynaptic Synapsin-mediated SV trafficking.


Subject(s)
Drosophila Proteins , MAP Kinase Signaling System , Neuroglia , Neurons , Presynaptic Terminals , Protein Tyrosine Phosphatase, Non-Receptor Type 11 , Synapsins , Synaptic Transmission , Synaptic Vesicles , Animals , Female , Male , Animals, Genetically Modified , Drosophila , Drosophila Proteins/metabolism , Drosophila Proteins/genetics , MAP Kinase Signaling System/physiology , Mutation , Neuroglia/metabolism , Neuroglia/physiology , Neuromuscular Junction/metabolism , Neuromuscular Junction/physiology , Neurons/metabolism , Neurons/physiology , Presynaptic Terminals/metabolism , Presynaptic Terminals/physiology , Protein Tyrosine Phosphatase, Non-Receptor Type 11/metabolism , Protein Tyrosine Phosphatase, Non-Receptor Type 11/genetics , Synapsins/metabolism , Synapsins/genetics , Synaptic Transmission/physiology , Synaptic Vesicles/metabolism
17.
Cell ; 187(9): 2175-2193.e21, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38552623

ABSTRACT

In addition to long-distance molecular motor-mediated transport, cellular vesicles also need to be moved at short distances with defined directions to meet functional needs in subcellular compartments but with unknown mechanisms. Such short-distance vesicle transport does not involve molecular motors. Here, we demonstrate, using synaptic vesicle (SV) transport as a paradigm, that phase separation of synaptic proteins with vesicles can facilitate regulated, directional vesicle transport between different presynaptic bouton sub-compartments. Specifically, a large coiled-coil scaffold protein Piccolo, in response to Ca2+ and via its C2A domain-mediated Ca2+ sensing, can extract SVs from the synapsin-clustered reserve pool condensate and deposit the extracted SVs onto the surface of the active zone protein condensate. We further show that the Trk-fused gene, TFG, also participates in COPII vesicle trafficking from ER to the ER-Golgi intermediate compartment via phase separation. Thus, phase separation may play a general role in short-distance, directional vesicle transport in cells.


Subject(s)
COP-Coated Vesicles , Endoplasmic Reticulum , Synaptic Vesicles , Animals , Synaptic Vesicles/metabolism , COP-Coated Vesicles/metabolism , Endoplasmic Reticulum/metabolism , Calcium/metabolism , Golgi Apparatus/metabolism , Rats , Biological Transport , Presynaptic Terminals/metabolism , Synapsins/metabolism , Biomolecular Condensates/metabolism , Cytoskeletal Proteins/metabolism , Phase Separation
18.
Cell Rep Methods ; 4(4): 100740, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38521059

ABSTRACT

Intracellular signaling plays essential roles in various cell types. In the central nervous system, signaling cascades are strictly regulated in a spatiotemporally specific manner to govern brain function; for example, presynaptic cyclic adenosine monophosphate (cAMP) can enhance the probability of neurotransmitter release. In the last decade, channelrhodopsin-2 has been engineered for subcellular targeting using localization tags, but optogenetic tools for intracellular signaling are not well developed. Therefore, we engineered a selective presynaptic fusion tag for photoactivated adenylyl cyclase (bPAC-Syn1a) and found its high localization at presynaptic terminals. Furthermore, an all-optical electrophysiological method revealed rapid and robust short-term potentiation by bPAC-Syn1a at brain stem-amygdala synapses in acute brain slices. Additionally, bPAC-Syn1a modulated mouse immobility behavior. These results indicate that bPAC-Syn1a can manipulate presynaptic cAMP signaling in vitro and in vivo. The all-optical manipulation technique developed in this study can help further elucidate the dynamic regulation of various cellular functions.


Subject(s)
Adenylyl Cyclases , Cyclic AMP , Neuronal Plasticity , Presynaptic Terminals , Animals , Male , Mice , Adenylyl Cyclases/metabolism , Adenylyl Cyclases/genetics , Cyclic AMP/metabolism , HEK293 Cells , Mice, Inbred C57BL , Neuronal Plasticity/physiology , Optogenetics/methods , Presynaptic Terminals/metabolism , Rats
19.
Curr Biol ; 34(8): 1687-1704.e8, 2024 04 22.
Article in English | MEDLINE | ID: mdl-38554708

ABSTRACT

Neurons rely on the long-range trafficking of synaptic components to form and maintain the complex neural networks that encode the human experience. With a single neuron capable of forming thousands of distinct en passant synapses along its axon, spatially precise delivery of the necessary synaptic components is paramount. How these synapses are patterned, as well as how the efficient delivery of synaptic components is regulated, remains largely unknown. Here, we reveal a novel role for the microtubule (MT)-severing enzyme spastin in locally enhancing MT polymerization to influence presynaptic cargo pausing and retention along the axon. In human neurons derived from induced pluripotent stem cells (iPSCs), we identify sites stably enriched for presynaptic components along the axon prior to the robust assembly of mature presynapses apposed by postsynaptic contacts. These sites are capable of cycling synaptic vesicles, are enriched with spastin, and are hotspots for new MT growth and synaptic vesicle precursor (SVP) pausing/retention. The disruption of neuronal spastin level or activity, by CRISPRi-mediated depletion, transient overexpression, or pharmacologic inhibition of enzymatic activity, interrupts the localized enrichment of dynamic MT plus ends and diminishes SVP accumulation. Using an innovative human heterologous synapse model, where microfluidically isolated human axons recognize and form presynaptic connections with neuroligin-expressing non-neuronal cells, we reveal that neurons deficient for spastin do not achieve the same level of presynaptic component accumulation as control neurons. We propose a model where spastin acts locally as an amplifier of MT polymerization to pattern specific regions of the axon for synaptogenesis and guide synaptic cargo delivery.


Subject(s)
Axons , Microtubules , Spastin , Spastin/metabolism , Spastin/genetics , Microtubules/metabolism , Humans , Axons/metabolism , Axons/physiology , Induced Pluripotent Stem Cells/metabolism , Synaptic Vesicles/metabolism , Presynaptic Terminals/metabolism , Presynaptic Terminals/physiology , Neurons/metabolism , Neurons/physiology , Synapses/metabolism , Synapses/physiology
20.
Proc Natl Acad Sci U S A ; 121(8): e2301449121, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38346189

ABSTRACT

GABAB receptor (GBR) activation inhibits neurotransmitter release in axon terminals in the brain, except in medial habenula (MHb) terminals, which show robust potentiation. However, mechanisms underlying this enigmatic potentiation remain elusive. Here, we report that GBR activation on MHb terminals induces an activity-dependent transition from a facilitating, tonic to a depressing, phasic neurotransmitter release mode. This transition is accompanied by a 4.1-fold increase in readily releasable vesicle pool (RRP) size and a 3.5-fold increase of docked synaptic vesicles (SVs) at the presynaptic active zone (AZ). Strikingly, the depressing phasic release exhibits looser coupling distance than the tonic release. Furthermore, the tonic and phasic release are selectively affected by deletion of synaptoporin (SPO) and Ca2+-dependent activator protein for secretion 2 (CAPS2), respectively. SPO modulates augmentation, the short-term plasticity associated with tonic release, and CAPS2 retains the increased RRP for initial responses in phasic response trains. The cytosolic protein CAPS2 showed a SV-associated distribution similar to the vesicular transmembrane protein SPO, and they were colocalized in the same terminals. We developed the "Flash and Freeze-fracture" method, and revealed the release of SPO-associated vesicles in both tonic and phasic modes and activity-dependent recruitment of CAPS2 to the AZ during phasic release, which lasted several minutes. Overall, these results indicate that GBR activation translocates CAPS2 to the AZ along with the fusion of CAPS2-associated SVs, contributing to persistency of the RRP increase. Thus, we identified structural and molecular mechanisms underlying tonic and phasic neurotransmitter release and their transition by GBR activation in MHb terminals.


Subject(s)
Habenula , Receptors, GABA-B , Animals , Receptors, GABA-B/genetics , Receptors, GABA-B/metabolism , Habenula/metabolism , Astacoidea/metabolism , Presynaptic Terminals/metabolism , Caffeine , Neurotransmitter Agents/metabolism , gamma-Aminobutyric Acid/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...