Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 16.413
Filter
1.
BMC Endocr Disord ; 24(1): 135, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39090659

ABSTRACT

BACKGROUND: Prevalence of metabolic dysfunction-associated steatotic liver disease (MASLD) is higher in men than in women. Hormonal and genetic causes may account for the sex differences in MASLD. Current human in vitro liver models do not sufficiently take the influence of biological sex and sex hormones into consideration. METHODS: Primary human hepatocytes (PHHs) were isolated from liver specimen of female and male donors and cultured with sex hormones (17ß-estradiol, testosterone and progesterone) for up to 72 h. mRNA expression levels of 8 hepatic lipid metabolism genes were analyzed by RT-qPCR. Sex hormones and their metabolites were determined in cell culture supernatants by LC-MS analyses. RESULTS: A sex-specific expression was observed for LDLR (low density lipoprotein receptor) with higher mRNA levels in male than female PHHs. All three sex hormones were metabolized by PHHs and the effects of hormones on gene expression levels varied depending on hepatocyte sex. Only in female PHHs, 17ß-estradiol treatment affected expression levels of PPARA (peroxisome proliferator-activated receptor alpha), LIPC (hepatic lipase) and APOL2 (apolipoprotein L2). Further changes in mRNA levels of female PHHs were observed for ABCA1 (ATP-binding cassette, sub-family A, member 1) after testosterone and for ABCA1, APOA5 (apolipoprotein A-V) and PPARA after progesterone treatment. Only the male PHHs showed changing mRNA levels for LDLR after 17ß-estradiol and for APOA5 after testosterone treatment. CONCLUSIONS: Male and female PHHs showed differences in their expression levels of hepatic lipid metabolism genes and their responsiveness towards sex hormones. Thus, cellular sex should be considered, especially when investigating the pathophysiological mechanisms of MASLD.


Subject(s)
Gonadal Steroid Hormones , Hepatocytes , Lipid Metabolism , Humans , Male , Female , Hepatocytes/metabolism , Hepatocytes/drug effects , Lipid Metabolism/genetics , Lipid Metabolism/drug effects , Gonadal Steroid Hormones/pharmacology , Gonadal Steroid Hormones/metabolism , Cells, Cultured , Middle Aged , Testosterone/pharmacology , Testosterone/metabolism , Estradiol/pharmacology , Adult , Progesterone/pharmacology , Progesterone/metabolism , Sex Factors
2.
Anim Reprod Sci ; 267: 107548, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38959672

ABSTRACT

We aimed to determine associations between experimentally impaired uterine clearance or treatment with ecbolic drugs on luteal development in estrous mares after insemination. In a crossover design, eight mares were treated with saline (CON), clenbuterol (CLEN), oxytocin (OXY) and carbetocin (CARB) from the day of first insemination until 2 days after ovulation. Between treatments, the mares rested for one cycle. Estrous mares were examined for the presence of free intrauterine fluid by transrectal ultrasound. Endometrial swabs for cytology and bacteriology were collected on days 1 and 14. Blood samples were collected daily before AI until day 14 after ovulation for determination of progesterone and PGF2α metabolites (PGFM). Differences between treatments were compared by a general linear model for repeated measures (SPSS 29). One mare was excluded because of a uterine infection in the control cycle. In all other mares, only minor amounts of free intrauterine fluid were present after insemination and decreased over time (P<0.05) with no treatment x time interaction. There was no effect of treatment on polymorphonucleated cells (PMN) in endometrial cytology after ovulation or PGFM secretion. Progesterone release from day 1-14 as well as pregnancy rate and conceptus size on day 14 was not influenced by treatment. In conclusion, treatment with clenbuterol does not impair uterine clearance in estrous mares resistant to endometritis. Repeated injection of the oxytocin analogue carbetocin during the early postovulatory period is not detrimental to corpus luteum function and can be recommended to enhance uterine clearance.


Subject(s)
Ovulation , Oxytocin , Animals , Female , Horses , Oxytocin/pharmacology , Oxytocin/analogs & derivatives , Ovulation/drug effects , Pregnancy , Corpus Luteum/drug effects , Uterus/drug effects , Cross-Over Studies , Horse Diseases/drug therapy , Insemination, Artificial/veterinary , Progesterone/pharmacology , Progesterone/blood , Endometrium/drug effects , Endometrium/metabolism , Endometritis/veterinary , Endometritis/drug therapy
3.
Sci Rep ; 14(1): 17241, 2024 Jul 26.
Article in English | MEDLINE | ID: mdl-39060348

ABSTRACT

Studies have demonstrated that prior to puberty, girls have a lower incidence and severity of asthma symptoms compared to boys. This study aimed to explore the role of progesterone (P4), a sex hormone, in reducing inflammation and altering the immune microenvironment in a mouse model of allergic asthma induced by OVA. Female BALB/c mice with or without ovariectomy to remove the influence of sex hormones were used for the investigations. Serum, bronchoalveolar lavage fluid (BALF), and lung tissue samples were collected for analysis. The results indicated that P4 treatment was effective in decreasing inflammation and mucus secretion in the lungs of OVA-induced allergic asthma mice. P4 treatment also reduced the influx of inflammatory cells into the BALF and increased the levels of Th1 and Th17 cytokines while decreasing the levels of Th2 and Treg cytokines in both BALF and lung microenvironment CD45+ T cells. Furthermore, P4 inhibited the infiltration of inflammatory cells into the lungs, suppressed NETosis, and reduced the number of pulmonary CD4+ T cells while increasing the number of regulatory T cells. The neutrophil elastase inhibitor GW311616A also suppressed airway inflammation and mucus production and modified the secretion of immune Th1, Th2, Th17, and Treg cytokines in lung CD45+ immune cells. These changes led to an alteration of the immunological milieu with increased Th1 and Th17 cells, accompanied by decreased Th2, Treg, and CD44+ T cells, similar to the effects of P4 treatment. Treatment with P4 inhibited NETosis by suppressing the p38 pathway activation, leading to reduced reactive oxygen species production. Moreover, P4 treatment hindered the release of double-stranded DNA during NETosis, thereby influencing the immune microenvironment in the lungs. These findings suggest that P4 treatment may be beneficial in reducing inflammation associated with allergic asthma by modulating the immune microenvironment. In conclusion, this research indicates the potential of P4 as a therapeutic agent for ameliorating inflammation in OVA-induced allergic asthma mice.


Subject(s)
Asthma , Mice, Inbred BALB C , Ovalbumin , Progesterone , Animals , Ovalbumin/immunology , Female , Asthma/immunology , Asthma/drug therapy , Asthma/metabolism , Mice , Progesterone/pharmacology , Lung/immunology , Lung/pathology , Lung/drug effects , Lung/metabolism , Bronchoalveolar Lavage Fluid , Cytokines/metabolism , Disease Models, Animal , Extracellular Traps/drug effects , Extracellular Traps/metabolism , Extracellular Traps/immunology , Inflammation/drug therapy , Inflammation/immunology , Inflammation/metabolism , Th17 Cells/immunology , Th17 Cells/drug effects , Th17 Cells/metabolism , Cellular Microenvironment/drug effects
4.
Theriogenology ; 226: 343-349, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-38964033

ABSTRACT

Two experiments evaluated the effect of different hormonal treatments to synchronize follicle wave emergence on follicle dynamics and pregnancies per AI (P/AI) in estradiol (E2)/progesterone (P4) timed-AI (TAI) protocols in lactating dairy cows. In Experiment 1, lactating, primiparous Holstein cows (n = 36) received a P4 releasing device (Day 0) and were allocated at random to one of the following three treatment groups: Group EB received 2 mg E2 benzoate (EB) intramuscularly (i.m.), Group EB + GnRH received 2 mg EB+20 µg buserelin (GnRH) i.m., or Group EB + P4 received 2 mg EB + 100 mg of injectable P4 (iP4) in oil i.m. All cows received 0.150 mg D-Cloprostenol on Days 7 and 8 followed by P4 device removal, 400 IU eCG and 1 mg ECP on Day 8. Daily ultrasound examinations revealed that although the interval from P4 device removal to ovulation was not affected by treatment, cows that received EB + GnRH had an earlier (P < 0.05) emergence of the new follicular wave (Day 2.6 ± 0.2) than the other two treatment groups (Days 3.5 ± 0.3 and 6.1 ± 0.3, for EB and EB + P4, respectively). In Experiment 2, 808 lactating cows were assigned randomly to the three treatments evaluated in Experiment 1, and all the cows were TAI to determine P/AI. Cows in the EB + GnRH group had greater P/AI (57.4 %, P < 0.01) than those in the EB (44.6 %) or EB + P4 (45.7 %) groups. In conclusion, the administration of GnRH, but not iP4, on the day of insertion of a P4 device improves P/AI in lactating dairy cows synchronized for TAI with an estradiol/P4-based protocol.


Subject(s)
Estradiol , Estrus Synchronization , Gonadotropin-Releasing Hormone , Insemination, Artificial , Lactation , Ovarian Follicle , Progesterone , Animals , Cattle/physiology , Female , Insemination, Artificial/veterinary , Insemination, Artificial/methods , Lactation/drug effects , Ovarian Follicle/drug effects , Ovarian Follicle/physiology , Progesterone/administration & dosage , Progesterone/pharmacology , Estradiol/pharmacology , Estradiol/administration & dosage , Estradiol/analogs & derivatives , Estrus Synchronization/methods , Pregnancy , Gonadotropin-Releasing Hormone/pharmacology , Gonadotropin-Releasing Hormone/administration & dosage , Buserelin/pharmacology , Buserelin/administration & dosage
5.
Cell Mol Life Sci ; 81(1): 324, 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-39080028

ABSTRACT

Polycystic ovary syndrome (PCOS) is a complex common endocrine disorder affecting women of reproductive age. Ovulatory dysfunction is recognized as a primary infertile factor, however, even when ovulation is medically induced and restored, PCOS patients continue to experience reduced cumulative pregnancy rates and a higher spontaneous miscarriage rate. Hyperandrogenism, a hallmark feature of PCOS, affects ovarian folliculogenesis, endometrial receptivity, and the establishment and maintenance of pregnancy. Decidualization denotes the transformation that the stromal compart of the endometrium must undergo to accommodate pregnancy, driven by the rising progesterone levels and local cAMP production. However, studies on the impact of hyperandrogenism on decidualization are limited. In this study, we observed that primary endometrial stromal cells from women with PCOS exhibit abnormal responses to progesterone during in vitro decidualization. A high concentration of testosterone inhibits human endometrial stromal cells (HESCs) decidualization. RNA-Seq analysis demonstrated that pyruvate dehydrogenase kinase 4 (PDK4) expression was significantly lower in the endometrium of PCOS patients with hyperandrogenism compared to those without hyperandrogenism. We also characterized that the expression of PDK4 is elevated in the endometrium stroma at the mid-secretory phase. Artificial decidualization could enhance PDK4 expression, while downregulation of PDK4 leads to abnormal decidualization both in vivo and in vitro. Mechanistically, testosterone excess inhibits IGFBP1 and PRL expression, followed by phosphorylating of AMPK that stimulates PDK4 expression. Based on co-immunoprecipitation analysis, we observed an interaction between SIRT1 and PDK4, promoting glycolysis to facilitate decidualization. Restrain of AR activation resumes the AMPK/SIRT1/PDK4 pathway suppressed by testosterone excess, indicating that testosterone primarily acts on decidualization through AR stimulation. Androgen excess in the endometrium inhibits decidualization by disrupting the AMPK/SIRT1/PDK4 signaling pathway. These data demonstrate the critical roles of endometrial PDK4 in regulating decidualization and provide valuable information for understanding the underlying mechanism during decidualization.


Subject(s)
AMP-Activated Protein Kinases , Endometrium , Polycystic Ovary Syndrome , Sirtuin 1 , Stromal Cells , Humans , Female , Polycystic Ovary Syndrome/metabolism , Polycystic Ovary Syndrome/pathology , Stromal Cells/metabolism , Stromal Cells/pathology , Stromal Cells/drug effects , Sirtuin 1/metabolism , Sirtuin 1/genetics , Endometrium/metabolism , Endometrium/pathology , Endometrium/drug effects , AMP-Activated Protein Kinases/metabolism , Adult , Hyperandrogenism/metabolism , Hyperandrogenism/pathology , Decidua/metabolism , Decidua/pathology , Testosterone/metabolism , Testosterone/pharmacology , Androgens/pharmacology , Androgens/metabolism , Progesterone/metabolism , Progesterone/pharmacology , Pyruvate Dehydrogenase Acetyl-Transferring Kinase/metabolism , Pyruvate Dehydrogenase Acetyl-Transferring Kinase/genetics , Signal Transduction/drug effects
6.
J Vis Exp ; (208)2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38975749

ABSTRACT

Embryo implantation is the first step in the establishment of a successful pregnancy. An in vitro model for embryo implantation is critical for basic biological research, drug development, and screening. This paper presents a simple, rapid, and highly efficient in vitro model for embryo implantation. In this protocol, we first introduce mouse blastocyst acquisition and human endometrial adenocarcinoma cells (Ishikawa) preparation for implantation, followed by the co-culture method for mouse embryos and Ishikawa cells. Finally, we conducted a study to assess the impact of varying concentrations of 17-ß-estradiol (E2) and progesterone (P4) on embryo adhesion rates based on this model. Our findings revealed that high concentrations of E2 significantly reduced embryo adhesion, whereas the addition of progesterone could restore the adhesion rate. This model offers a simple and fast platform for evaluating and screening molecules involved in the adhesion process, such as cytokines, drugs, and transcription factors controlling implantation and endometrial receptivity.


Subject(s)
Coculture Techniques , Embryo Implantation , Estradiol , Progesterone , Embryo Implantation/physiology , Embryo Implantation/drug effects , Female , Animals , Mice , Humans , Coculture Techniques/methods , Progesterone/pharmacology , Estradiol/pharmacology , Cell Line, Tumor , Blastocyst/cytology , Blastocyst/drug effects , Pregnancy , Endometrial Neoplasms/pathology
7.
Res Vet Sci ; 175: 105321, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38843689

ABSTRACT

The aim of the present study was to determine the effects of the adipokines progranulin and omentin on the basic functions of feline ovarian cells. For this purpose, we investigated the effects of the addition of progranulin and omentin (0, 0.1, 1, or 10 ng/ml) on the proliferation (accumulation of PCNA and cyclin B1), apoptosis (accumulation of Bax and caspase 3) and progesterone release of cultured feline ovarian granulosa cells by quantitative immunocytochemistry and enzyme-linked immunosorbent assays (ELISAs). Both progranulin and omentin increased cell proliferation and decreased apoptosis. Both progranulin and omentin promoted progesterone release. The present findings demonstrate that the adipokines progranulin and omentin can directly regulate basic feline ovarian cell functions.


Subject(s)
Apoptosis , Cell Proliferation , Granulosa Cells , Animals , Female , Cats , Granulosa Cells/metabolism , Granulosa Cells/drug effects , Apoptosis/drug effects , Cell Proliferation/drug effects , Progesterone/metabolism , Progesterone/pharmacology , Progranulins/metabolism , Cytokines/metabolism , Cells, Cultured , Lectins/metabolism , Lectins/pharmacology
8.
Proc Natl Acad Sci U S A ; 121(25): e2400601121, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38861608

ABSTRACT

The process of human parturition involves inflammation at the interface where fetal chorion trophoblast cells interact with maternal decidual stromal (DS) cells and maternal immune cells in the decidua (endometrium of pregnancy). This study tested the hypothesis that inflammation at the chorion-decidua interface (CDI) induces labor by negating the capacity for progesterone (P4) to block labor and that this is mediated by inactivation of P4 in DS cells by aldo-keto reductase family 1 member C1 (AKR1C1). In human, Rhesus macaque, and mouse CDI, AKR1C1 expression increased in association with term and preterm labor. In a human DS cell line and in explant cultures of term human fetal membranes containing the CDI, the prolabor inflammatory cytokine, interleukin-1ß (IL-1ß), and media conditioned by LPS-stimulated macrophages increased AKR1C1 expression and coordinately reduced nuclear P4 levels and P4 responsiveness. Loss of P4 responsiveness was overcome by inhibition of AKR1C1 activity, inhibition of AKR1C1 expression, and bypassing AKR1C1 activity with a P4 analog that is not metabolized by AKR1C1. Increased P4 activity in response to AKR1C1 inhibition was prevented by the P4 receptor antagonist RU486. Pharmacologic inhibition of AKR1C1 activity prevented parturition in a mouse model of inflammation-induced preterm parturition. The data suggest that inflammatory stimuli at the CDI drive labor by inducing AKR1C1-mediated P4 inactivation in DS cells and that inhibiting and/or bypassing of AKR1C1-mediated P4 inactivation is a plausible therapeutic strategy to mitigate the risk of inflammation-associated preterm birth.


Subject(s)
20-Hydroxysteroid Dehydrogenases , Decidua , Inflammation , Macaca mulatta , Parturition , Progesterone , Stromal Cells , Female , Animals , Progesterone/metabolism , Progesterone/pharmacology , Decidua/metabolism , Humans , Mice , Stromal Cells/metabolism , Pregnancy , Inflammation/metabolism , 20-Hydroxysteroid Dehydrogenases/metabolism , 20-Hydroxysteroid Dehydrogenases/genetics , Interleukin-1beta/metabolism , Chorion/metabolism
9.
Physiol Behav ; 283: 114609, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38851441

ABSTRACT

The neuropeptide kisspeptin (Kiss) is crucial in regulating the hypothalamic-pituitary-gonadal axis. It is produced by two main groups of neurons in the hypothalamus: the rostral periventricular region around the third ventricle and the arcuate nucleus. Kiss is the peptide product of the KiSS-1 gene and serves as the endogenous agonist for the GPR54 receptor. The Kiss/GPR54 system functions as a critical regulator of the reproductive system. Thus, we examined the effect of intracerebroventricular administration of 3 µg of Kiss to the right lateral ventricle of ovariectomized rats primed with a dose of 5 µg subcutaneous (sc) of estradiol benzoate (EB). Kiss treatment increased the lordosis quotient at all times tested. However, the lordosis reflex score was comparatively lower yet still significant compared to the control group. To investigate receptor specificity and downstream mechanisms on lordosis, we infused 10 µg of GPR54 receptor antagonist, Kiss-234, 5 µg of the progestin receptor antagonist, RU486, or 3 µg of antide, a gonadotropin-releasing hormone-1 (GnRH-1) receptor antagonist, to the right lateral ventricle 30 min before an infusion of 3 µg of Kiss. Results demonstrated a significant reduction in the facilitation of lordosis behavior by Kiss at 60 and 120 min when Kiss-234, RU486, or antide were administered. These findings suggest that Kiss stimulates lordosis expression by activating GPR54 receptors on GnRH neurons and that Kiss/GPR54 system is an essential intermediary by which progesterone activates GnRH.


Subject(s)
Estradiol , Kisspeptins , Receptors, LHRH , Receptors, Progesterone , Sexual Behavior, Animal , Animals , Kisspeptins/pharmacology , Kisspeptins/metabolism , Female , Sexual Behavior, Animal/drug effects , Sexual Behavior, Animal/physiology , Receptors, LHRH/antagonists & inhibitors , Receptors, LHRH/metabolism , Rats , Estradiol/pharmacology , Estradiol/analogs & derivatives , Receptors, Progesterone/metabolism , Receptors, Progesterone/drug effects , Receptors, Progesterone/antagonists & inhibitors , Ovariectomy , Rats, Wistar , Progesterone/pharmacology , Hormone Antagonists/pharmacology , Posture/physiology , Receptors, Kisspeptin-1/metabolism , Mifepristone/pharmacology
10.
Reprod Domest Anim ; 59(6): e14643, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38877774

ABSTRACT

Progesterone has been shown to stimulate glycogen catabolism in uterine epithelial cells. Acid α-glucosidase (GAA) is an enzyme that breaks down glycogen within lysosomes. We hypothesized that progesterone may stimulate glycogenolysis in the uterine epithelium via GAA. We found that GAA was more highly expressed in the stroma on Day 1 than on Day 11. However, GAA did not appear to differ in the epithelium on Days 1 and 11. Progesterone (0-10 µM) had no effect on the levels of the full-length inactive protein (110 kDa) or the cleaved (active) peptides present inside the lysosome (70 and 76 kDa) in immortalized bovine uterine epithelial (BUTE) cells. Furthermore, the activity of GAA did not differ between the BUTE cells treated with 10 µM progesterone or control. Overall, we confirmed that GAA is present in the cow endometrium and BUTE cells. However, progesterone did not affect protein levels or enzyme activity.


Subject(s)
Endometrium , Progesterone , alpha-Glucosidases , Animals , Cattle , Female , Endometrium/metabolism , Endometrium/enzymology , Progesterone/pharmacology , Progesterone/metabolism , alpha-Glucosidases/metabolism , alpha-Glucosidases/genetics , Epithelial Cells/metabolism , Glycogenolysis , Lysosomes/enzymology , Lysosomes/metabolism , Glycogen/metabolism
11.
Reprod Domest Anim ; 59(6): e14617, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38837282

ABSTRACT

Sub-estrus buffaloes do not exhibit estrus signs despite being cyclic contributing to extended service periods and inter-calving intervals causing significant economic loss. The present study described the effect of synthetic prostaglandin (PGF2α) on estrus behaviour, follicular and luteal morphometry, and serum estradiol (E2) and progesterone (P4) profile in sub-estrus buffaloes during the non-breeding season. The incidence of sub-estrus was 38.4% during the non-breeding season. The sub-estrus buffaloes (n = 33) were divided into two groups, viz., Control (n = 16) and PGF2α treatment (Inj. Cloprostenol 500 µg, i.m., n = 17). Estrus induction response was significantly greater in the treatment (100 vs. 18.75%, p < .001), and a relatively greater proportion of animals conceived in the treatment group (29.41 vs. 6.25%, p = .08). The time elapsed to induction of estrus and insemination following treatment was significantly lower in the treatment group than control. A significant increment in the follicle diameter (9.72 ± 0.45 vs. 13.00 ± 0.45 mm, P < .0001) and serum estradiol (E2) concentration (66.01 ± 11.92 vs. 104.9 ± 13.21 pg/mL, p = .003) observed at the post-treatment period in the PGF2α treatment group. At the same time, CL diameter was reduced significantly at a higher regression rate in the PGF2α treated buffaloes than those of control. Of the responded buffaloes, only 30% showed high-intensity estrus attributed to the expulsion of cervico-vaginal mucus (CVM), uterine tonicity, micturition, and mounting response by a teaser bull. From this study, it can be concluded that the administration of PGF2α could induce estrus in the sub-estrus buffaloes during the non-breeding season. Behavioural changes, along with sonographic observation of POF, regressing CL, and serum E2 and P4 concentration would be useful to determine the right time of insemination in sub-estrus buffaloes during non-breeding season.


Subject(s)
Buffaloes , Dinoprost , Estradiol , Estrus Synchronization , Estrus , Ovarian Follicle , Progesterone , Animals , Female , Buffaloes/physiology , Estradiol/pharmacology , Estradiol/blood , Progesterone/blood , Progesterone/pharmacology , Estrus/drug effects , Ovarian Follicle/drug effects , Dinoprost/pharmacology , Dinoprost/administration & dosage , Pregnancy , Seasons , Cloprostenol/pharmacology , Cloprostenol/administration & dosage , Corpus Luteum/drug effects , Corpus Luteum/physiology , Insemination, Artificial/veterinary , Sexual Behavior, Animal/drug effects
12.
Anim Reprod Sci ; 267: 107541, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38909485

ABSTRACT

The objective of this study was to evaluate the impact of early progesterone removal on pregnancy rates to fixed-time artificial insemination (FTAI) in presynchronized beef cows. Postpartum beef cows (n = 882) were randomly assigned to 1 of 2 treatments: 1) 7&7 Synch: cows received a controlled internal drug release insert (CIDR) and a 25-mg injection of prostaglandin F2α on day 0, 100 µg of GnRH on day 7, a second injection of prostaglandin F2α (PG2) at CIDR removal on day 14, and a second injection of GnRH at FTAI 60-66 h after PG2 (day 17); 2) 7&6 Synch: cows received the same treatment as 7&7 Synch; however, CIDR removal occurred in conjunction with PG2 on day 13, while FTAI remained at 60-66 h after CIDR removal (day 16). Ovarian ultrasonography was performed to determine follicle diameter at PG2 and FTAI in a subset of cows (n = 40). Cows exposed to the 7&7 Synch tended to have larger follicle diameter at PG2 compared with 7&6 Synch cows (P = 0.09); however, there were no differences in follicle diameter at FTAI. No differences were determined between treatments for the expression of estrus (7&7 Synch: 61.6 ± 5.30; 7&6 Synch: 54.1 ± 5.45; P = 0.31) or pregnancy rates to FTAI (7&7 Synch: 60.8 ± 3.83; 7&6 Synch: 57.0 ± 3.84; P = 0.42). In conclusion, early removal of progesterone did not impact pregnancy rates in presynchronized beef cows.


Subject(s)
Estrus Synchronization , Insemination, Artificial , Ovarian Follicle , Postpartum Period , Pregnancy Rate , Progesterone , Animals , Female , Cattle/physiology , Pregnancy , Progesterone/pharmacology , Progesterone/administration & dosage , Progesterone/blood , Estrus Synchronization/drug effects , Estrus Synchronization/methods , Ovarian Follicle/drug effects , Ovarian Follicle/physiology , Insemination, Artificial/veterinary , Estrus/drug effects , Estrus/physiology , Dinoprost/pharmacology , Dinoprost/administration & dosage , Gonadotropin-Releasing Hormone/pharmacology , Gonadotropin-Releasing Hormone/administration & dosage
13.
Theriogenology ; 226: 213-218, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-38914033

ABSTRACT

This study aimed to evaluate the effects of different doses of equine chorionic gonadotropin (eCG; 200 and 300 IU) administered at the end of a fixed-time artificial insemination (FTAI) treatment protocol on ovulation, pregnancy, and twin rates in Bos taurus beef heifers. In addition, pregnancy losses in heifers with singleton and twin pregnancies were determined. A total of 2382 Angus heifers treated with a 6-day estradiol/progesterone-based protocol for FTAI (J-Synch protocol) were randomly allocated to two experimental groups to receive 200 or 300 IU of eCG administered intramuscularly at the time of intravaginal progesterone device removal; FTAI was performed from 60 to 72 h after device removal. The pregnancy rate did not differ (P = 0.89) between the 200 and 300 IU eCG groups. The number of corpus luteum induced by both eCG doses was determined by ultrasonographic examination 14 days after insemination and those treated with 300 IU of eCG had a greater double ovulation rate (P < 0.05). In addition, 300 IU eCG treated heifers had a higher twinning rate on day 30 of gestation (P < 0.05) and parturition (P < 0.05). Pregnancy losses from 30 days of gestation to calving did not differ between heifers treated with 200 and 300 IU of eCG (P = 0.70). However, regardless of the experimental group, heifers bearing twins had greater pregnancy losses than heifers with singletons (P < 0.05). In conclusion, reducing the dose of eCG from 300 to 200 IU under FTAI treatment protocol decreases double ovulation and twinning rates, maintaining a similar pregnancy rate in heifers. Nulliparous cows carrying two fetuses suffer greater pregnancy losses than cows with singletons.


Subject(s)
Gonadotropins, Equine , Insemination, Artificial , Ovulation , Animals , Female , Pregnancy , Cattle/physiology , Insemination, Artificial/veterinary , Ovulation/drug effects , Gonadotropins, Equine/pharmacology , Gonadotropins, Equine/administration & dosage , Chorionic Gonadotropin/pharmacology , Chorionic Gonadotropin/administration & dosage , Abortion, Veterinary , Pregnancy, Twin , Progesterone/administration & dosage , Progesterone/pharmacology , Pregnancy Rate
14.
Reprod Domest Anim ; 59(6): e14642, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38894646

ABSTRACT

This study evaluated the effect of bovine somatotropin (bST) on pregnancy rate (PR) and size of the dominant follicle (DF) on the day of intravaginal progesterone (P4) removal in protocols for fixed-time artificial insemination (FTAI). Bos indicus (Nellore) females (n = 392) were distributed into three groups. The control group (CG; n = 92) received an intravaginal P4 device + estradiol benzoate on day (d)0; prostaglandin F2α on d7 (first application); removal of P4 + estradiol cypionate (EC) + PGF2α (second application) + ultrasound (US) of the DF on d9; the FTAI was performed on d11; and pregnancy diagnosis (PD) was performed on d45. The bST group (bSTG; n = 142) underwent the same protocol as the CG, except that the animals received 125 mg of bST on d7. The equine chorionic gonadotropin (eCG) group (eCGG; n = 158) underwent the same protocol as the CG, except that the animals received 300 IU of eCG on d9. The PRs of the bSTG, eCGG, and CG were 48%, 48%, and 35%, respectively (p < .05); the bSTG and eCGG showed greater PRs, with follicles 6-7.9 mm (p < .05) and 8-8.9 mm in diameter, respectively. The bSTG exhibited a greater dimension of the DF on d9 of the protocol (p < .05). The eCGG had higher PRs with a body condition score (BCS) of 2.5, and the bSTG had a BCS of 3.0 (p < .05). It was concluded that bST increased PR, bST showed better performance in smaller DF and larger follicular diameter on d9 of the protocol, eCG acted better on animals with lower BCSs, and bST can be used in FTAI.


Subject(s)
Growth Hormone , Insemination, Artificial , Pregnancy Rate , Progesterone , Animals , Female , Insemination, Artificial/veterinary , Insemination, Artificial/methods , Pregnancy , Cattle , Growth Hormone/pharmacology , Growth Hormone/administration & dosage , Progesterone/administration & dosage , Progesterone/pharmacology , Estradiol/administration & dosage , Estradiol/pharmacology , Estradiol/analogs & derivatives , Ovarian Follicle/drug effects , Dinoprost/administration & dosage , Dinoprost/pharmacology , Estrus Synchronization/methods , Administration, Intravaginal
15.
Domest Anim Endocrinol ; 88: 106856, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38781776

ABSTRACT

The aim of the present study was to examine the influence of monocyte chemoattractant protein-1 (MCP-1) and plasminogen activator inhibitor-1 (PAI-1) on ovarian cell functions. Rabbit ovarian granulosa cells were cultured with or without MCP-1 or PAI-1 (at 0, 0.1, 1, or 10 ng/ml). Cell viability, proliferation, cytoplasmic apoptosis and release of progesterone and estradiol were measured by Cell Counting Kit-8 (CCK-8), BrdU incorporation, and cell death detection assays and ELISA. The addition of either MCP-1 or PAI-1 increased cell viability and proliferation and decreased apoptosis. MCP-1 promoted, while PAI-1 suppressed, progesterone release. Both MCP-1 and PAI-1 reduced estradiol output. The present results suggest that MCP-1 or PAI-1 can be physiological promoters of rabbit ovarian cell viability and proliferation, inhibitors of apoptosis and regulators of ovarian steroidogenesis.


Subject(s)
Apoptosis , Chemokine CCL2 , Granulosa Cells , Plasminogen Activator Inhibitor 1 , Progesterone , Animals , Female , Rabbits , Plasminogen Activator Inhibitor 1/genetics , Plasminogen Activator Inhibitor 1/metabolism , Granulosa Cells/drug effects , Granulosa Cells/physiology , Chemokine CCL2/genetics , Chemokine CCL2/metabolism , Apoptosis/drug effects , Progesterone/pharmacology , Estradiol/pharmacology , Cell Survival/drug effects , Cell Proliferation/drug effects , Cells, Cultured
16.
Theriogenology ; 223: 122-130, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38723426

ABSTRACT

The aim was to compare reproductive outcomes of Nelore heifers submitted to timed AI (TAI) protocols, with 7 or 9 d of permanence of the intravaginal progesterone (P4) device and different times of prostaglandin F2α (PGF) administration, for first (n = 935) and second (n = 530) services. On Day -24, heifers without corpus luteum (CL) underwent a protocol for induction of ovulation. On Day 0, heifers received a P4 device (0.5 g) and 1.5 mg estradiol (E2) benzoate. In order for the TAI to be carried out on the same day, these treatments were performed 2 d later on the heifers treated with the 7-d protocol. Additionally, heifers received 0.5 mg PGF at different times, resulting in four experimental groups: 9dP4-PGFd9 (n = 365); 9dP4-PGFd7 (n = 369); 9dP4-PGFd0&9 (n = 364); 7dP4-PGFd0&7 (n = 367). These nomenclatures indicate for how many d the P4 device was kept and the specific day on which PGF was given. At P4 removal, all heifers received 0.5 mg E2 cypionate and 200 IU eCG, and TAI was performed 2 d later. Effects were considered significant when P ≤ 0.05 (superscript letters a,b) whereas a tendency was assumed when 0.05 < P ≤ 0.10. Groups 9dP4-PGFd0&9 and 7dP4-PGFd0&7 had lower percentage of heifers with CL at P4 removal. The diameter (mm) of the dominant follicle (DF) was affected by treatment at P4 removal (9dP4-PGFd9: 11.3 ± 0.3b; 9dP4-PGFd7: 11.8 ± 0.2ab; 9dP4-PGFd0&9: 12.6 ± 0.2a; 7dP4-PGFd0&7: 10.8 ± 0.2c) and at TAI (9dP4-PGFd9: 12.7 ± 0.3ab; 9dP4-PGFd7: 13.2 ± 0.2a; 9dP4-PGFd0&9: 13.4 ± 0.2a; 7dP4-PGFd0&7: 12.4 ± 0.3b). Expression of estrus (%) was affected by treatment (9dP4-PGFd9: 89.6a; 9dP4-PGFd7: 93.5a; 9dP4-PGFd0&9: 88.2ab; 7dP4-PGFd0&7: 85.6b). There were no differences among treatments for P/AI on Day 40 (30-35 d post AI), final P/AI (between Day 70 and parturition) and pregnancy loss (between Day 40 and final P/AI). When the permanence of the P4 device was compared, regardless of PGF treatments, 9-d protocols resulted in greater DF diameter at P4 removal and at TAI, and greater expression of estrus (90.4 vs. 85.6%) than the 7-d protocol. Despite that, the 7-d protocol resulted in greater P/AI on Day 40 (55.3 vs. 49.1%). In addition, there was an interaction between protocol duration and body weight, in which heavier heifers (≥ 307 kg) had greater P/AI when treated with the 7-d protocol, in comparison to 9-d. In conclusion, longer TAI protocols (9 d of P4 device duration) resulted in greater DF diameter and expression of estrus. However, the shorter TAI protocol (7 d of P4 device duration) produced greater P/AI on Day 40, particularly in heavier heifers. Within 9-d protocols, the additional dose of PGF on Day 0 or the anticipation of the PGF to Day 7 did not influence fertility.


Subject(s)
Dinoprost , Insemination, Artificial , Animals , Cattle/physiology , Female , Insemination, Artificial/veterinary , Insemination, Artificial/methods , Dinoprost/pharmacology , Dinoprost/administration & dosage , Dinoprost/analogs & derivatives , Pregnancy , Estrus Synchronization/methods , Progesterone/pharmacology , Progesterone/administration & dosage , Time Factors
17.
Gynecol Endocrinol ; 40(1): 2351525, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38726683

ABSTRACT

OBJECTIVE: Stable luteal cell function is an important prerequisite for reproductive ability and embryonic development. However, luteal insufficiency seriously harms couples who have the desire to have a pregnancy, and the most important thing is that there is no complete solution. In addition, Vaspin has been shown to have regulatory effects on luteal cells, but the complex mechanisms involved have not been fully elucidated. Therefore, this study aimed to explore the effect of Vaspin on rat luteal cells and its mechanism. METHODS: Granulosa lutein cells separated from the ovary of female rats were incubated for 24h with gradient concentrations of Vaspin, and granulosa lutein cells incubated with 0.5% bovine serum albumin were used as controls. The proliferation, apoptosis, angiogenesis, progesterone (P4) and estradiol (E2) were detected by CCK-8, Anneixn-FITC/PI staining, angiogenesis experiment and ELISA. Western blot was applied to observe the expression levels of proteins related to cell proliferation, apoptosis, angiogenesis and MEK/MAPK signaling pathway. RESULTS: Compared with the Control group, Vaspin could significantly up-regulate the proliferation of granulosa lutein cells and reduce the apoptosis. Moreover, Vaspin promoted the angiogenesis of granulosa lutein cells and the production of P4 and E2 in a concentration-dependent manner. Furthermore, Vaspin up-regulated the CyclinD1, CyclinB1, Bcl2, VEGFA and FGF-2 expression in granulosa lutein cells, and down-regulated the level of Bax. Also, Vaspin increased the p-MEK1 and p-p38 levels. CONCLUSION: Vaspin can up-regulate the proliferation and steroidogenesis of rat luteal cells and reduce apoptosis, which may be related to the influence of MEK/MAPK activity.


Subject(s)
Apoptosis , Cell Proliferation , Luteal Cells , Progesterone , Serpins , Animals , Female , Cell Proliferation/drug effects , Serpins/metabolism , Serpins/pharmacology , Rats , Luteal Cells/drug effects , Luteal Cells/metabolism , Apoptosis/drug effects , Progesterone/pharmacology , Estradiol/pharmacology , Cells, Cultured , Rats, Sprague-Dawley , MAP Kinase Signaling System/drug effects , Neovascularization, Physiologic/drug effects
18.
Reprod Fertil Dev ; 362024 May.
Article in English | MEDLINE | ID: mdl-38753959

ABSTRACT

Context Melatonin may have a heat-stress-alleviating role during pregnancy. Aims To investigate the effects of melatonin administration during the first half of pregnancy on heat-tolerance capacity and pregnancy outputs of naturally heat-stressed rabbits. Methods Forty female rabbits were stratified equally into two experimental groups and daily received 1mg melatonin/kg body weight or not (control) for 15 consecutive days post-insemination. Heat tolerance indices, hormone profile, ovarian structures, and fetal loss were determined. Key results Treatment with melatonin significantly decreased respiration rate and rectal temperature, improved concentrations of nitric oxide, and tended to decrease malondialdehyde concentrations (P =0.064) compared to control. Melatonin treatment significantly increased concentrations of high-density lipoprotein, oestradiol, and progesterone compared to control. No significant differences in the numbers of visible ovarian follicles, corpora lutea, and total implantation sites on day 18 of pregnancy were observed between experimental groups. However, melatonin treatment significantly reduced the number of absorbed implantation sites and significantly improved amniotic fluid volume and conception rate compared to control. Conclusions Melatonin administration during the first half of pregnancy can improve reproductive performance of heat-stressed female rabbits. Implications Melatonin can improve fetal survivability via improving heat-tolerance capacity of does and steroidogenesis.


Subject(s)
Heat-Shock Response , Melatonin , Reproduction , Animals , Female , Melatonin/pharmacology , Melatonin/administration & dosage , Rabbits , Pregnancy , Heat-Shock Response/drug effects , Heat-Shock Response/physiology , Reproduction/drug effects , Reproduction/physiology , Progesterone/pharmacology , Heat Stress Disorders/veterinary , Heat Stress Disorders/drug therapy , Heat Stress Disorders/metabolism , Ovary/drug effects , Estradiol/pharmacology , Estradiol/administration & dosage , Thermotolerance/drug effects
19.
Reprod Domest Anim ; 59(5): e14577, 2024 May.
Article in English | MEDLINE | ID: mdl-38698696

ABSTRACT

Sub-estrus is a condition when buffaloes do not display behavioural estrus signs, despite being in estrus and causes a delay in conception and increases the service period. The present study describes the effect of synthetic prostaglandin (PGF2α) alone and in combination with trace minerals on the follicular and corpus luteum (CL) dynamics, serum estradiol (E2) and progesterone (P4) concentration correlating estrus response and pregnancy outcome in sub-estrus buffaloes during the breeding season. A total of 50 sub-estrus buffaloes, identified through ultrasonography (USG) examination, were randomly allocated into three groups, viz. T1 (Synthetic PGF2α, Inj. Cloprostenol 500 µg, i.m, n = 17), T2 (Synthetic PGF2α + Trace mineral supplementation, Inj. Stimvet 1 mL/100 kg body weight, i.m., n = 17) and control (untreated; n = 16). Following treatment, 100% of sub-estrus buffaloes were induced estrus in the T1 and T2 groups, while only 18.75% were induced in the control. The CL diameter and serum P4 concentration were significantly lower at post-treatment, whereas the pre-ovulatory follicle (POF) size and serum E2 concentration were significantly higher in the T1 and T2 groups as compared to the control (p < .05). The buffaloes of the T2 group had a greater proportion of moderate intensities estrus than those of T1. Moreover, the proportion of buffaloes conceived in the T1 and T2 were 41.2% and 52.95%, respectively. The larger POF diameter and higher serum E2 concentration were associated with intense intensity estrus and higher conception rate (66.7%) in sub-estrus buffaloes. Similarly, CL regression rate, POF size and serum E2 concentration were relatively higher in the buffaloes conceived as compared to those not conceived. It is concluded that synthetic PGF2α in combination with trace minerals induces moderate to intense intensities estrus in a greater proportion of sub-estrus buffaloes and increases the conception rate during the breeding season. Moreover, behavioural estrus attributes correlating follicle and luteal morphometry, serum E2 and P4 concentration could be used to optimise the breeding time for augmenting the conception rate in sub-estrus buffaloes.


Subject(s)
Buffaloes , Corpus Luteum , Dinoprost , Estradiol , Estrus Synchronization , Estrus , Ovarian Follicle , Progesterone , Animals , Buffaloes/physiology , Female , Pregnancy , Dinoprost/pharmacology , Dinoprost/administration & dosage , Progesterone/blood , Progesterone/pharmacology , Ovarian Follicle/drug effects , Ovarian Follicle/physiology , Estradiol/blood , Estradiol/pharmacology , Estradiol/administration & dosage , Estrus/drug effects , Estrus/physiology , Corpus Luteum/drug effects , Corpus Luteum/physiology , Trace Elements/pharmacology , Trace Elements/administration & dosage , Cloprostenol/pharmacology , Cloprostenol/administration & dosage
20.
Toxicol Appl Pharmacol ; 486: 116942, 2024 May.
Article in English | MEDLINE | ID: mdl-38692360

ABSTRACT

Organotins have been widely used in various industrial applications. This study investigated the structure-activity relationship as inhibitors of human, pig, and rat gonadal 3ß-hydroxysteroid dehydrogenases (3ß-HSD). Human KGN cell, pig, and rat testis microsomes were utilized to assess the inhibitory effects of 18 organotins on the conversion of pregnenolone to progesterone. Among them, diphenyltin, triethyltin, and triphenyltin exhibited significant inhibitory activity against human 3ß-HSD2 with IC50 values of 114.79, 106.98, and 5.40 µM, respectively. For pig 3ß-HSD, dipropyltin, diphenyltin, triethyltin, tributyltin, and triphenyltin demonstrated inhibitory effects with IC50 values of 172.00, 100.19, 87.00, 5.75, and 1.65 µM, respectively. Similarly, for rat 3ß-HSD1, dipropyltin, diphenyltin, triethyltin, tributyltin, and triphenyltin displayed inhibitory activity with IC50 values of 81.35, 43.56, 55.55, 4.09, and 0.035 µM, respectively. They were mixed inhibitors of pig and rat 3ß-HSD, while triphenyltin was identified as a competitive inhibitor of human 3ß-HSD2. The mechanism underlying the inhibition of organotins on 3ß-HSD was explored, revealing that they may disrupt the enzyme activity by binding to cysteine residues in the catalytic sites. This proposition was supported by the observation that the addition of dithiothreitol reversed the inhibition caused by all organotins except for triethyltin, which was partially reversed. In conclusion, this study provides valuable insights into the structure-activity relationship of organotins as inhibitors of human, pig, and rat gonadal 3ß-HSD. The mechanistic investigation suggests that these compounds likely exert their inhibitory effects through binding to cysteine residues in the catalytic sites.


Subject(s)
Enzyme Inhibitors , Organotin Compounds , Testis , Animals , Humans , Structure-Activity Relationship , Organotin Compounds/pharmacology , Organotin Compounds/chemistry , Rats , Male , Testis/enzymology , Testis/drug effects , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/chemistry , Swine , 3-Hydroxysteroid Dehydrogenases/antagonists & inhibitors , 3-Hydroxysteroid Dehydrogenases/metabolism , Molecular Docking Simulation , Progesterone/pharmacology , Progesterone/metabolism , Microsomes/enzymology , Microsomes/drug effects , Rats, Sprague-Dawley
SELECTION OF CITATIONS
SEARCH DETAIL