Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 911
Filter
1.
Int J Mol Sci ; 25(13)2024 Jun 27.
Article in English | MEDLINE | ID: mdl-39000173

ABSTRACT

Tagetes erecta Linn. (TE) is traditionally used to treat cardiovascular, renal, and gastrointestinal diseases. In this study, we investigated the active compounds and targets of TE extract that may exert antiviral effects against influenza A. Active compounds and targets of TE extract were identified using the Traditional Chinese Medicine Systems Pharmacology database (TCSMP). The influenza A-related gene set was screened using GeneCards and the Kyoto Encyclopedia of Genes and Genomes (KEGG). A protein-protein interaction (PPI) network was built to establish the hub targets. Pathway and target studies were conducted using Gene Expression Omnibus (GEO). The interactions between active compounds and potential targets were assessed by molecular docking. An in vitro study was performed using antiviral and plaque reduction assays. From the compound and target search, we identified 6 active compounds and 95 potential targets. We retrieved 887 influenza-associated target genes and determined 14 intersecting core targets between TE and influenza. After constructing a compound-target network, we discovered lutein and beta-carotene to be the key compounds. Next, PPI network analysis identified the top three hub genes associated with influenza (IL-6, HIF1A, and IL-1ß). Similarly, GEO analysis revealed IL-6, TGFB1, and CXCL8 to be the top three target genes. In our docking study, we identified that lutein and IL-6 had the strongest bindings. Our in vitro experimental results revealed that the TE extract exhibited therapeutic rather than prophylactic effects on influenza disease. We identified lutein as a main active compound in TE extract, and IL-6 as an important target associated with influenza, by using data mining and bioinformatics. Our in vitro findings indicated that TE extract exerted protective properties against the influenza A virus. We speculated that lutein, as a key active component in TE extract, is largely responsible for its antiviral effects. Therefore, we suggest TE extract as an alternative in the treatment of influenza.


Subject(s)
Antiviral Agents , Computational Biology , Molecular Docking Simulation , Plant Extracts , Protein Interaction Maps , Tagetes , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , Plant Extracts/pharmacology , Plant Extracts/chemistry , Computational Biology/methods , Protein Interaction Maps/drug effects , Humans , Tagetes/chemistry , Influenza A virus/drug effects , Influenza A virus/genetics , Influenza, Human/drug therapy , Influenza, Human/virology , Animals , Madin Darby Canine Kidney Cells , Dogs , Medicine, Chinese Traditional/methods
2.
Sci Rep ; 14(1): 15853, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38982082

ABSTRACT

Influenza (Flu) is a severe health, medical, and economic problem, but no medication that has excellent outcomes and lowers the occurrence of these problems is now available. GanghuoQingwenGranules (GHQWG) is a common Chinese herbal formula for the treatment of influenza (flu). However, its methods of action remain unknown. We used network pharmacology, molecular docking, and molecular dynamics simulation techniques to investigate the pharmacological mechanism of GHQWG in flu. TCMSP and various types of literature were used to obtain active molecules and targets of GHQWG. Flu-related targets were found in the Online Mendelian Inheritance in Man (OMIM) database, the DisFeNET database, the Therapeutic Target Database (TTD), and the DrugBank database. To screen the key targets, a protein-protein interaction (PPI) network was constructed. DAVID was used to analyze GO and KEGG pathway enrichment. Target tissue and organ distribution was assessed. Molecular docking was used to evaluate interactions between possible targets and active molecules. For the ideal core protein-compound complexes obtained using molecular docking, a molecular dynamics simulation was performed. In total, 90 active molecules and 312 GHQWG targets were discovered. The PPI network's topology highlighted six key targets. GHQWG's effects are mediated via genes involved in inflammation, apoptosis, and oxidative stress, as well as the TNF and IL-17 signaling pathways, according to GO and KEGG pathway enrichment analysis. Molecular docking and molecular dynamics simulations demonstrated that the active compounds and tested targets had strong binding capabilities. This analysis accurately predicts the effective components, possible targets, and pathways involved in GHQWG flu treatment. We proposed a novel study strategy for future studies on the molecular processes of GHQWG in flu treatment. Furthermore, the possible active components provide a dependable source for flu drug screening.


Subject(s)
Drugs, Chinese Herbal , Influenza, Human , Molecular Docking Simulation , Molecular Dynamics Simulation , Network Pharmacology , Protein Interaction Maps , Humans , Drugs, Chinese Herbal/chemistry , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/therapeutic use , Influenza, Human/drug therapy , Influenza, Human/virology , Protein Interaction Maps/drug effects , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , Antiviral Agents/therapeutic use
3.
J Gene Med ; 26(7): e3710, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38967229

ABSTRACT

BACKGROUND: Patients with non-small cell lung cancer (NSCLC) are susceptible to coronavirus disease-2019 (COVID-19), but current treatments are limited. Icariside II (IS), a flavonoid compound derived from the plant epimedin, showed anti-cancer,anti-inflammation and immunoregulation effects. The present study aimed to evaluate the possible effect and underlying mechanisms of IS on NSCLC patients with COVID-19 (NSCLC/COVID-19). METHODS: NSCLC/COVID-19 targets were defined as the common targets of NSCLC (collected from The Cancer Genome Atlas database) and COVID-19 targets (collected from disease database of Genecards, OMIM, and NCBI). The correlations of NSCLC/COVID-19 targets and survival rates in patients with NSCLC were analyzed using the survival R package. Prognostic analyses were performed using univariate and multivariate Cox proportional hazards regression models. Furthermore, the targets in IS treatment of NSCLC/COVID-19 were defined as the overlapping targets of IS (predicted from drug database of TMSCP, HERBs, SwissTarget Prediction) and NSCLC/COVID-19 targets. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analysis of these treatment targets were performed aiming to understand the biological process, cellular component, molecular function and signaling pathway. The hub targets were analyzed by a protein-protein interaction network and the binding capacity with IS was characterized by molecular docking. RESULTS: The hub targets for IS in the treatment of NSCLC/COVID-19 includes F2, SELE, MMP1, MMP2, AGTR1 and AGTR2, and the molecular docking results showed that the above target proteins had a good binding degree to IS. Network pharmacology showed that IS might affect the leucocytes migration, inflammation response and active oxygen species metabolic process, as well as regulate the interleukin-17, tumor necrosus factor and hypoxia-inducible factor-1 signaling pathway in NSCLC/COVID-19. CONCLUSIONS: IS may enhance the therapeutic efficacy of current clinical anti-inflammatory and anti-cancer therapy to benefit patients with NSCLC combined with COVID-19.


Subject(s)
COVID-19 , Carcinoma, Non-Small-Cell Lung , Flavonoids , Lung Neoplasms , Molecular Docking Simulation , Network Pharmacology , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/genetics , Humans , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , COVID-19/virology , COVID-19/metabolism , Flavonoids/therapeutic use , Flavonoids/chemistry , Flavonoids/pharmacology , SARS-CoV-2/drug effects , SARS-CoV-2/metabolism , COVID-19 Drug Treatment , Protein Interaction Maps/drug effects , Prognosis
4.
Sci Rep ; 14(1): 14183, 2024 06 20.
Article in English | MEDLINE | ID: mdl-38902425

ABSTRACT

The incidence of ulcerative colitis (UC) is on the rise globally. Shen-Zhu-Lian-Bai decoction (SZLBD) can relieve the clinical symptoms of UC. This study aimed to investigate the underlying molecular mechanism of SZLBD in the treatment of UC. The key treatment targets of SZLBD for UC were obtained based on the online database, and combined with the STRING database and Cytoscape 3.7.2 software, PPI network was constructed and visualized. The GEO database was utilized to validate the expression levels of core targets in UC. Metascape database GO functional annotation and KEGG pathway enrichment analysis. Molecular docking technology was used to verify the docking of core compounds with key targets. RT-qPCR and Western Blot were used to detect the expression of key targets in HCoEpiC cells for verification. After screening, 67 targets shared by SZLBD and UC were obtained. It is predicted that IL-6, IL-1B, and AKT1 might be the key targets of SZLBD in the treatment of UC. Quercetin was the main active ingredient. GEO results showed that the expression levels of IL-6, IL-1B and AKT1 were higher in the UC group compared to the control group. GO and KEGG analyses showed that these targets were related to apoptosis and inflammation. The results of molecular docking demonstrated that the AKT1 gene, a key target of quercetin, had the highest affinity of -9.2 kcal/mol. Cell experiments found that quercetin could affect the expression of IL-6, IL-1B, and AKT1. This study preliminarily explored and verified the mechanism of action of SZLBD in the treatment of UC, which provides a theoretical basis for subsequent in vivo mechanism studies.


Subject(s)
Colitis, Ulcerative , Drugs, Chinese Herbal , Molecular Docking Simulation , Network Pharmacology , Protein Interaction Maps , Proto-Oncogene Proteins c-akt , Colitis, Ulcerative/drug therapy , Colitis, Ulcerative/metabolism , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/chemistry , Drugs, Chinese Herbal/therapeutic use , Humans , Protein Interaction Maps/drug effects , Proto-Oncogene Proteins c-akt/metabolism , Interleukin-6/metabolism , Quercetin/pharmacology , Quercetin/chemistry , Interleukin-1beta/metabolism
5.
Medicine (Baltimore) ; 103(24): e38536, 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38875382

ABSTRACT

This study aims to analyze the effective components of Polygonum capitatum (PC) inhibiting Escherichia coli based on network pharmacology methods and predict its molecular mechanism of action. PC compounds and targets were collected from the TCMSP database, Swiss Target Prediction, and the literature. E coli targets were searched using the GeneCards database. The targets of E coli and the targets of the active ingredients of PC were taken as intersections to obtain the intersecting targets. The resulting overlapping targets were uploaded to the STRING database to construct the protein interaction network diagram of E coli target inhibition. The key targets for the inhibitory effect of PC on E coli were obtained. Gene ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses were performed by uploading key targets into the DAVID database. The results showed that there were 50 targets for PC to inhibit E coli. Among them, there are 5 core targets, mainly including AKT1, TNF, EGFR, JUN, and ESR1. A total of 196 gene ontology functional analysis results and 126 Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis results were obtained. These include cellular response to cadmium-ion, cellular response to reactive oxygen species, pathways in cancer, prostate cancer, and PI3K-Akt signaling pathway. Molecular docking results indicate that Lutedin, Hirsutin, Flazin, and Ellagic acid in PC have high affinity for the target genes AKT1, TNF, MAPK3 and EGFR. PC exerts its inhibitory effect on E coli through multi-targets and multi-pathways, which provides a new basis for the new use of PC as an old medicine.


Subject(s)
Escherichia coli , Molecular Docking Simulation , Network Pharmacology , Polygonum , Polygonum/chemistry , Escherichia coli/drug effects , Humans , Protein Interaction Maps/drug effects , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/chemistry
6.
Medicine (Baltimore) ; 103(26): e38705, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38941423

ABSTRACT

Rosacea is a chronic and recurrent inflammatory skin disease affecting the center of the face that causes burning and itching sensations and changes in aesthetics. Liang Xue Wu Hua Tang (LXWHT) is a classic herbal formulation that is efficacious and has been widely used in the clinical treatment of rosacea; however, the pharmacological mechanisms remain unclear. The aim of the present study was to investigate the mechanism of action of LXWHT using network pharmacology and molecular docking. The Traditional Chinese Medicine System Pharmacology database was searched to identify the active ingredients and pharmacological targets of LXWHT, and the GeneCard, Disgenet, and Gene Expression Omnibus databases were applied to screen rosacea-related targets. Cytoscape software was used to visualize the protein-protein interaction network, and network topology analysis was used to identify core targets. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analyses were performed for the core targets. Molecular docking simulations and visualization were performed using Maestro and PyMOL, respectively. A total of 43 active compounds and 28 potential targets for LXWHT treatment of rosacea were selected for analysis. The Gene Ontology/Kyoto Encyclopedia of Genes and Genomes results indicated that LXWHT may exert therapeutic effects on rosacea by intervening in immune pathways including tumor necrosis factor pathway, interleukin-17 pathways, and Toll-like receptor signaling pathways. Chemokine ligand 2, interferon-γ, interleukin-1ß, peroxisome proliferator-activated receptor-γ, and matrix metallopeptidase 9 may be the core therapeutic target. Quercetin, stigmasterol, kaempferol, beta-sitosterol, luteolin, beta-carotene, baicalein, acetin, and isorhamnetin were predicted to be the key active ingredients. LXWHT may exert therapeutic effects in the treatment of rosacea by modulating immunity and angiogenesis, laying the foundation for further research.


Subject(s)
Drugs, Chinese Herbal , Molecular Docking Simulation , Network Pharmacology , Rosacea , Rosacea/drug therapy , Humans , Drugs, Chinese Herbal/therapeutic use , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/chemistry , Protein Interaction Maps/drug effects , Medicine, Chinese Traditional/methods
7.
Biomolecules ; 14(6)2024 May 27.
Article in English | MEDLINE | ID: mdl-38927034

ABSTRACT

Insomnia, also known as sleeplessness, is a sleep disorder due to which people have trouble sleeping, followed by daytime sleepiness, low energy, irritability, and a depressed mood. It may result in an increased risk of accidents of all kinds as well as problems focusing and learning. Dietary supplements have become popular products for alleviating insomnia, while the lenient requirements for pre-market research result in unintelligible mechanisms of different combinations of dietary supplements. In this study, we aim to systematically identify the molecular mechanisms of a sleep cocktail's pharmacological effects based on findings from network pharmacology and molecular docking. A total of 249 targets of the sleep cocktail for the treatment of insomnia were identified and enrichment analysis revealed multiple pathways involved in the nervous system and inflammation. Protein-protein interaction (PPI) network analysis and molecular complex detection (MCODE) analysis yielded 10 hub genes, including AKT1, ADORA1, BCL2, CREB1, IL6, JUN, RELA, STAT3, TNF, and TP53. Results from weighted correlation network analysis (WGCNA) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis of insomnia-related transcriptome data from peripheral blood mononuclear cells (PBMCs) showed that a sleep cocktail may also ease insomnia via regulating the inflammatory response. Molecular docking results reveal good affinity of Sleep Cocktail to 9 selected key targets. It is noteworthy that the crucial target HSP90AA1 binds to melatonin most stably, which was further validated by MD simulation.


Subject(s)
Molecular Docking Simulation , Network Pharmacology , Protein Interaction Maps , Humans , Protein Interaction Maps/drug effects , Sleep Initiation and Maintenance Disorders/drug therapy , Sleep Initiation and Maintenance Disorders/metabolism , Dietary Supplements , Sleep/drug effects
8.
Biomed Chromatogr ; 38(8): e5921, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38886007

ABSTRACT

Alzheimer's disease (AD) is a progressive neurodegenerative disorder characterized by the disruption of synaptic communication among millions of neurons. Recent research has highlighted the potential therapeutic effectiveness of natural polyphenolic compounds in addressing AD. Soybeans are abundant in polyphenols, and their polyphenolic composition undergoes significant alteration through fermentation by Eurotium cristatum. Through comprehensive database searches, we identified active components within fermented soybean polyphenols and genes associated with AD. Subsequently, we utilized Venn diagrams to analyze the overlap between AD-related genes and these components. Furthermore, we visualized the network between intersecting targets and proteins using Cytoscape software. The anti-AD effects of soybeans were further explored through comprehensive analysis, including protein-protein interaction analysis, pathway enrichment analysis, and molecular docking studies. Our investigation unveiled 6-hydroxydaidzein as a major component of fermented soybean polyphenols, shedding light on its potential therapeutic significance in combating AD. The intersection between target proteins of fermented soybeans and disease-related targets in AD comprised 34 genes. Protein-protein interaction analysis highlighted key potential targets, including glyceraldehyde-3-phosphate dehydrogenase (GAPDH), glycogen synthase kinase 3 beta (GSK3B), amyloid precursor protein (APP), cyclin-dependent kinase 5 (CDK5), and beta-site APP cleaving enzyme 1 (BACE1). Molecular docking results demonstrated a robust binding effect between major components from fermented soybeans and the aforesaid key targets implicated in AD treatment. These findings suggest that fermented soybeans demonstrate a degree of efficacy and present promising prospects in the prevention of AD.


Subject(s)
Alzheimer Disease , Fermentation , Glycine max , Molecular Docking Simulation , Alzheimer Disease/prevention & control , Alzheimer Disease/metabolism , Alzheimer Disease/drug therapy , Glycine max/chemistry , Humans , Network Pharmacology , Protein Interaction Maps/drug effects , Polyphenols/pharmacology , Polyphenols/chemistry , Isoflavones/pharmacology , Isoflavones/chemistry , Isoflavones/metabolism , Plant Extracts/pharmacology , Plant Extracts/chemistry
9.
Animal Model Exp Med ; 7(3): 259-274, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38860392

ABSTRACT

BACKGROUND: YangshenDingzhi granules (YSDZ) are clinically effective in preventing and treating COVID-19. The present study elucidates the underlying mechanism of YSDZ intervention in viral pneumonia by employing serum pharmacochemistry and network pharmacology. METHODS: The chemical constituents of YSDZ in the blood were examined using ultra-performance liquid chromatography-quadrupole/orbitrap high-resolution mass spectrometry (UPLC-Q-Exactive Orbitrap MS). Potential protein targets were obtained from the SwissTargetPrediction database, and the target genes associated with viral pneumonia were identified using GeneCards, DisGeNET, and Online Mendelian Inheritance in Man (OMIM) databases. The intersection of blood component-related targets and disease-related targets was determined using Venny 2.1. Protein-protein interaction networks were constructed using the STRING database. The Metascape database was employed to perform enrichment analyses of Gene Ontology (GO) functions and Kyoto Encyclopedia of Genes and Genomes (KEGG) signaling pathways for the targets, while the Cytoscape 3.9.1 software was utilized to construct drug-component-disease-target-pathway networks. Further, in vitro and in vivo experiments were performed to establish the therapeutic effectiveness of YSDZ against viral pneumonia. RESULTS: Fifteen compounds and 124 targets linked to viral pneumonia were detected in serum. Among these, MAPK1, MAPK3, AKT1, EGFR, and TNF play significant roles. In vitro tests revealed that the medicated serum suppressed the replication of H1N1, RSV, and SARS-CoV-2 replicon. Further, in vivo testing analysis shows that YSDZ decreases the viral load in the lungs of mice infected with RSV and H1N1. CONCLUSION: The chemical constituents of YSDZ in the blood may elicit therapeutic effects against viral pneumonia by targeting multiple proteins and pathways.


Subject(s)
COVID-19 Drug Treatment , Drugs, Chinese Herbal , Network Pharmacology , SARS-CoV-2 , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/therapeutic use , Animals , Mice , SARS-CoV-2/drug effects , Protein Interaction Maps/drug effects , Male , COVID-19 , Pneumonia, Viral/drug therapy , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Antiviral Agents/pharmacokinetics , Humans
10.
Sci Rep ; 14(1): 12780, 2024 06 04.
Article in English | MEDLINE | ID: mdl-38834599

ABSTRACT

Danshen, a prominent herb in traditional Chinese medicine (TCM), is known for its potential to enhance physiological functions such as blood circulation, immune response, and resolve blood stasis. Despite the effectiveness of COVID-19 vaccination efforts, some individuals still face severe complications post-infection, including pulmonary fibrosis, myocarditis arrhythmias and stroke. This study employs a network pharmacology and molecular docking approach to investigate the potential mechanisms underlying the therapeutic effects of candidate components and targets from Danshen in the treatment of complications in COVID-19. Candidate components and targets from Danshen were extracted from the TCMSP Database, while COVID-19-related targets were obtained from Genecards. Venn diagram analysis identified common targets. A Protein-Protein interaction (PPI) network and gene enrichment analysis elucidated potential therapeutic mechanisms. Molecular docking evaluated interactions between core targets and candidate components, followed by molecular dynamics simulations to assess stability. We identified 59 potential candidate components and 123 targets in Danshen for COVID-19 treatment. PPI analysis revealed 12 core targets, and gene enrichment analysis highlighted modulated pathways. Molecular docking showed favorable interactions, with molecular dynamics simulations indicating high stability of key complexes. Receiver operating characteristic (ROC) curves validated the docking protocol. Our study unveils candidate compounds, core targets, and molecular mechanisms of Danshen in COVID-19 treatment. These findings provide a scientific foundation for further research and potential development of therapeutic drugs.


Subject(s)
COVID-19 Drug Treatment , Drugs, Chinese Herbal , Molecular Docking Simulation , Network Pharmacology , Protein Interaction Maps , SARS-CoV-2 , Salvia miltiorrhiza , Drugs, Chinese Herbal/chemistry , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/therapeutic use , Salvia miltiorrhiza/chemistry , Humans , Protein Interaction Maps/drug effects , SARS-CoV-2/drug effects , Molecular Dynamics Simulation , COVID-19/virology , Medicine, Chinese Traditional
11.
Chem Biol Drug Des ; 103(6): e14558, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38828741

ABSTRACT

This study aimed to explore the active components and the effect of Hedyotis diffusa (HD) against Alzheimer's disease (AD) via network pharmacology, molecular docking, and experimental evaluations. We conducted a comprehensive screening process using the TCMSP, Swiss Target Prediction, and PharmMapper databases to identify the active components and their related targets in HD. In addition, we collected potential therapeutic targets of AD from the Gene Cards, Drugbank, and OMIM databases. Afterward, we utilized Cytoscape to establish both protein-protein interaction (PPI) networks and compound-target (C-T) networks. To gain further insights into the functional aspect, we performed GO and KEGG pathway analyses using the David database. Next, we employed Autodock vina to estimate the binding force between the components and the hub genes. To validate our network pharmacology findings, we conducted relevant experiments on Caenorhabditis elegans, further confirming the reliability of our results. Then a total of six active compounds and 149 therapeutic targets were detected. Through the analysis of the association between active compounds, therapeutic targets, and signaling pathways, it was observed that the therapeutic effect of HD primarily encompassed the inhibition of Aß, suppression of AChE activity, and mitigating oxidative stress. Additionally, our investigation revealed that the key active compounds in HD primarily consisted of iridoids, which exhibited resistance against AD by acting on the Alzheimer's disease pathway and the AGE-RAGE signaling pathway in diabetic complications.


Subject(s)
Alzheimer Disease , Caenorhabditis elegans , Hedyotis , Molecular Docking Simulation , Network Pharmacology , Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , Animals , Hedyotis/chemistry , Caenorhabditis elegans/drug effects , Caenorhabditis elegans/metabolism , Humans , Protein Interaction Maps/drug effects , Amyloid beta-Peptides/metabolism , Acetylcholinesterase/metabolism , Signal Transduction/drug effects , Plant Extracts/chemistry , Plant Extracts/pharmacology
12.
PLoS One ; 19(6): e0305903, 2024.
Article in English | MEDLINE | ID: mdl-38913698

ABSTRACT

BACKGROUND: Pulmonary fibrosis (PF) is a common interstitial pneumonia disease, also occurred in post-COVID-19 survivors. The mechanism underlying the anti-PF effect of Qing Fei Hua Xian Decotion (QFHXD), a traditional Chinese medicine formula applied for treating PF in COVID-19 survivors, is unclear. This study aimed to uncover the mechanisms related to the anti-PF effect of QFHXD through analysis of network pharmacology and experimental verification. METHODS: The candidate chemical compounds of QFHXD and its putative targets for treating PF were achieved from public databases, thereby we established the corresponding "herb-compound-target" network of QFHXD. The protein-protein interaction network of potential targets was also constructed to screen the core targets. Furthermore, Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis were used to predict targets, and pathways, then validated by in vivo experiments. RESULTS: A total of 188 active compounds in QFHXD and 50 target genes were identified from databases. The key therapeutic targets of QFHXD, such as PI3K/Akt, IL-6, TNF, IL-1ß, STAT3, MMP-9, and TGF-ß1 were identified by KEGG and GO analysis. Anti-PF effects of QFHXD (in a dose-dependent manner) and prednisone were confirmed by HE, Masson staining, and Sirius red staining as well as in vivo Micro-CT and immunohistochemical analysis in a rat model of bleomycin-induced PF. Besides, QFXHD remarkably inhibits the activity of PI3K/Akt/NF-κB and TGF-ß1/Smad2/3. CONCLUSIONS: QFXHD significantly attenuated bleomycin-induced PF via inhibiting inflammation and epithelial-mesenchymal transition. PI3K/Akt/NF-κB and TGF-ß1/Smad2/3 pathways might be the potential therapeutic effects of QFHXD for treating PF.


Subject(s)
Drugs, Chinese Herbal , Network Pharmacology , Protein Interaction Maps , Pulmonary Fibrosis , Pulmonary Fibrosis/drug therapy , Pulmonary Fibrosis/chemically induced , Pulmonary Fibrosis/metabolism , Pulmonary Fibrosis/pathology , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/therapeutic use , Animals , Rats , Male , Protein Interaction Maps/drug effects , Bleomycin , Transforming Growth Factor beta1/metabolism , Rats, Sprague-Dawley , Signal Transduction/drug effects , Humans , COVID-19/metabolism , Epithelial-Mesenchymal Transition/drug effects , Medicine, Chinese Traditional/methods , COVID-19 Drug Treatment
13.
Drug Des Devel Ther ; 18: 2405-2420, 2024.
Article in English | MEDLINE | ID: mdl-38915868

ABSTRACT

Background: Chemotherapy-induced myelosuppression (CIM) is a common adverse reaction with a high incidence rate that seriously affects human health. Shengyu Decoction (SYD) is often used to treat CIM. However, its pharmacodynamic basis and therapeutic mechanisms remain unclear. Purpose: This study aimed to clarify the active components and mechanisms of SYD in CIM. Methods: LC-QTOF/MS was used to identify the absorbable components of SYD. A series of network pharmacology methods have been applied to explore hub targets and potential mechanisms. Molecular docking was used to identify the binding ability of potential active ingredients and hub targets. Finally, in vitro experiments were performed to validate these findings. Results: In this study, 33 absorbable prototype components were identified using LC-QTOF/MS. A total of 62 possible targets of SYD in myelosuppression were identified. KEGG pathway enrichment analyses showed that some signaling pathways such as PI3K-Akt and HIF-1 may be the mechanisms by which it functions. Among them, we verified the PI3K-Akt pathway. 6 Hub proteins were screened by Protein-protein interaction (PPI) network analysis. Molecular docking results showed that four absorbable components in SYD showed good binding with six Hub targets. The effectiveness of the four predicted compounds and the mechanism were verified in vitro. It has also been shown that the active component could promote the proliferation of bone marrow stromal cells (BMSCs) and block apoptosis of BMSCs, which may be related to the PI3K-Akt pathway. This result is consistent with the network pharmacology approach and molecular docking predictions. Conclusion: Our results provided not only the candidate active component of SYD, but also a new insights into mechanism of SYD in the treatment of CIM.


Subject(s)
Drugs, Chinese Herbal , Molecular Docking Simulation , Network Pharmacology , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/chemistry , Humans , Cell Proliferation/drug effects , Cells, Cultured , Animals , Mesenchymal Stem Cells/drug effects , Mesenchymal Stem Cells/metabolism , Protein Interaction Maps/drug effects
14.
Curr Med Sci ; 44(3): 578-588, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38853191

ABSTRACT

OBJECTIVE: Brain microvascular endothelial cells (BMECs) were found to shift from their usually inactive state to an active state in ischemic stroke (IS) and cause neuronal damage. Ginsenoside Rb1 (GRb1), a component derived from medicinal plants, is known for its pharmacological benefits in IS, but its protective effects on BMECs have yet to be explored. This study aimed to investigate the potential protective effects of GRb1 on BMECs. METHODS: An in vitro oxygen-glucose deprivation/reperfusion (OGD/R) model was established to mimic ischemia-reperfusion (I/R) injury. Bulk RNA-sequencing data were analyzed by using the Human Autophagy Database and various bioinformatic tools, including gene set enrichment analysis (GSEA), Gene Ontology (GO) classification and enrichment analysis, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis, protein-protein interaction network analysis, and molecular docking. Experimental validation was also performed to ensure the reliability of our findings. RESULTS: Rb1 had a protective effect on BMECs subjected to OGD/R injury. Specifically, GRb1 was found to modulate the interplay between oxidative stress, apoptosis, and autophagy in BMECs. Key targets such as sequestosome 1 (SQSTM1/p62), autophagy related 5 (ATG5), and hypoxia-inducible factor 1-alpha (HIF-1α) were identified, highlighting their potential roles in mediating the protective effects of GRb1 against IS-induced damage. CONCLUSION: GRbl protects BMECs against OGD/R injury by influencing oxidative stress, apoptosis, and autophagy. The identification of SQSTM1/p62, ATG5, and HIF-1α as promising targets further supports the potential of GRb1 as a therapeutic agent for IS, providing a foundation for future research into its mechanisms and applications in IS treatment.


Subject(s)
Apoptosis , Autophagy , Endothelial Cells , Ginsenosides , Oxidative Stress , Ginsenosides/pharmacology , Oxidative Stress/drug effects , Autophagy/drug effects , Endothelial Cells/drug effects , Endothelial Cells/metabolism , Apoptosis/drug effects , Humans , Brain/drug effects , Brain/metabolism , Brain/pathology , Molecular Docking Simulation , Protein Interaction Maps/drug effects , Reperfusion Injury/drug therapy , Reperfusion Injury/metabolism , Microvessels/drug effects , Microvessels/cytology , Microvessels/metabolism , Computational Biology/methods , Glucose/metabolism
15.
Sci Rep ; 14(1): 10286, 2024 05 04.
Article in English | MEDLINE | ID: mdl-38704482

ABSTRACT

Jinlida granule (JLD) is a Traditional Chinese Medicine (TCM) formula used for the treatment of type 2 diabetes mellitus (T2DM). However, the mechanism of JLD treatment for T2DM is not fully revealed. In this study, we explored the mechanism of JLD against T2DM by an integrative pharmacology strategy. Active components and corresponding targets were retrieved from Traditional Chinese Medicine System Pharmacology (TCMSP), SwissADME and Bioinformatics Analysis Tool for Molecular Mechanisms of Traditional Chinese Medicine Database (BATMAN-TCM) database. T2DM-related targets were obtained from Drugbank and Genecards databases. The protein-protein interaction (PPI) network was constructed and analyzed with STRING (Search Toll for the Retrieval of Interacting Genes/proteins) and Cytoscape to get the key targets. Then, Gene Ontology (GO) and Kyoto Encyclopedia of Gene and Genomes (KEGG) enrichment analyses were performed with the Database for Annotation, Visualization and Integrated Discovery (DAVID). Lastly, the binding capacities and reliability between potential active components and the targets were verified with molecular docking and molecular dynamics simulation. In total, 185 active components and 337 targets of JLD were obtained. 317 targets overlapped with T2DM-related targets. RAC-alpha serine/threonine-protein kinase (AKT1), tumor necrosis factor (TNF), interleukin-6 (IL-6), cellular tumor antigen p53 (TP53), prostaglandin G/H synthase 2 (PTGS2), Caspase-3 (CASP3) and signal transducer and activator of transcription 3 (STAT3) were identified as seven key targets by the topological analysis of the PPI network. GO and KEGG enrichment analyses showed that the effects were primarily associated with gene expression, signal transduction, apoptosis and inflammation. The pathways were mainly enriched in PI3K-AKT signaling pathway and AGE-RAGE signaling pathway in diabetic complications. Molecular docking and molecular dynamics simulation verified the good binding affinity between the key components and targets. The predicted results may provide a theoretical basis for drug screening of JLD and a new insight for the therapeutic effect of JLD on T2DM.


Subject(s)
Diabetes Mellitus, Type 2 , Drugs, Chinese Herbal , Molecular Docking Simulation , Protein Interaction Maps , Diabetes Mellitus, Type 2/metabolism , Diabetes Mellitus, Type 2/drug therapy , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/chemistry , Humans , Protein Interaction Maps/drug effects , Signal Transduction/drug effects , Medicine, Chinese Traditional/methods , Molecular Dynamics Simulation , Computational Biology/methods , Gene Ontology , Hypoglycemic Agents/pharmacology , Hypoglycemic Agents/chemistry
16.
Rapid Commun Mass Spectrom ; 38(14): e9766, 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-38747108

ABSTRACT

RATIONALE: Huahong tablet, a commonly used clinical Chinese patent medicine, shows good efficacy in treating pelvic inflammation and other gynaecological infectious diseases. However, the specific composition of Huahong tablets, which are complex herbal formulations, remains unclear. Therefore, this study aims to identify the active compounds and targets of Huahong tablets and investigate their mechanism of action in pelvic inflammatory diseases. METHODS: We utilised ultrahigh-performance liquid chromatography Q-Exactive-Orbitrap mass spectrometry and the relevant literature to identify the chemical components of Huahong tablets. The GNPS database was employed to further analyse and speculate on the components. Potential molecular targets of the active ingredients were predicted using the SwissTargetPrediction website. Protein-protein interaction analysis was conducted using the STRING database, with visualisation in Cytoscape 3.9.1. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were performed using the DAVID database. Additionally, a traditional Chinese medicine-ingredient-target-pathway network was constructed using Cytoscape 3.10.1. Molecular docking validation was carried out to investigate the interaction between core target and specific active ingredient. RESULTS: A total of 66 chemical components were identified, and 41 compounds were selected as potential active components based on the literature and the TCMSP database. Moreover, 38 core targets were identified as key targets in the treatment of pelvic inflammatory diseases with Huahong tablets. GO and KEGG enrichment analysis revealed 986 different biological functions and 167 signalling pathways. CONCLUSION: The active ingredients in Huahong tablets exert therapeutic effects on pelvic inflammatory diseases by acting on multiple targets and utilising different pathways. Molecular docking confirmed the high affinity between the specific active ingredients and disease targets.


Subject(s)
Drugs, Chinese Herbal , Network Pharmacology , Pelvic Inflammatory Disease , Drugs, Chinese Herbal/chemistry , Drugs, Chinese Herbal/pharmacology , Chromatography, High Pressure Liquid/methods , Pelvic Inflammatory Disease/drug therapy , Humans , Mass Spectrometry/methods , Female , Protein Interaction Maps/drug effects , Tablets/chemistry , Molecular Docking Simulation
17.
Technol Health Care ; 32(S1): 523-542, 2024.
Article in English | MEDLINE | ID: mdl-38759074

ABSTRACT

BACKGROUND: Colon cancer is the most prevalent and rapidly increasing malignancy globally. It has been suggested that some of the ingredients in the herb pair of Coptidis Rhizoma and ginger (Zingiber officinale), a traditional Chinese medicine, have potential anti-colon cancer properties. OBJECTIVE: This study aimed to investigate the molecular mechanisms underlying the effects of the Coptidis Rhizoma-ginger herb pair in treating colon cancer, using an integrated approach combining network pharmacology and molecular docking. METHODS: The ingredients of the herb pair Coptidis Rhizoma-ginger, along with their corresponding protein targets, were obtained from the Traditional Chinese Medicine System Pharmacology and Swiss Target Prediction databases. Target genes associated with colon cancer were retrieved from the GeneCards and OMIM databases. Then, the protein targets of the active ingredients in the herb pair were identified, and the disease-related overlapping targets were determined using the Venn online tool. The protein-protein interaction (PPI) network was constructed using STRING database and analyzed using Cytoscape 3.9.1 to identify key targets. Then, a compound-target-disease-pathway network map was constructed. The intersecting target genes were subjected to Gene Ontology (GO) enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses for colon cancer treatment. Molecular docking was performed using the Molecular Operating Environment (MOE) software to predict the binding affinity between the key targets and active compounds. RESULTS: Besides 1922 disease-related targets, 630 targets associated with 20 potential active compounds of the herb pair Coptidis Rhizoma-ginger were collected. Of these, 229 intersection targets were obtained. Forty key targets, including STAT3, Akt1, SRC, and HSP90AA1, were further analyzed using the ClueGO plugin in Cytoscape. These targets are involved in biological processes such as miRNA-mediated gene silencing, phosphatidylinositol 3-kinase (PI3K) signaling, and telomerase activity. KEGG enrichment analysis showed that PI3K-Akt and hypoxia-inducible factor 1 (HIF-1) signaling pathways were closely related to colon cancer prevention by the herb pair Coptidis Rhizoma-ginger. Ten genes (Akt1, TP53, STAT3, SRC, HSP90AA1, JAK2, CASP3, PTGS2, BCl2, and ESR1) were identified as key genes for validation through molecular docking simulation. CONCLUSIONS: This study demonstrated that the herb pair Coptidis Rhizoma-ginger exerted preventive effects against colon cancer by targeting multiple genes, utilizing various active compounds, and modulating multiple pathways. These findings might provide the basis for further investigations into the molecular mechanisms underlying the therapeutic effects of Coptidis Rhizoma-ginger in colon cancer treatment, potentially leading to the development of novel drugs for combating this disease.


Subject(s)
Colonic Neoplasms , Coptis chinensis , Drugs, Chinese Herbal , Molecular Docking Simulation , Network Pharmacology , Humans , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/chemistry , Drugs, Chinese Herbal/therapeutic use , Colonic Neoplasms/drug therapy , Zingiber officinale/chemistry , Protein Interaction Maps/drug effects , Medicine, Chinese Traditional/methods
18.
Biomed Chromatogr ; 38(7): e5881, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38763770

ABSTRACT

Chaihu-jia-Longgu-Muli decoction (CLMD) has been proven clinically effective in treating vertigo with anxiety disorder. However, the mechanism is not clear. This study aimed to explore the mechanism of CLMD in treating vertigo with anxiety disorder based on ultra-performance liquid chromatography-quadrupole time-of-flight/mass spectrometry (UPLC-Q-TOF/MS) and network pharmacology. UPLC-Q-TOF/MS was performed to identify the compounds in blood and the targets of compounds of CLMD in vertigo and anxiety were searched using databases. A protein-protein interaction network was built to screen the core targets. The core targets were analyzed by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses. In addition, the vertigo with anxiety rat model was used to verify the results. A total of 22 compounds were absorbed into the blood. Eighty-one potential targets associated with CLMD for vertigo with anxiety disorder were identified through network pharmacological analysis. Subsequently, GO and KEGG analysis showed that CLMD treatment for vertigo with anxiety disorder is associated with neurotransmitter levels and other pertinent physiological processes. The results of the animal experiments showed that CLMD decreased the levels of serotonin, norepinephrine and dopamine, alleviating the symptoms of vertigo and anxiety disorder in model rats. The study revealed CLMD could alleviate vertigo and anxiety symptoms through reducing the levels of neurotransmitters.


Subject(s)
Anxiety Disorders , Drugs, Chinese Herbal , Network Pharmacology , Rats, Sprague-Dawley , Vertigo , Animals , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/chemistry , Chromatography, High Pressure Liquid/methods , Rats , Vertigo/drug therapy , Male , Anxiety Disorders/drug therapy , Mass Spectrometry/methods , Protein Interaction Maps/drug effects , Disease Models, Animal
19.
J Pharm Biomed Anal ; 247: 116251, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38820836

ABSTRACT

The proprietary Chinese medicine Jinkui Shenqi Pill (PCM-JKSQP) is a classic compound used for the effective clinical treatment of kidney yang deficiency syndrome (KYDS), a metabolic disease accompanied by kidney injury. However, its active ingredients and therapeutic mechanisms are not clear. This study employed serum pharmacochemistry, network pharmacology, and pharmacokinetics (PK) to identify the bioactive components of PCM-JKSQP and preliminarily clarify its mechanism in treating KYDS. One hundred and forty chemical components of PCM-JKSQP, 47 (20 parent compouds and 27 metabolites) of which were absorbed into the blood, were identified by ultra-high-performance liquid chromatography-quadrupole-orbitrap high-resolution mass spectrometry (UHPLC-Q-Orbitrap HRMS). The topological parameters of network pharmacology and high concentrations in blood found six parent components as PK markers (cinnamic acid, paeonol, loganin, morroniside, apigenin, and poricoic acid A). PK analysis further identified these six compounds as active ingredients. Protein-protein interaction (PPI) analysis and molecular docking simulation predicted and verified eight core targets (TP53, ESR1, CTNNB1, EP300, EGFR, AKT1, ERBB2, and TNF). Most were concentrated in the MAPK, HIF-1, and PI3K-AKT signaling pathways, indicating that these six active ingredients may mainly exert therapeutic effects through these three pathways via their core targets. The PK results also showed these six components were absorbed quickly, although cinnamic acid and paeonol were rapidly metabolized, with a short half-life and retention time. Loganin and morroniside did not have high peak concentrations, and apigenin and poricoic acid A had long retention times. This study provides a new overall perspective for exploring the bioactive components and mechanisms underlying the effects of PCM-JKSQP in treating KYDS.


Subject(s)
Drugs, Chinese Herbal , Molecular Docking Simulation , Network Pharmacology , Yang Deficiency , Drugs, Chinese Herbal/pharmacokinetics , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/chemistry , Drugs, Chinese Herbal/therapeutic use , Yang Deficiency/drug therapy , Network Pharmacology/methods , Animals , Chromatography, High Pressure Liquid/methods , Male , Medicine, Chinese Traditional/methods , Kidney/metabolism , Kidney/drug effects , Rats , Protein Interaction Maps/drug effects , Kidney Diseases/drug therapy , Kidney Diseases/metabolism , Rats, Sprague-Dawley , Humans
20.
Article in English | MEDLINE | ID: mdl-38821003

ABSTRACT

PURPOSE: A serum medicinal chemistry analysis was performed to investigate the pharmacological basis of Xintongtai granule and to predict the potential mechanism of anti-atherosclerotic action based on the blood components. METHODS: UPLC-Q-TOF-MS/MS was used to analyze the in vitro chemical composition and in vivo blood components of Xintongtai granule, and to detect the blood drug concentration. The PPI network was constructed by collecting blood components and disease targets through the network pharmacology method, and the key targets were subjected to GO and KEGG functional enrichment analyses, so as to construct the topology network of drug-component-target-disease, and to validate the network by molecular docking. RESULTS: The UPLC-Q-TOF-MS/MS analysis identified 69 chemical components in Xintongtai granule, including 19 prototype circulating components and 9 metabolites in the bloodstream. Network pharmacology analysis revealed 115 intersecting targets for the circulating components, from which 10 core targets were selected. GO and KEGG analyses unveiled associated signaling pathways and biological processes. The construction of a topology network and preliminary molecular docking provided insights into its mechanism of action. CONCLUSION: The mechanism underlying the anti- atherosclerosis effect of Xintongtai granule may be associated with the intervention of active components such as Cryptotanshinone, Kaempferitrin, and Puerarin in pathways targeting CXCL8, STAT3, TNF, and other related targets.


Subject(s)
Atherosclerosis , Drugs, Chinese Herbal , Molecular Docking Simulation , Tandem Mass Spectrometry , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/chemistry , Atherosclerosis/drug therapy , Atherosclerosis/blood , Tandem Mass Spectrometry/methods , Animals , Chromatography, High Pressure Liquid/methods , Protein Interaction Maps/drug effects , Male , Network Pharmacology , Humans , Mice
SELECTION OF CITATIONS
SEARCH DETAIL
...