ABSTRACT
RuBisCO is the most abundant enzyme on earth; it regulates the organic carbon cycle in the biosphere. Studying its structural evolution will help to develop new strategies of genetic improvement in order to increase food production and mitigate CO2 emissions. In the present work, we evaluate how the evolution of sequence and structure among isoforms I, II and III of RuBisCO defines their intrinsic flexibility and residue-residue interactions. To do this, we used a multilevel approach based on phylogenetic inferences, multiple sequence alignment, normal mode analysis, and molecular dynamics. Our results show that the three isoforms exhibit greater fluctuation in the loop between αB and ßC, and also present a positive correlation with loop 6, an important region for enzymatic activity because it regulates RuBisCO conformational states. Likewise, an increase in the flexibility of the loop structure between αB and ßC, as well as Lys330 (form II) and Lys322 (form III) of loop 6, is important to increase photosynthetic efficiency. Thus, the cross-correlation dynamics analysis showed changes in the direction of movement of the secondary structures in the three isoforms. Finally, key amino acid residues related to the flexibility of the RuBisCO structure were indicated, providing important information for its enzymatic engineering.
Subject(s)
Ribulose-Bisphosphate Carboxylase/chemistry , Ribulose-Bisphosphate Carboxylase/metabolism , Sequence Analysis, Protein/methods , Models, Molecular , Molecular Dynamics Simulation , Multilevel Analysis , Photosynthesis , Phylogeny , Protein Binding , Protein Conformation , Protein Isoforms/chemistry , Protein Isoforms/metabolism , Protein Stability , Ribulose-Bisphosphate Carboxylase/genetics , Sequence AlignmentABSTRACT
Post-transcriptional modifications to coding and non-coding RNAs are unquestionably a pivotal way in which human mRNA and protein diversity can influence the different phases of a transcript's life cycle. CELF (CUGBP Elav-like family) proteins are RBPs (RNA-binding proteins) with pleiotropic capabilities in RNA processing. Their responsibilities extend from alternative splicing and transcript editing in the nucleus to mRNA stability, and translation into the cytoplasm. In this way, CELF family members have been connected to global alterations in cancer proliferation and invasion, leading to their identification as potential tumor suppressors or even oncogenes. Notably, genetic variants, alternative splicing, phosphorylation, acetylation, subcellular distribution, competition with other RBPs, and ultimately lncRNAs, miRNAs, and circRNAs all impact CELF regulation. Discoveries have emerged about the control of CELF functions, particularly via noncoding RNAs, and CELF proteins have been identified as competing, antagonizing, and regulating agents of noncoding RNA biogenesis. On the other hand, CELFs are an intriguing example through which to broaden our understanding of the RBP/noncoding RNA regulatory axis. Balancing these complex pathways in cancer is undeniably pivotal and deserves further research. This review outlines some mechanisms of CELF protein regulation and their functional consequences in cancer physiology.
Subject(s)
CELF Proteins/metabolism , RNA, Untranslated/metabolism , Alternative Splicing , Biomarkers, Tumor/metabolism , CELF Proteins/chemistry , CELF Proteins/genetics , Humans , Neoplasms/metabolism , Neoplasms/pathology , Protein Binding , Protein Isoforms/chemistry , Protein Isoforms/genetics , Protein Isoforms/metabolism , RNA, Messenger/metabolismABSTRACT
Bothrops asper is one of the most important snake species in Central America, mainly because of its medical importance in countries like Ecuador, Panama and Costa Rica, where this species causes a high number of snakebite accidents. Several basic phospholipases A2 (PLA2s) have been previously characterized from B. asper venom, but few studies have been carried out with its acidic isoforms. In addition, since snake venom is a rich source of bioactive substances, it is necessary to investigate the biotechnological potential of its components. In this context, this study aimed to carry out the biochemical characterization of PLA2 isoforms isolated from B. asper venom and to evaluate the antiparasitic potential of these toxins. The venom and key fractions were subjected to different chromatographic steps, obtaining nine PLA2s, four acidic ones (BaspAc-I, BaspAc-II, BaspAc-III and BaspAc-IV) and five basic ones (BaspB-I, BaspB-II, BaspB-III, BaspB-IV and BaspB-V). The isoelectric points of the acidic PLA2s were also determined, which presented values ranging between 4.5 and 5. The findings indicated the isolation of five unpublished isoforms, four Asp49-PLA, corresponding to the group of acidic isoforms, and one Lys49-PLA2-like. Acidic PLA2s catalyzed the degradation of all substrates evaluated; however, for the basic PLA2s, there was a preference for phosphatidylglycerol and phosphatidic acid. The antiparasitic potential of the toxins was evaluated, and the acidic PLA2s demonstrated action against the epimastigote forms of T. cruzi and promastigote forms of L. infantum, while the basic PLA2s BaspB-II and BaspB-IV showed activity against P. falciparum. The results indicated an increase of up to 10 times in antiplasmodial activity, when the Asp49-PLA2 and Lys49-PLA2 were associated with one another, denoting synergistic action between these PLA2 isoforms. These findings correspond to the first report of synergistic antiplasmodial action for svPLA2s, demonstrating that these molecules may be important targets in the search for new antiparasitic agents.
Subject(s)
Antiprotozoal Agents/pharmacology , Phospholipases A2/chemistry , Plasmodium falciparum/drug effects , Snake Venoms/metabolism , Amino Acid Sequence , Animals , Antiprotozoal Agents/chemistry , Antiprotozoal Agents/isolation & purification , Bothrops/metabolism , Drug Synergism , Isoelectric Point , Leishmania infantum/drug effects , Panama , Parasitic Sensitivity Tests , Phospholipases A2/isolation & purification , Phospholipases A2/pharmacology , Protein Isoforms/chemistry , Protein Isoforms/isolation & purification , Protein Isoforms/pharmacology , Sequence AlignmentABSTRACT
(1) Background: voltage-gated sodium channels (Navs) are integral membrane proteins that allow the sodium ion flux into the excitable cells and initiate the action potential. They comprise an α (Navα) subunit that forms the channel pore and are coupled to one or more auxiliary ß (Navß) subunits that modulate the gating to a variable extent. (2) Methods: after performing homology in silico modeling for all nine isoforms (Nav1.1α to Nav1.9α), the Navα and Navß protein-protein interaction (PPI) was analyzed chemometrically based on the primary and secondary structures as well as topological or spatial mapping. (3) Results: our findings reveal a unique isoform-specific correspondence between certain segments of the extracellular loops of the Navα subunits. Precisely, loop S5 in domain I forms part of the PPI and assists Navß1 or Navß3 on all nine mammalian isoforms. The implied molecular movements resemble macroscopic springs, all of which explains published voltage sensor effects on sodium channel fast inactivation in gating. (4) Conclusions: currently, the specific functions exerted by the Navß1 or Navß3 subunits on the modulation of Navα gating remain unknown. Our work determined functional interaction in the extracellular domains on theoretical grounds and we propose a schematic model of the gating mechanism of fast channel sodium current inactivation by educated guessing.
Subject(s)
Amino Acids/chemistry , Models, Molecular , Voltage-Gated Sodium Channels/metabolism , Amino Acid Sequence , Animals , Humans , Protein Interaction Domains and Motifs , Protein Isoforms/chemistry , Protein Isoforms/metabolism , Protein Structure, Secondary , Protein Structure, Tertiary , Sequence Alignment , Sodium/metabolism , Voltage-Gated Sodium Channels/chemistryABSTRACT
Structural knowledge of gastropod hemocyanins is scarce. To better understand their evolution and diversity we studied the hemocyanin of a caenogastropod, Pomacea canaliculata (PcH). Through a proteomic and genomic approach, we identified 4 PcH subunit isoforms, in contrast with other gastropods that usually have 2 or 3. Each isoform has the typical Keyhole limpet-type hemocyanin architecture, comprising a string of eight globular functional units (FUs). Correspondingly, genes are organized in eight FUs coding regions. All FUs in the 4 genes are encoded by more than one exon, a feature not found in non- caenogastropods. Transmission electron microscopy images of PcH showed a cylindrical structure organized in di, tri and tetra-decamers with an internal collar structure, being the di and tri-decameric cylinders the most abundant ones. PcH is N-glycosylated with high mannose and hybrid-type structures, and complex-type N-linked glycans, with absence of sialic acid. Terminal ß-N-GlcNAc residues and nonreducing terminal α-GalNAc are also present. The molecule lacks O-linked glycosylation but presents the T-antigen (Gal-ß1,3-GalNAc). Using an anti-PcH polyclonal antibody, no cross-immunoreactivity was observed against other gastropod hemocyanins, highlighting the presence of clade-specific structural differences among gastropod hemocyanins. This is, to the best of our knowledge, the first gene structure study of a Caenogastropoda hemocyanin.
Subject(s)
Gastropoda/genetics , Gastropoda/metabolism , Hemocyanins/chemistry , Hemocyanins/genetics , Animals , Evolution, Molecular , Gastropoda/chemistry , Gene Expression Profiling , Genomics , Hemocyanins/metabolism , Mass Spectrometry , Microscopy, Electron, Transmission , Models, Molecular , Protein Conformation , Protein Domains , Protein Isoforms/chemistry , Protein Isoforms/metabolism , ProteomicsABSTRACT
Jaburetox (JBTX) is an insecticidal and antifungal peptide derived from jack bean (Canavalia ensiformis) urease that has been considered a candidate for developing genetically modified crops. This study aimed to perform the risk assessment of the peptide JBTX following the general recommendations of the two-tiered, weight-of-evidence approach proposed by International Life Sciences Institute. The urease of C. ensiformis (JBU) and its isoform JBURE IIb (the JBTX parental protein) were assessed. The history of safe use revealed no hazard reports for the studied proteins. The available information shows that JBTX possesses selective activity against insects and fungi. JBTX and JBU primary amino acids sequences showed no relevant similarity to toxic, antinutritional or allergenic proteins. Additionally, JBTX and JBU were susceptible to in vitro digestibility, and JBU was also susceptible to heat treatment. The results did not identify potential risks of adverse effects and reactions associated to JBTX. However, further allergen (e.g. serum IgE binding test) and toxicity (e.g. rodent toxicity tests) experimentation can be done to gather additional safety information on JBTX, and to meet regulatory inquiries for commercial approval of transgenic cultivars expressing this peptide.
Subject(s)
Antifungal Agents/toxicity , Insecticides/toxicity , Plant Proteins/toxicity , Risk Assessment , Urease/toxicity , Animals , Antifungal Agents/chemistry , Canavalia/enzymology , Computational Biology , Fungi/drug effects , Insecta/drug effects , Insecticides/chemistry , Plant Proteins/chemistry , Protein Isoforms/chemistry , Protein Isoforms/toxicity , Proteolysis , Urease/chemistrySubject(s)
Alzheimer Disease/genetics , Alzheimer Disease/therapy , Apolipoproteins E/genetics , Cognition , Aged , Alzheimer Disease/psychology , Amyloid beta-Peptides/chemistry , Amyloid beta-Peptides/metabolism , Brain/metabolism , Brain/pathology , Colombia , Female , Gene Dosage , Humans , Mutation , Presenilin-1/genetics , Protein Isoforms/chemistry , Protein Isoforms/genetics , RiskABSTRACT
The thiazide-sensitive Na+-Cl- cotransporter (NCC) is the major pathway for salt reabsorption in the distal convoluted tubule, serves as a receptor for thiazide-type diuretics, and is involved in inherited diseases associated with abnormal blood pressure. The functional and structural characterization of NCC from different species has led us to gain insights into the structure-function relationships of the cotransporter. Here we present an overview of different studies that had described these properties. Additionally, we report the cloning and characterization of the NCC from the spiny dogfish (Squalus acanthias) kidney (sNCC). The purpose of the present study was to determine the main functional, pharmacological and regulatory properties of sNCC to make a direct comparison with other NCC orthologous. The sNCC cRNA encodes a 1033 amino acid membrane protein, when expressed in Xenopus oocytes, functions as a thiazide-sensitive Na-Cl cotransporter with NCC regulation and thiazide-inhibition properties similar to mammals, rather than to teleosts. However, the Km values for ion transport kinetics are significantly higher than those observed in the mammal species. In summary, we present a review on NCC structure-function relationships with the addition of the sNCC information in order to enrich the NCC cotransporter knowledge.
Subject(s)
Kidney/metabolism , Solute Carrier Family 12, Member 3/chemistry , Solute Carrier Family 12, Member 3/metabolism , Animals , Gitelman Syndrome/genetics , Humans , Mutation , Protein Isoforms/chemistry , Protein Isoforms/genetics , Protein Isoforms/metabolism , Solute Carrier Family 12, Member 3/genetics , Structure-Activity RelationshipABSTRACT
Mo-CBP3 is a chitin-binding 2S albumin from Moringa oleifera. This seed storage protein is resistant to thermal denaturation and shows biological activities that might be of practical use, such as antifungal properties against Candida sp., a pathogen that causes candidiasis, and against Fusarium solani, a soil fungus that can cause diseases in plants and humans. Previous work has demonstrated that Mo-CBP3 is a mixture of isoforms encoded by members of a small multigene family. Mature Mo-CBP3 is a small protein (â¼14â¯kDa), constituted by a small chain of approximately 4â¯kDa and a large chain of 8â¯kDa, which are held together by disulfide bridges. However, a more comprehensive picture on the spectrum of Mo-CBP3 isoforms which are found in mature seeds, is still lacking. In this work, genomic DNA fragments were obtained from M. oleifera leaves, cloned and completely sequenced, thus revealing new genes encoding Mo-CBP3. Moreover, mass spectrometry analysis showed that the mature protein is a complex mixture of isoforms with a remarkable number of molecular mass variants. Using computational predictions and calculations, most (â¼86%) of the experimentally determined masses were assigned to amino acid sequences deduced from DNA fragments. The results suggested that the complex mixture of Mo-CBP3 isoforms originates from proteins encoded by closely related genes, whose products undergo different combinations of distinct post-translational modifications, including cleavage at the N- and C-terminal ends of both subunits, cyclization of N-terminal Gln, as well as Pro hydroxylation, Ser/Thr phosphorylation, and Met oxidation.
Subject(s)
Moringa oleifera/chemistry , Plant Proteins/metabolism , Protein Isoforms/metabolism , Humans , Plant Proteins/chemistry , Protein Isoforms/chemistry , Protein Processing, Post-TranslationalABSTRACT
Ribosomal S6 kinase 1 (S6K1) and S6K2 proteins are effectors of the mammalian target of rapamycin complex 1 pathway, which control the process of protein synthesis in eukaryotes. S6K2 is associated with tumor progression and has a conserved C-terminus polyproline rich motif predicted to be important for S6K2 interactions. It is noteworthy that the translation of proteins containing sequential prolines has been proposed to be dependent of eukaryotic translation initiation factor 5A (eIF5A) translation factor. Therefore, we investigated the importance of polyproline-rich region of the S6K2 for its intrinsic phosphorylation activity, protein-protein interaction and eIF5A role in S6K2 translation. In HeLa cell line, replacing S6K2 polyproline by the homologous S6K1-sequence did not affect its kinase activity and the S6K2 endogenous content was maintained after eIF5A gene silencing, even after near complete depletion of eIF5A protein. Moreover, no changes in S6K2 transcript content was observed, ruling out the possibility of compensatory regulation by increasing the mRNA content. However, in the budding yeast model, we observed that S6K2 production was impaired when compared with S6K2∆Pro, after reduction of eIF5A protein content. These results suggest that although the polyproline region of S6K2 is capable of generating ribosomal stalling, the depletion of eIF5A in HeLa cells seems to be insufficient to cause an expressive decrease in the content of endogenous S6K2. Finally, coimmunoprecipitation assays revealed that the replacement of the polyproline motif of S6K2 alters its interactome and impairs its interaction with RPS6, a key modulator of ribosome activity. These results evidence the importance of S6K2 polyproline motif in the context of S6Ks function.
Subject(s)
Peptide Initiation Factors/chemistry , Peptide Initiation Factors/metabolism , Peptides/chemistry , Protein Isoforms/chemistry , Protein Isoforms/metabolism , RNA-Binding Proteins/chemistry , RNA-Binding Proteins/metabolism , Ribosomal Protein S6 Kinases/metabolism , Gene Silencing , HeLa Cells , Humans , Immunoprecipitation , Mass Spectrometry , Peptide Initiation Factors/genetics , Phosphorylation , Polymerase Chain Reaction , Protein Binding , Protein Isoforms/genetics , RNA-Binding Proteins/genetics , Ribosomal Protein S6 Kinases/genetics , Ribosomal Protein S6 Kinases, 70-kDa/genetics , Ribosomal Protein S6 Kinases, 70-kDa/metabolism , Eukaryotic Translation Initiation Factor 5AABSTRACT
Axonal transport is required for neuronal development and survival. Transport from the axon to the soma is driven by the molecular motor cytoplasmic dynein, yet it remains unclear how dynein is spatially and temporally regulated. We find that the dynein effector Hook1 mediates transport of TrkB-BDNF-signaling endosomes in primary hippocampal neurons. Hook1 comigrates with a subpopulation of Rab5 endosomes positive for TrkB and BDNF, which exhibit processive retrograde motility with faster velocities than the overall Rab5 population. Knockdown of Hook1 significantly reduced the motility of BDNF-signaling endosomes without affecting the motility of other organelles. In microfluidic chambers, Hook1 depletion resulted in a significant decrease in the flux and processivity of BDNF-Qdots along the mid-axon, an effect specific for Hook1 but not Hook3. Hook1 depletion inhibited BDNF trafficking to the soma and blocked downstream BDNF- and TrkB-dependent signaling to the nucleus. Together, these studies support a model in which differential association with cargo-specific effectors efficiently regulates dynein in neurons.
Subject(s)
Brain-Derived Neurotrophic Factor/metabolism , Cytoplasmic Dyneins/metabolism , Endosomes/metabolism , Microtubule-Associated Proteins/metabolism , Neurons/metabolism , Receptor, trkB/metabolism , Animals , Axonal Transport , Binding Sites , Brain-Derived Neurotrophic Factor/genetics , Cell Nucleus/metabolism , Cytoplasmic Dyneins/chemistry , Cytoplasmic Dyneins/genetics , Endosomes/ultrastructure , Gene Expression Regulation , Genes, Reporter , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Hippocampus/metabolism , Hippocampus/ultrastructure , Humans , Luminescent Proteins/genetics , Luminescent Proteins/metabolism , Microtubule-Associated Proteins/chemistry , Microtubule-Associated Proteins/genetics , Models, Molecular , Neurons/ultrastructure , Primary Cell Culture , Protein Binding , Protein Isoforms/chemistry , Protein Isoforms/genetics , Protein Isoforms/metabolism , Protein Structure, Secondary , Protein Transport , Rats , Rats, Sprague-Dawley , Receptor, trkB/genetics , Signal Transduction , rab5 GTP-Binding Proteins/genetics , rab5 GTP-Binding Proteins/metabolism , Red Fluorescent ProteinABSTRACT
Purine nucleoside phosphorylases (PNPs) play an important role in the blood fluke parasite Schistosoma mansoni as a key enzyme of the purine salvage pathway. Here we present the structural and kinetic characterization of a new PNP isoform from S. mansoni, SmPNP2. Thermofluorescence screening of different ligands suggested cytidine and cytosine are potential ligands. The binding of cytosine and cytidine were confirmed by isothermal titration calorimetry, with a KD of 27 µM for cytosine, and a KM of 76.3 µM for cytidine. SmPNP2 also displays catalytic activity against inosine and adenosine, making it the first described PNP with robust catalytic activity towards both pyrimidines and purines. Crystal structures of SmPNP2 with different ligands were obtained and comparison of these structures with the previously described S. mansoni PNP (SmPNP1) provided clues for the unique capacity of SmPNP2 to bind pyrimidines. When compared with the structure of SmPNP1, substitutions in the vicinity of SmPNP2 active site alter the architecture of the nucleoside base binding site thus permitting an alternative binding mode for nucleosides, with a 180° rotation from the canonical binding mode. The remarkable plasticity of this binding site enhances our understanding of the correlation between structure and nucleotide selectivity, thus suggesting new ways to analyse PNP activity.
Subject(s)
Nucleosides/metabolism , Purine-Nucleoside Phosphorylase/chemistry , Purine-Nucleoside Phosphorylase/metabolism , Schistosoma mansoni/enzymology , Schistosoma mansoni/genetics , Adenosine/metabolism , Animals , Binding Sites , Catalytic Domain , Crystallography, X-Ray , Cytidine/metabolism , Cytosine/metabolism , Helminth Proteins/chemistry , Helminth Proteins/metabolism , Inosine/metabolism , Kinetics , Models, Molecular , Mutation , Protein Conformation , Protein Isoforms/chemistry , Protein Isoforms/genetics , Protein Isoforms/metabolism , Purine-Nucleoside Phosphorylase/genetics , Schistosoma mansoni/chemistry , Substrate SpecificityABSTRACT
The Pacific white shrimp Penaeus vannamei is the most cultured shrimp species around the world. Because females grow larger than males, the culture of 'only females' is of great interest, but knowledge on sex determination and differentiation is required for producing only females. In an effort to obtain information associated with reproduction in P. vannamei, transcriptomic data from female gonads was generated, and partial sequences of a transcript were identified as Sex-lethal (Sxl). Its characterization indicated that, differently from other penaeids in which this gene has been isolated, there are six isoforms of the Sxl transcript in P. vannamei (PvanSxl 1-6). These isoforms result from alternative splicing at three splice sites (SS1, SS2, SS3). The first splice-site is unique to P. vannamei, as it has not been reported for other Arthropod species; the second splice-site (SS2) is common among crustaceans, and the third splice-site (SS3) is also unique to P. vannamei and when spliced-out, it is always together with SS2. All isoforms are expressed during embryogenesis as well as gametogenesis of both genders. The two shorter isoforms, PvanSxl-5 and PvanSxl-6, which result from the splicing of SS2 and SS3, were found mostly expressed in adult testis, but PvanSxl-6 was also expressed in oocytes during gametogenesis. During oogenesis, the second largest isoform, PvanSxl-2, which splices-out only SS1, and PvanSxl-4 that splices-out SS1 and SS2 were highly expressed. These two isoforms were also highly expressed during embryonic development. In situ hybridization allowed pinpointing more specifically the cells where the PvanSxl transcripts were expressed. During embryogenesis, hybridization was observed from the one-cell stage embryo to late gastrula. In the female gonad in previtellogenesis, hybridization occurred in the nucleus of oocytes, whereas in secondary vitellogenesis the transcript also hybridized cytoplasmic granules and cortical crypts. Finally, in situ hybridization corroborated the expression of PvanSxl also in the male gonad during spermatogenesis, mostly occurring in the cytoplasm from spermatogonia and spermatocytes.
Subject(s)
Arthropod Proteins/genetics , Penaeidae/physiology , Amino Acid Sequence , Animals , Arthropod Proteins/chemistry , Arthropod Proteins/classification , Arthropod Proteins/metabolism , Embryonic Development/genetics , Female , Gametogenesis/genetics , Gonads/metabolism , Male , Organ Specificity , Penaeidae/embryology , Penaeidae/genetics , Penaeidae/growth & development , Phylogeny , Protein Isoforms/chemistry , Protein Isoforms/genetics , Protein Isoforms/metabolism , Sequence AlignmentABSTRACT
Hybrid nanocapsules constituted of phospholipids and polysaccharides have been proposed as colloidal systems for the delivery of drugs via non-parenteral administration routes, due their capacity of high drug loading, controlled drug release and targeted delivery to the specific organ. Moreover, nanoparticles systems offer the possibility of co-encapsulation of drugs in the same drug delivery system and, consequently, the simultaneous administration of compounds. Characterization of nanoparticles properties, specifically involves quantification of the active pharmaceutical ingredients and is pivotal in the development of innovative nanomedicines. Therefore, this study has proposed and validated a new RP-HPLC-UV method for the simultaneous determination of simvastatin and coenzyme Q10 in hybrid nanoparticles systems. A reversed phase (RP) C8 column and a gradient elution of water: methanol at flow rate of 1.5â¯ml/min was used. Simvastatin (SVT), simvastatin hydroxyacid isoform (SVA) and coenzyme Q10 were identified by dual wavelength-UV detection at 238â¯nm (statins) and 275â¯nm, respectively. The proposed method was selective and linear in the range of 0.5-25⯵g/ml (r2â¯>â¯0.999), precise, with values of relative standard deviation (RSD) lower than 2%, robust and accurate (recovery values of 100⯱â¯5%), satisfying FDA guidelines. Furthermore, low detection (LOD <0.2⯵g/ml) and quantification limits (LOQ <0.4⯵g/ml) were suitable for the application of the method for the in vitro study of release kinetics of simvastatin and coenzyme Q10 co-encapsulated in lecithin/chitosan nanoparticles. The proposed method represents, to our knowledge, the only method for the simultaneous quantification of simvastatin, coenzyme Q10 and of the hydrolysed hydroxyacid isoform of the statin in nanoparticles.
Subject(s)
Chromatography, High Pressure Liquid/methods , Protein Isoforms/chemistry , Simvastatin/chemistry , Ubiquinone/analogs & derivatives , Chitosan/chemistry , Drug Delivery Systems/methods , Kinetics , Lecithins/chemistry , Nanocapsules/chemistry , Nanoparticles/chemistry , Simvastatin/analogs & derivatives , Spectrophotometry, Ultraviolet/methods , Ubiquinone/chemistryABSTRACT
The drug l-asparaginase is a cornerstone in the treatment of acute lymphoblastic leukemia (ALL). The native E. colil-asparaginase used in Brazil until recently has been manufactured by Medac/Kyowa. Then a decision was taken by the Ministry of Health in 2017 to supply the National Health System with a cheaper alternative l-asparaginase manufactured by Beijing SL Pharmaceutical, called Leuginase®. As opposed to Medac, the asparaginase that has been in use in Brazil under the trade name of Aginasa®, it was not possible to find a single entry with the terms Leuginase in the Pubmed repository. The apparent lack of clinical studies and the scarcity of safety information provided to the hospitals by the drug distributor created a debate among Brazilian pediatric oncologists about issues of safety and efficacy that culminated eventually in a court decision to halt the distribution of the new drug all over the country. Boldrini Children's Center, a non-profit pediatric oncohematology hospital, has conducted its own evaluation of Leuginase®. Mass spectrometry analyses found at least 12 different contaminating host-cell proteins (HCP) in Leuginase®. The presence of two HCP (beta-lactamase and malate dehydrogenase) was confirmed by orthogonal methodologies. The relative number of HCP peptides ranged from 19 to 37% of the total peptides identified by mass spectrometry. In vivo studies in mice injected with Leuginase® revealed a 3 times lower plasma bioavailability and the development of higher antibody titres against l-asparaginase in comparison to Aginasa®-injected animals. The decision to buy a new drug based on its price alone is not safe. Developing countries are especially vulnerable to cheaper alternatives that lack solid quality assurance.
Subject(s)
Asparaginase/immunology , Escherichia coli/enzymology , Malate Dehydrogenase/metabolism , beta-Lactamases/metabolism , Amino Acid Sequence , Animals , Anti-Bacterial Agents/pharmacology , Asparaginase/blood , Asparaginase/chemistry , Biological Availability , Child , Humans , Mice, Inbred BALB C , Protein Isoforms/chemistry , Protein Isoforms/metabolism , Proteomics , Reproducibility of Results , beta-Lactamases/chemistryABSTRACT
Many scorpion toxins that act on sodium channels (NaScTxs) have been characterized till date. These toxins may act modulating the inactivation or the activation of sodium channels and are named α- or ß-types, respectively. Some venom toxins from Tityus obscurus (Buthidae), a scorpion widely distributed in the Brazilian Amazon, have been partially characterized in previous studies; however, little information about their electrophysiological role on sodium ion channels has been published. In the present study, we describe the purification, identification and electrophysiological characterization of a NaScTx, which was first described as Tc54 and further fully sequenced and renamed To4. This toxin shows a marked ß-type effect on different sodium channel subtypes (hNav1.1-hNav1.7) at low concentrations, and has more pronounced activity on hNav1.1, hNav1.2 and hNav1.4. By comparing To4 primary structure with other Tityus ß-toxins which have already been electrophysiologically tested, it is possible to establish some key amino acid residues for the sodium channel activity. Thus, To4 is the first toxin from T. obscurus fully electrophysiologically characterized on different human sodium channel isoforms.
Subject(s)
NAV1.1 Voltage-Gated Sodium Channel/drug effects , NAV1.7 Voltage-Gated Sodium Channel/drug effects , Protein Isoforms/drug effects , Scorpion Venoms/pharmacology , Amino Acid Sequence/drug effects , Animals , Electrophysiology , Humans , NAV1.1 Voltage-Gated Sodium Channel/chemistry , NAV1.7 Voltage-Gated Sodium Channel/chemistry , Protein Isoforms/chemistry , Scorpion Venoms/chemistry , Scorpions/chemistryABSTRACT
Monocrotaline (MCT) and its pyrrole derivative, dehydromonocrotaline (DHMC), interact with molecular targets in cells of the central nervous system. DHMC presents higher toxicity than MCT indicating that its metabolism of MCT is a critical step of this alkaloid toxicity. This study sought to elucidate the metabolism and the toxicity of MCT in C6 astrocyte cell line and primary cultures of rat astrocytes by investigating metabolic enzymatic mechanisms of the cytochrome P450 (CYP) system and conjugation with glutathione. Treatment with omeprazole (OMP) (20 µM), a non-specific inducer of CYP450 induced approximately 10-fold increase in CYP1A1 activity after 2 h of treatment. Similarly, the 7-Ethoxyresorufin-O-deethylase (EROD) activity was induced by treatment with MCT (100-500 µM), indicating that the P450 CYP1A1 isoform was active and involved in the metabolism of MCT. Analysis of conjugation with glutathione showed a significant depletion of GSH after MCT (500 µM) treatment, and this was partially reversed by pretreatment with a P450 inhibitor (cimetidine 100 µM). These results suggest that not only the alkaloid MCT but, also its metabolite may deplete GSH. Rosenfeld staining showed intense vacuolization after MCT treatment, which was partially inhibited in the presence of a P450 activator. MTT test showed that association of MCT with OMP induced a reduction in cell viability in C6 and primary astrocytic cells. These results demonstrate that MCT is metabolized by astrocytic CYP1A1 to generate metabolites that can deplete GSH. Moreover, changes in the activity of the P450 enzymes interfere with the cytotoxic effects induced by the alkaloid.
Subject(s)
Astrocytes/metabolism , Cytochrome P-450 CYP1A1/metabolism , Monocrotaline/metabolism , Monocrotaline/toxicity , Animals , Cell Line , Cell Survival , Crotalaria/chemistry , Cytochrome P-450 CYP1A1/drug effects , Glutathione/drug effects , Monocrotaline/analogs & derivatives , Omeprazole/pharmacology , Protein Isoforms/chemistry , RatsABSTRACT
Hydrosoluble glycogen is the major energy storage compound in bacteria, archaea, fungi, and animal cells. In contrast, photosynthetic eukaryotes have evolved to build a highly organized semicrystalline granule of starch. Several enzymes are involved in polysaccharide synthesis, among which glycogen or starch synthase catalyze the elongation of the α-1,4-glucan chain. Ostreococcus tauri, accumulates a single starch granule and contains three starch synthase III (SSIII) isoforms, known as OsttaSSIII-A, OsttaSSIII-B and OsttaSSIII-C. After amino acids sequence analysis we found that OsttaSSIII-C lacks starch-binding domains, being 49% identical to the catalytic region of the SSIII from Arabidopsis thaliana and 32% identical to the entire Escherichia coli glycogen synthase. The recombinant, highly purified OsttaSSIII-C exhibited preference to use as a primer branched glycans (such as rabbit muscle glycogen and amylopectin), rather than amylose. Also, the enzyme displayed a high affinity toward ADP-glucose. We found a marked conservation of the amino acids located in the catalytic site, and specifically determined the role of residues R270, K275 and E352 by site-directed mutagenesis. Results show that these residues are important for OsttaSSIII-C activity, suggesting a strong similarity between the active site of the O. tauri SSIII-C isoform and other bacterial glycogen synthases.
Subject(s)
Chlorophyta/enzymology , Glycogen Synthase/chemistry , Glycogen/metabolism , Starch Synthase/chemistry , Amylose/chemistry , Animals , Arabidopsis/enzymology , Catalysis , Catalytic Domain , Escherichia coli/enzymology , Glucose/metabolism , Glycogen/chemistry , Glycogen Synthase/genetics , Glycogen Synthase/metabolism , Polysaccharides/metabolism , Protein Isoforms/chemistry , Protein Isoforms/genetics , Protein Isoforms/metabolism , Rabbits , Sequence Analysis, Protein , Starch Synthase/genetics , Starch Synthase/metabolismABSTRACT
Eukaryotic translation initiation factor 5A (eIF5A), a protein containing the amino acid residue hypusine required for its activity, is involved in a number of physiological and pathological cellular processes. In humans, several EIF5A1 transcript variants encode the canonical eIF5A1 isoform B, whereas the hitherto uncharacterized variant A is expected to code for a hypothetical eIF5A1 isoform, referred to as isoform A, which has an additional N-terminal extension. Herein, we validate the existence of eIF5A1 isoform A and its production from transcript variant A. In fact, variant A was shown to encode both eIF5A1 isoforms A and B. Mutagenic assays revealed different efficiencies in the start codons present in variant A, contributing to the production of isoform B at higher levels than isoform A. Immunoblotting and mass spectrometric analyses showed that isoform A can undergo hypusination and acetylation at specific lysine residues, as observed for isoform B. Examination of the N-terminal extension suggested that it might confer mitochondrial targeting. Correspondingly, we found that isoform A, but not isoform B, co-purified with mitochondria when the proteins were overproduced. These findings suggest that eIF5A1 isoform A has a role in mitochondrial function. J. Cell. Physiol. 231: 2682-2689, 2016. © 2016 Wiley Periodicals, Inc.
Subject(s)
Codon, Initiator/genetics , Mitochondria/metabolism , Peptide Initiation Factors/genetics , RNA-Binding Proteins/genetics , Alternative Splicing/genetics , Amino Acid Sequence , Base Sequence , Computer Simulation , HeLa Cells , Humans , Lysine/analogs & derivatives , Lysine/metabolism , Peptide Initiation Factors/chemistry , Peptide Initiation Factors/metabolism , Protein Biosynthesis , Protein Isoforms/chemistry , Protein Isoforms/genetics , Protein Isoforms/metabolism , Protein Processing, Post-Translational , RNA-Binding Proteins/chemistry , RNA-Binding Proteins/metabolism , Eukaryotic Translation Initiation Factor 5AABSTRACT
To investigate if channels with different stoichiometry are formed from P2X2 receptor isoforms during their heterologous co-expression. The two-electrode voltage-clamp technique was used to measured ATP induced currents in Xenopus laevis oocytes. We used a mutant (P2X2-2bm) because its ATP sensitivity is lower than P2X2-2b receptors, which highlights the differences with its splice variant P2X2-1a.Currents through homomeric channels had significantly different Hill coefficients. P2XR are trimeric proteins with three agonist binding sites; therefore, only two homomeric and two heteromeric stoichiometries are possible when both P2X2 isoforms are coexpressed, the heteromeric channels might be formed by: i) 2(P2X2-1a)+1(P2X2-2bm); or ii) 1(P2X2-1a)+2(P2X2-2bm). Because P2X2 channels open when two binding sites are occupied, these stoichiometries are expected to have different ATP sensitivities. Thus, co-expressing both P2X2 isoforms, two oocyte populations were distinguished based on their sensitivity to ATP and Hill coefficients. For the first population (P2X2-1a like), the ATP EC50 and the Hill coefficient were not different than those of homomeric P2X2-1a channels similarly, for the second population (P2X2-2bm like), these variables were also not different than for those of homomeric P2X2-2bm channels. Various findings indicate that homomeric channel expression is not responsible for such differences. Our observations indicate that two heteromeric channels can be assembled from two P2X2 receptor isoforms. Our data support a current model, according to which, ATP activation of two subunits can open P2X2 channel. However, PPADS appears to bind to all three subunits in order to inhibit ATP effects on P2X2 receptors.