Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 1.778
1.
Int J Mol Sci ; 25(9)2024 Apr 25.
Article En | MEDLINE | ID: mdl-38731883

The serine-threonine kinase protein kinase A (PKA) is a cyclic AMP (cAMP)-dependent intracellular protein with multiple roles in cellular biology including metabolic and transcription regulation functions. The cAMP-dependent protein kinase inhibitor ß (PKIB) is one of three known endogenous protein kinase inhibitors of PKA. The role of PKIB is not yet fully understood. Hormonal signaling is correlated with increased PKIB expression through genetic regulation, and increasing PKIB expression is associated with decreased cancer patient prognosis. Additionally, PKIB impacts cancer cell behavior through two mechanisms; the first is the nuclear modulation of transcriptional activation and the second is the regulation of oncogenic AKT signaling. The limited research into PKIB indicates the oncogenic potential of PKIB in various cancers. However, some studies suggest a role of PKIB in non-cancerous disease states. This review aims to summarize the current literature and background of PKIB regarding cancer and related issues. In particular, we will focus on cancer development and therapeutic possibilities, which are of paramount interest in PKIB oncology research.


Neoplasms , Animals , Humans , Antineoplastic Agents/therapeutic use , Antineoplastic Agents/pharmacology , Cyclic AMP-Dependent Protein Kinases/metabolism , Gene Expression Regulation, Neoplastic/drug effects , Molecular Targeted Therapy/methods , Neoplasms/drug therapy , Neoplasms/metabolism , Neoplasms/genetics , Protein Kinase Inhibitors/metabolism , Signal Transduction/drug effects , Intracellular Signaling Peptides and Proteins/metabolism
2.
Elife ; 132024 May 14.
Article En | MEDLINE | ID: mdl-38742856

The type II class of RAF inhibitors currently in clinical trials paradoxically activate BRAF at subsaturating concentrations. Activation is mediated by induction of BRAF dimers, but why activation rather than inhibition occurs remains unclear. Using biophysical methods tracking BRAF dimerization and conformation, we built an allosteric model of inhibitor-induced dimerization that resolves the allosteric contributions of inhibitor binding to the two active sites of the dimer, revealing key differences between type I and type II RAF inhibitors. For type II inhibitors the allosteric coupling between inhibitor binding and BRAF dimerization is distributed asymmetrically across the two dimer binding sites, with binding to the first site dominating the allostery. This asymmetry results in efficient and selective induction of dimers with one inhibited and one catalytically active subunit. Our allosteric models quantitatively account for paradoxical activation data measured for 11 RAF inhibitors. Unlike type II inhibitors, type I inhibitors lack allosteric asymmetry and do not activate BRAF homodimers. Finally, NMR data reveal that BRAF homodimers are dynamically asymmetric with only one of the subunits locked in the active αC-in state. This provides a structural mechanism for how binding of only a single αC-in inhibitor molecule can induce potent BRAF dimerization and activation.


Protein Kinase Inhibitors , Protein Multimerization , Proto-Oncogene Proteins B-raf , Proto-Oncogene Proteins B-raf/metabolism , Proto-Oncogene Proteins B-raf/antagonists & inhibitors , Proto-Oncogene Proteins B-raf/chemistry , Allosteric Regulation/drug effects , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/metabolism , Protein Multimerization/drug effects , Humans , Protein Conformation , Protein Binding , Models, Molecular
3.
J Chem Inf Model ; 64(10): 4009-4020, 2024 May 27.
Article En | MEDLINE | ID: mdl-38751014

Drug discovery pipelines nowadays rely on machine learning models to explore and evaluate large chemical spaces. While including 3D structural information is considered beneficial, structural models are hindered by the availability of protein-ligand complex structures. Exemplified for kinase drug discovery, we address this issue by generating kinase-ligand complex data using template docking for the kinase compound subset of available ChEMBL assay data. To evaluate the benefit of the created complex data, we use it to train a structure-based E(3)-invariant graph neural network. Our evaluation shows that binding affinities can be predicted with significantly higher precision by models that take synthetic binding poses into account compared to ligand- or drug-target interaction models alone.


Machine Learning , Molecular Docking Simulation , Ligands , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/metabolism , Neural Networks, Computer , Protein Kinases/metabolism , Protein Kinases/chemistry , Drug Discovery/methods , Protein Binding , Protein Conformation , Phosphotransferases/metabolism , Phosphotransferases/chemistry , Phosphotransferases/antagonists & inhibitors
4.
Chem Biol Drug Des ; 103(5): e14534, 2024 May.
Article En | MEDLINE | ID: mdl-38697951

Epidermal growth factor receptor (EGFR) and vascular endothelial growth factor 2 (VEGFR2) are known as valid targets for cancer therapy. Overexpression of EGFR induces uncontrolled cell proliferation and VEGF expression triggering angiogenesis via VEGFR2 signaling. On the other hand, VEGF expression independent of EGFR signaling is already known as one of the mechanisms of resistance to anti-EGFR therapy. Therefore, drugs that act as dual inhibitors of EGFR and VEGFR2 can be a solution to the problem of drug resistance and increase the effectiveness of therapy. In this review, we summarize the relationship between EGFR and VEGFR2 signal transduction in promoting cancer growth and how their kinase domain structures can affect the selectivity of an inhibitor as the basis for designing dual inhibitors. In addition, several recent studies on the development of dual EGFR and VEGFR2 inhibitors involving docking simulations were highlighted in this paper to provide some references such as pharmacophore features of inhibitors and key residues for further research, especially in computer-aided drug design.


Antineoplastic Agents , ErbB Receptors , Neoplasms , Protein Kinase Inhibitors , Vascular Endothelial Growth Factor Receptor-2 , ErbB Receptors/antagonists & inhibitors , ErbB Receptors/metabolism , ErbB Receptors/chemistry , Vascular Endothelial Growth Factor Receptor-2/antagonists & inhibitors , Vascular Endothelial Growth Factor Receptor-2/metabolism , Vascular Endothelial Growth Factor Receptor-2/chemistry , Humans , Neoplasms/drug therapy , Neoplasms/metabolism , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/metabolism , Protein Kinase Inhibitors/therapeutic use , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Signal Transduction/drug effects , Molecular Docking Simulation , Drug Design
5.
J Med Chem ; 67(9): 7245-7259, 2024 May 09.
Article En | MEDLINE | ID: mdl-38635563

Cofactor mimicry represents an attractive strategy for the development of enzyme inhibitors but can lead to off-target effects due to the evolutionary conservation of binding sites across the proteome. Here, we uncover the ADP-ribose (ADPr) hydrolase NUDT5 as an unexpected, noncovalent, off-target of clinical BTK inhibitors. Using a combination of biochemical, biophysical, and intact cell NanoBRET assays as well as X-ray crystallography, we confirm catalytic inhibition and cellular target engagement of NUDT5 and reveal an unusual binding mode that is independent of the reactive acrylamide warhead. Further investigation of the prototypical BTK inhibitor ibrutinib also revealed potent inhibition of the largely unstudied NUDIX hydrolase family member NUDT14. By exploring structure-activity relationships (SARs) around the core scaffold, we identify a potent, noncovalent, and cell-active dual NUDT5/14 inhibitor. Cocrystallization experiments yielded new insights into the NUDT14 hydrolase active site architecture and inhibitor binding, thus providing a basis for future chemical probe design.


Agammaglobulinaemia Tyrosine Kinase , Pyrophosphatases , Humans , Pyrophosphatases/antagonists & inhibitors , Pyrophosphatases/metabolism , Agammaglobulinaemia Tyrosine Kinase/antagonists & inhibitors , Agammaglobulinaemia Tyrosine Kinase/metabolism , Structure-Activity Relationship , Crystallography, X-Ray , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/metabolism , Protein Kinase Inhibitors/chemical synthesis , Pyrazoles/chemistry , Pyrazoles/pharmacology , Pyrazoles/chemical synthesis , Pyrazoles/metabolism , Piperidines/pharmacology , Piperidines/chemistry , Piperidines/metabolism , Piperidines/chemical synthesis , Drug Discovery , Pyrimidines/chemistry , Pyrimidines/pharmacology , Pyrimidines/chemical synthesis , Pyrimidines/metabolism , Adenine/analogs & derivatives , Adenine/chemistry , Adenine/pharmacology , Adenine/metabolism , Models, Molecular , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/chemical synthesis
6.
Int J Mol Sci ; 25(6)2024 Mar 15.
Article En | MEDLINE | ID: mdl-38542325

The cancer stem cell (CSC) hypothesis postulates that heterogeneous human cancers harbor a population of stem-like cells which are resistant to cytotoxic therapies, thus providing a reservoir of relapse following conventional therapies like chemotherapy and radiation (RT). CSCs have been observed in multiple human cancers, and their presence has been correlated with worse clinical outcomes. Here, we sought to evaluate the impact of drug dosing of the multi-tyrosine kinase inhibitor, sorafenib, on CSC and non-CSCs in soft tissue sarcoma (STS) models, hypothesizing differential effects of sorafenib based on dose and target cell population. In vitro, human cancer cell lines and primary STS from surgical specimens were exposed to escalating doses of sorafenib to determine cell viability and expression of CSC marker aldehyde dehydrogenase (ALDH). In vivo, ALDHbright CSCs were isolated, exposed to sorafenib, and xenograft growth and survival analyses were performed. We observed that sarcoma CSCs appear to paradoxically respond to the tyrosine kinase inhibitor sorafenib at low doses with increased proliferation and stem-like function of CSCs, whereas anti-viability effects dominated at higher doses. Importantly, STS patients receiving neoadjuvant sorafenib and RT on a clinical trial (NCT00864032) showed increased CSCs post therapy, and higher ALDH scores post therapy were associated with worse metastasis-free survival. These data suggest that low-dose sorafenib may promote the CSC phenotype in STS with clinically significant effects, including increased tumor growth and higher rates of metastasis formation in sarcoma patients.


Sarcoma , Humans , Sorafenib/pharmacology , Sorafenib/therapeutic use , Sorafenib/metabolism , Aldehyde Dehydrogenase/metabolism , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Protein Kinase Inhibitors/metabolism , Sarcoma/pathology , Neoplastic Stem Cells/metabolism , Cell Line, Tumor
7.
J Med Chem ; 67(4): 2438-2465, 2024 Feb 22.
Article En | MEDLINE | ID: mdl-38321747

Bruton's tyrosine kinase (BTK) is an attractive target in inflammatory and autoimmune diseases. However, the effectiveness of BTK inhibitors is limited by side effects and drug resistance. In this study, we report the development of novel BTK proteolysis targeting chimeras (PROTACs) with different classes of BTK-targeting ligands (e.g., spebrutinib) other than ibrutinib. Compound 23 was identified as a potent and fast BTK PROTAC degrader, exhibiting outstanding degradation potency and efficiency in Mino cells (DC50, 4 h = 1.29 ± 0.3 nM, t1/2, 20 nM = 0.59 ± 0.20 h). Furthermore, compound 23 forms a stable ternary complex, as confirmed by the HTRF assay. Notably, 23 down-regulated the BTK-PLCγ2-Ca2+-NFATc1 signaling pathway activated by RANKL, thus inhibiting osteoclastogenesis and attenuating alveolar bone resorption in a mouse periodontitis model. These findings suggest that compound 23 is a potent and promising candidate for osteoclast-related inflammatory diseases, expanding the potential of BTK PROTACs.


Osteoclasts , Proteolysis Targeting Chimera , Mice , Animals , Agammaglobulinaemia Tyrosine Kinase , Osteoclasts/metabolism , Signal Transduction , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Protein Kinase Inhibitors/metabolism
8.
Int J Biol Macromol ; 259(Pt 1): 129074, 2024 Feb.
Article En | MEDLINE | ID: mdl-38163507

The overexpression of dual-specificity tyrosine phosphorylation-regulated kinase 1A (DYRK1A), commonly observed in neurodegenerative diseases like Alzheimer's disease (AD) and Down syndrome (DS), can induce the formation of neurofibrillary tangles (NFTs) and amyloid plaques. Hence, designing a selective DYRK1A inhibitor would result in a promising small molecule for treating neurodegenerative diseases. Developing selective inhibitors for DYRK1A has been a difficult challenge due to the highly preserved ATP-binding site of protein kinases. In this study, we employed a structure-based virtual screening (SBVS) campaign targeting DYRK1A from a database containing 1.6 million compounds. Enzymatic assays were utilized to verify inhibitory properties, confirming that Y020-3945 and Y020-3957 showed inhibitory activity towards DYRK1A. In particular, the compounds exhibited high selectivity for DYRK1A over a panel of 120 kinases, reduced the phosphorylation of tau, and reversed the tubulin polymerization for microtubule stability. Additionally, treatment with the compounds significantly reduced the secretion of inflammatory cytokines IL-6 and TNF-α activated by DYRK1A-assisted NFTs and Aß oligomers. These identified inhibitors possess promising therapeutic potential for conditions associated with DYRK1A in neurodegenerative diseases. The results showed that Y020-3945 and Y020-3957 demonstrated structural novelty compared to known DYRK1A inhibitors, making them a valuable addition to developing potential treatments for neurodegenerative diseases.


Alzheimer Disease , Neurodegenerative Diseases , Humans , Phosphorylation , Protein-Tyrosine Kinases/metabolism , Protein Serine-Threonine Kinases/metabolism , Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , Neurodegenerative Diseases/metabolism , Microtubules/metabolism , Tyrosine/metabolism , tau Proteins/metabolism , Protein Kinase Inhibitors/metabolism
9.
J Oral Biosci ; 66(1): 61-67, 2024 Mar.
Article En | MEDLINE | ID: mdl-38110177

OBJECTIVES: Our study aimed to clarify the role of mitogen-activated protein kinases (MAPKs) in transforming growth factor (TGF)-ß1-stimulated mineralization in the human osteoblast-like MG63 cells. METHODS: The viability of MG63 cells under TGF-ß1 stimulation was assessed by MTS assay. Western blotting determined TGF-ß1-mediated activation of extracellular signal-related protein kinase (ERK), p38, and c-Jun amino-terminal kinase (JNK). Mineralization-related gene expression was examined by quantitative real-time PCR, and mineral deposition levels were evaluated by alizarin red S staining. RESULTS: TGF-ß1 had no effect on MG63 cell proliferation. Activation of p38 was observed at 3 h post TGF-ß1 stimulation. Moreover, JNK phosphorylation was upregulated by TGF-ß1 from 1 to 6 h post stimulation, but had no activation on ERK phosphorylation throughout the experimental period. Treatment with JNK inhibitor diminished the alizarin red S-stained area in a dose-dependent manner. Mineral deposition was unaffected by MEK inhibitor, whereas p38 inhibitor increased the red-stained area. Gene expression levels of ALP and BSP were significantly decreased under treatment with JNK inhibitor and p38 inhibitor. The MEK inhibitor had no effect on the TGF-ß1-mediated upregulation of ALP and BSP. Although all three inhibitors suppressed expression of COL I, none were found to stimulate expression of OCN. CONCLUSIONS: Human osteoblast-like MG63 cells maturation and mineralization are induced through JNK activation of MAPK signaling in response to TGF-ß1.


Anthraquinones , MAP Kinase Signaling System , Transforming Growth Factor beta1 , Humans , Transforming Growth Factor beta1/pharmacology , Transforming Growth Factor beta1/metabolism , MAP Kinase Signaling System/physiology , Transforming Growth Factor beta/metabolism , Transforming Growth Factor beta/pharmacology , p38 Mitogen-Activated Protein Kinases/metabolism , p38 Mitogen-Activated Protein Kinases/pharmacology , Extracellular Signal-Regulated MAP Kinases/metabolism , Extracellular Signal-Regulated MAP Kinases/pharmacology , Protein Kinase Inhibitors/metabolism , Protein Kinase Inhibitors/pharmacology , Mitogen-Activated Protein Kinase Kinases/metabolism , Mitogen-Activated Protein Kinase Kinases/pharmacology , Osteoblasts/metabolism , Minerals/metabolism , Minerals/pharmacology
10.
Int J Mol Sci ; 24(23)2023 Nov 23.
Article En | MEDLINE | ID: mdl-38068992

Chronic myeloid leukemia (CML) is a clonal myeloproliferative disease characterized by the presence of the BCR-ABL fusion gene, which results from the Philadelphia chromosome. Since the introduction of tyrosine kinase inhibitors (TKI) such as imatinib mesylate (IM), the clinical outcomes for patients with CML have improved significantly. However, IM resistance remains the major clinical challenge for many patients, underlining the need to develop new drugs for the treatment of CML. The basis of CML cell resistance to this drug is unclear, but the appearance of additional genetic alterations in leukemic stem cells (LSCs) is the most common cause of patient relapse. However, several groups have identified a rare subpopulation of CD34+ stem cells in adult patients that is present mainly in the bone marrow and is more immature and pluripotent; these cells are also known as very small embryonic-like stem cells (VSELs). The uncontrolled proliferation and a compromised differentiation possibly initiate their transformation to leukemic VSELs (LVSELs). Their nature and possible involvement in carcinogenesis suggest that they cannot be completely eradicated with IM treatment. In this study, we demonstrated that cells from CML patients with the VSELs phenotype (LVSELs) similarly harbor the fusion protein BCR-ABL and are less sensitive to apoptosis than leukemic HSCs after IM treatment. Thus, IM induces apoptosis and reduces the proliferation and mRNA expression of Ki67 more efficiently in LHSCs than in leukemic LVSELs. Finally, we found that the expression levels of some miRNAs are affected in LVSELs. In addition to the tumor suppressor miR-451, both miR-126 and miR-21, known to be responsible for LSC leukemia-initiating capacity, quiescence, and growth, appear to be involved in IM insensitivity of LVSELs CML cell population. Targeting IM-resistant CML leukemic stem cells by acting via the miRNA pathways may represent a promising therapeutic option.


Leukemia, Myelogenous, Chronic, BCR-ABL Positive , MicroRNAs , Adult , Humans , Imatinib Mesylate/pharmacology , Imatinib Mesylate/therapeutic use , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Protein Kinase Inhibitors/metabolism , Drug Resistance, Neoplasm/genetics , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology , Fusion Proteins, bcr-abl/genetics , Fusion Proteins, bcr-abl/metabolism , MicroRNAs/metabolism , Apoptosis , Stem Cells/metabolism , Neoplastic Stem Cells/metabolism
11.
ChemistryOpen ; 12(10): e202300066, 2023 10.
Article En | MEDLINE | ID: mdl-37803417

A computer-assisted drug design (CADD) approach was utilized to design a new acetamido-N-(para-fluorophenyl)benzamide) derivative of the naturally occurring alkaloid, theobromine, (T-1-APFPB), following the pharmacophoric features of VEGFR-2 inhibitors. The stability and reactivity of T-1-AFPB were assessed through density functional theory (DFT) calculations. Molecular docking assessments showed T-1-AFPB's potential to bind with and inhibit VEGFR-2. The precise binding of T-1-AFPB against VEGFR-2 with optimal energy was further confirmed through several molecular dynamics (MD) simulations, PLIP, MM-GBSA, and PCA studies. Then, T-1-AFPB (4-(2-(3,7-Dimethyl-2,6-dioxo-2,3,6,7-tetrahydro-1H-purin-1-yl)acetamido)-N-(4-fluorophenyl)benzamide) was semi-synthesized and the in vitro assays showed its potential to inhibit VEGFR-2 with an IC50 value of 69 nM (sorafenib's IC50 was 56 nM) and to inhibit the growth of HepG2 and MCF-7 cancer cell lines with IC50 values of 2.24±0.02 and 3.26±0.02 µM, respectively. Moreover, T-1-AFPB displayed very high selectivity indices against normal Vero cell lines. Furthermore, T-1-AFPB induced early (from 0.72 to 19.12) and late (from 0.13 to 6.37) apoptosis in HepG2 cell lines. In conclusion, the combined computational and experimental approaches demonstrated the efficacy and safety of T-1-APFPB providing it as a promising lead VEGFR-2 inhibitor for further development aiming at cancer therapy.


Theobromine , Vascular Endothelial Growth Factor Receptor-2 , Humans , Molecular Structure , Structure-Activity Relationship , Molecular Docking Simulation , Vascular Endothelial Growth Factor Receptor-2/chemistry , Vascular Endothelial Growth Factor Receptor-2/metabolism , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/metabolism , MCF-7 Cells , Benzamides
12.
Curr Top Med Chem ; 23(28): 2609-2620, 2023.
Article En | MEDLINE | ID: mdl-37861005

Bruton tyrosine kinase (BTK) is an important protein of the tyrosine kinase family and plays a key role in signal transduction, proliferation, migration, and survival in B lymphocytes. The inhibition of BTK is a promising therapy for various autoimmune diseases (AD) involving abnormal B cell function, such as rheumatoid arthritis (RA), multiple sclerosis (MS), and systemic lupus erythematosus (SLE). This article briefly summarizes the role of BTK in the BCR signaling pathway, the development process of BTK inhibitors, and especially the latest progress of their clinical trials for the treatment of AD.


Arthritis, Rheumatoid , Autoimmune Diseases , Humans , Autoimmune Diseases/metabolism , Protein-Tyrosine Kinases , Arthritis, Rheumatoid/drug therapy , B-Lymphocytes , Signal Transduction , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Protein Kinase Inhibitors/metabolism
13.
Chem Res Toxicol ; 36(8): 1427-1438, 2023 08 21.
Article En | MEDLINE | ID: mdl-37531179

Pexidartinib (PEX, TURALIO), a selective and potent inhibitor of the macrophage colony-stimulating factor-1 receptor, has been approved for the treatment of tenosynovial giant cell tumor. However, frequent and severe adverse effects have been reported in the clinic, resulting in a boxed warning on PEX for its risk of liver injury. The mechanisms underlying PEX-related hepatotoxicity, particularly metabolism-related toxicity, remain unknown. In the current study, the metabolic activation of PEX was investigated in human/mouse liver microsomes (HLM/MLM) and primary human hepatocytes (PHH) using glutathione (GSH) and methoxyamine (NH2OMe) as trapping reagents. A total of 11 PEX-GSH and 7 PEX-NH2OMe adducts were identified in HLM/MLM using an LC-MS-based metabolomics approach. Additionally, 4 PEX-GSH adducts were detected in the PHH. CYP3A4 and CYP3A5 were identified as the primary enzymes responsible for the formation of these adducts using recombinant human P450s and CYP3A chemical inhibitor ketoconazole. Overall, our studies suggested that PEX metabolism can produce reactive metabolites mediated by CYP3A, and the association of the reactive metabolites with PEX hepatotoxicity needs to be further studied.


Chemical and Drug Induced Liver Injury , Cytochrome P-450 CYP3A , Mice , Humans , Animals , Cytochrome P-450 CYP3A/metabolism , Chromatography, Liquid , Tandem Mass Spectrometry , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/metabolism , Cytochrome P-450 CYP3A Inhibitors/pharmacology , Microsomes, Liver/metabolism , Metabolomics , Chemical and Drug Induced Liver Injury/metabolism , Glutathione/metabolism
14.
Eur J Med Chem ; 258: 115543, 2023 Oct 05.
Article En | MEDLINE | ID: mdl-37329712

PI3K-Akt-mTOR pathway is a highly activated signal transduction pathway in human hematological malignancies and has been validated as a promising target for acute myeloid leukemia (AML) therapy. Herein, we designed and synthesized a series of 7-azaindazole derivatives as potent PI3K/mTOR dual inhibitors based on our previously reported FD223. Among them, compound FD274 showed excellent dual PI3K/mTOR inhibitory activity, with IC50 values against PI3Kα/ß/γ/δ and mTOR of 0.65 nM, 1.57 nM, 0.65 nM, 0.42 nM, and 2.03 nM, respectively, superior to compound FD223. Compared to the positive drug Dactolisib, FD274 exhibited significant anti-proliferation of AML cell lines (HL-60 and MOLM-16 with IC50 values of 0.092 µM and 0.084 µM, respectively) in vitro. Furthermore, FD274 demonstrated dose-dependent inhibition of tumor growth in the HL-60 xenograft model in vivo, with 91% inhibition of tumor growth at an intraperitoneal injection dose of 10 mg/kg and no observable toxicity. All of these results suggest that FD274 has potential for further development as a promising PI3K/mTOR targeted anti-AML drug candidate.


Antineoplastic Agents , Leukemia, Myeloid, Acute , Humans , Phosphatidylinositol 3-Kinases/metabolism , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , TOR Serine-Threonine Kinases/metabolism , Phosphoinositide-3 Kinase Inhibitors/pharmacology , Phosphoinositide-3 Kinase Inhibitors/therapeutic use , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/pathology , Cell Line, Tumor , Cell Proliferation , Protein Kinase Inhibitors/metabolism
15.
Bioorg Med Chem ; 90: 117367, 2023 07 15.
Article En | MEDLINE | ID: mdl-37348260

Despite considerable recent progress in therapeutic strategies, cancer still remains one of the leading causes of death. Molecularly targeted therapies, in particular those focused on blocking receptor tyrosine kinases have produced promising outcomes in recent years. In this study, a new series of spiro[indoline-3,2'-quinazoline]-2,4'(3'H)-dione derivatives (5a-5l) were synthesized and evaluated as potential kinase inhibitors with anticancereffects. The anti-proliferative activity was measured by MTT assay, while the cell cycle was studied using flow cytometry. Moreover, kinase inhibition profiles of the most promising compounds were assessed against a panel of 25 oncogenic kinases. Compounds 5f,5g,5i, and 5jshowed anti-proliferative effect against EBC-1, A549, and HT-29 solid tumor models in addition to leukemia cell line K562. In particular, compound 5f, bearing 4-methylphenyl pendant on the isatin ring displayed considerable potency with IC50 values of 2.4 to 13.4 µM against cancer cells. The most potent derivatives also altered the distribution of cells in different phases of cell cycle and increased the sub-G1 phase cells in K562 cells. Moreover, kinase inhibition assays identified FLT3 kinase was as the primary targetof these derivatives. Compound 5f at 25 µM concentration showed inhibitory activities of 55% and 62% against wild-type FLT3 and its mutant, D835Y, respectively. Finally, the docking and simulation studies revealed the important interactions of compound 5f with wild type and mutant FLT3. The results of this study showed that some novel spiroindoline quinazolinedione compounds could be potential candidates for further development as novel targeted anticancer agents.


Antineoplastic Agents , Leukemia , Humans , Cell Line, Tumor , Quinazolinones/pharmacology , Antineoplastic Agents/pharmacology , Antineoplastic Agents/metabolism , Cell Cycle , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/metabolism , Cell Proliferation , Apoptosis , Drug Screening Assays, Antitumor , Structure-Activity Relationship , Molecular Docking Simulation , fms-Like Tyrosine Kinase 3/metabolism
16.
Cells ; 12(9)2023 05 05.
Article En | MEDLINE | ID: mdl-37174717

Management of advanced melanoma remains challenging, with most BRAF (B-Raf proto-oncogene, serine/threonine kinase)-mutated metastatic patients relapsing within a few months upon MAPK inhibitors treatment. Modulation of tumor-derived extracellular vesicle (EVs) cargo with enrichment of antitumoral molecules is a promising strategy to impair tumor progression and increase treatment response. Herein, we report that restored expression of miR-195-5p, down-regulated in melanoma favoring drug resistance, increases the release of EVs enriched in the tumor suppressor miRNAs, miR-195-5p, miR-152-3p, and miR-202-3p. Incorporating these EVs by bystander tumor cells resulted in decreased proliferation and viability, accompanied by a reduction in CCND1 and YAP1 mRNA levels. Upon treatment with MAPK inhibitors, miR-195 EVs significantly decreased BCL2-L1 protein levels and increased cell death ratio and treatment efficacy. Additionally, EVs exogenously loaded with miR-195-5p by electroporation reduced tumor volume in vivo and impaired engraftment and growth of xenografts implanted with melanoma cells exposed to MAPK inhibitors. Our study shows that miR-195-5p antitumoral activity can be spread to bystander cells through EVs, improving melanoma response to targeted therapy and revealing a promising EV-based strategy to increase clinical response in patients harboring BRAF mutations.


Extracellular Vesicles , Melanoma , MicroRNAs , Humans , Proto-Oncogene Proteins B-raf , Neoplasm Recurrence, Local/metabolism , Melanoma/drug therapy , Melanoma/genetics , Melanoma/pathology , MicroRNAs/metabolism , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Protein Kinase Inhibitors/metabolism , Extracellular Vesicles/metabolism
17.
Chem Biodivers ; 20(6): e202300301, 2023 Jun.
Article En | MEDLINE | ID: mdl-37097072

Two new indole diketopiperazine alkaloids (IDAs), (+)19-epi-sclerotiamide (1) and (-)19-epi-sclerotiamide (2), along with 13 known analogs (3-15), were isolated from a soft coral-associated epiphytic fungus Aspergillus versicolor CGF 9-1-2. The structures of two new compounds were established based on the combination of HR-ESI-MS, 1D and 2D NMR spectroscopy, optical rotation measurements and quantum chemical 13 C-NMR, the absolute configurations were determined by experimental and electronic circular dichroism (ECD) calculations. The results of molecular docking showed that all the compounds had a good binding with TDP1, TDP2, TOP1, TOP2, Ache, NLRP3, EGFR, EGFR L858R, EGFR T790M and EGFR T790/L858. Biological evaluation of compounds 3, 6, 8, 11 showed that 3 exerted a strong inhibitory effect on TDP2 with a rate of 81.72 %.


Agaricales , Anthozoa , Lung Neoplasms , Animals , Diketopiperazines/pharmacology , Diketopiperazines/chemistry , Molecular Docking Simulation , ErbB Receptors/metabolism , Mutation , Protein Kinase Inhibitors/metabolism , Aspergillus/chemistry , Indole Alkaloids/chemistry , Anthozoa/metabolism , Molecular Structure
18.
Drug Metab Pharmacokinet ; 49: 100483, 2023 Apr.
Article En | MEDLINE | ID: mdl-36724604

Breast cancer resistance protein (BCRP) is expressed on hepatic bile canalicular membranes; however, its impact on substrate drug disposition is limited. This study proposes an in vivo knockdown approach using adeno-associated virus encoding short hairpin RNA (shRNA) targeting the bcrp gene (AAV-shBcrp) to clarify the substrate, the overall disposition of which is largely governed by hepatic Bcrp. The disposition of the tyrosine kinase inhibitor, regorafenib, was first examined in bcrp gene knockout (Bcrp-/-) and wild-type (WT) mice, as it was sequentially converted to active metabolites M - 2 and M - 5, which are BCRP substrates. After oral administration of regorafenib, plasma and liver concentrations of M - 5, but not regorafenib, were higher in Bcrp-/- than WT mice. To directly examine the role of hepatic Bcrp in M - 5 disposition, M - 5 was intravenously injected into mice three weeks after the intravenous injection of AAV-shBcrp, when mRNA of Bcrp in the liver (but not the small intestine) was downregulated. AAV-shBcrp-treated mice showed higher M - 5 concentration in plasma and liver, but lower biliary excretion than the control mice, indicating the fundamental role of hepatic Bcrp in M - 5 disposition. This is the first application of AAV-knockdown strategy to clarify the pharmacokinetic role of xenobiotic efflux transporters in the liver.


Dependovirus , Mice , Animals , ATP Binding Cassette Transporter, Subfamily G, Member 2/metabolism , Dependovirus/genetics , Dependovirus/metabolism , ATP-Binding Cassette Transporters/genetics , Neoplasm Proteins/metabolism , Liver/metabolism , Protein Kinase Inhibitors/metabolism , RNA, Small Interfering/metabolism , Mice, Knockout
19.
Biochem Biophys Res Commun ; 649: 32-38, 2023 03 15.
Article En | MEDLINE | ID: mdl-36739697

The small GTPase Rho and its effector Rho-kinase (ROCK) are activated in the diabetic kidney, and recent studies decade have demonstrated that ROCK signaling is an integral pathway in the progression of diabetic kidney disease. We previously identified the distinct role of ROCK1, an isoform of ROCK, in fatty acid metabolism in diabetic glomeruli. However, the effect of pharmacological intervention for ROCK1 is not clear. In the present study, we show that the inhibition of ROCK1 by Y-27632 and fasudil restores fatty acid oxidation in the glomeruli. Mechanistically, these compounds optimize fatty acid utilization and redox balance in mesangial cells via AMPK phosphorylation and the subsequent induction of PGC-1α. A further in vivo study showed that the inhibition of ROCK1 suppressed the downregulation of the fatty acid oxidation-related gene expression in glomeruli and mitochondrial fragmentation in the mesangial cells of db/db mice. These observations indicate that ROCK1 could be a promising therapeutic target for diabetic kidney disease through a mechanism that improves glomerular fatty acid metabolism.


Diabetes Mellitus , Diabetic Nephropathies , Mice , Animals , Diabetic Nephropathies/drug therapy , Diabetic Nephropathies/metabolism , rho-Associated Kinases/metabolism , Kidney Glomerulus/metabolism , Kidney/metabolism , Signal Transduction , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Protein Kinase Inhibitors/metabolism , 1-(5-Isoquinolinesulfonyl)-2-Methylpiperazine/pharmacology , 1-(5-Isoquinolinesulfonyl)-2-Methylpiperazine/therapeutic use , Diabetes Mellitus/metabolism
20.
J Enzyme Inhib Med Chem ; 38(1): 2152810, 2023 Dec.
Article En | MEDLINE | ID: mdl-36629075

New quinoline-pyridine hybrids were designed and synthesised as PIM-1/2 kinase inhibitors. Compounds 5b, 5c, 6e, 13a, 13c, and 14a showed in-vitro low cytotoxicity against normal human lung fibroblast Wi-38 cell line and potent in-vitro anticancer activity against myeloid leukaemia (NFS-60), liver (HepG-2), prostate (PC-3), and colon (Caco-2) cancer cell lines. In addition, 6e, 13a, and 13c significantly induced apoptosis with percentage more than 66%. Moreover, 6e, 13a, and 13c significantly induced caspase 3/7 activation in HepG-2 cell line. Furthermore, 5c, 6e, and 14a showed potent in-vitro PIM-1 kinase inhibitory activity. While, 5b showed potent in-vitro PIM-2 kinase inhibitory activity. Kinetic studies using Lineweaver-Burk double-reciprocal plot indicated that 5b, 5c, 6e, and 14a behaved as competitive inhibitors while 13a behaved as both competitive and non-competitive inhibitor of PIM-1 kinase enzyme. Molecular docking studies indicated that, in-silico affinity came in coherence with the observed in-vitro inhibitory activities against PIM-1/2 kinases.


Antineoplastic Agents , Quinolines , Male , Humans , Antineoplastic Agents/pharmacology , Proto-Oncogene Proteins c-pim-1/metabolism , Proto-Oncogene Proteins c-pim-1/pharmacology , Caspase 3/metabolism , Molecular Docking Simulation , Cell Line, Tumor , Kinetics , Caco-2 Cells , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/metabolism , Pyridines/pharmacology , Apoptosis , Quinolines/pharmacology , Cell Proliferation , Drug Screening Assays, Antitumor
...