Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters











Publication year range
1.
J Bioenerg Biomembr ; 55(1): 1-13, 2023 02.
Article in English | MEDLINE | ID: mdl-36494592

ABSTRACT

Mitochondrial dysfunction plays a central role in Parkinson's disease (PD) and can be triggered by xenobiotics and mutations in mitochondrial quality control genes, such as the PINK1 gene. Caffeine has been proposed as a secondary treatment to relieve PD symptoms mainly by its antagonistic effects on adenosine receptors (ARs). Nonetheless, the potential protective effects of caffeine on mitochondrial dysfunction could be a strategy in PD treatment but need further investigation. In this study, we used high-resolution respirometry (HRR) to test caffeine's effects on mitochondrial dysfunction in PINK1B9-null mutants of Drosophila melanogaster. PINK1 loss-of-function induced mitochondrial dysfunction in PINK1B9-null flies observed by a decrease in O2 flux related to oxidative phosphorylation (OXPHOS) and electron transfer system (ETS), respiratory control ratio (RCR) and ATP synthesis compared to control flies. Caffeine treatment improved OXPHOS and ETS in PINKB9-null mutant flies, increasing the mitochondrial O2 flux compared to untreated PINKB9-null mutant flies. Moreover, caffeine treatment increased O2 flux coupled to ATP synthesis and mitochondrial respiratory control ratio (RCR) in PINK 1B9-null mutant flies. The effects of caffeine on respiratory parameters were abolished by rotenone co-treatment, suggesting that caffeine exerts its beneficial effects mainly by stimulating the mitochondrial complex I (CI). In conclusion, we demonstrate that caffeine may improve mitochondrial function by increasing mitochondrial OXPHOS and ETS respiration in the PD model using PINK1 loss-of-function mutant flies.


Subject(s)
Drosophila Proteins , Drosophila melanogaster , Animals , Drosophila melanogaster/genetics , Drosophila Proteins/genetics , Drosophila Proteins/pharmacology , Caffeine/pharmacology , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/pharmacology , Mitochondria , Adenosine Triphosphate/pharmacology
2.
Braz. j. otorhinolaryngol. (Impr.) ; Braz. j. otorhinolaryngol. (Impr.);85(6): 705-715, Nov.-Dec. 2019. tab, graf
Article in English | LILACS | ID: biblio-1055510

ABSTRACT

Abstract Introduction: Serum- and glucocorticoid-inducible kinase 3, a serine/threonine kinase that functions downstream of the PI3K signaling pathway, plays a critical role in neoplastic processes. It is expressed by various tumors and contributes to carcinogenesis. Objective: The objective was to investigate serum- and glucocorticoid-inducible kinase 3 expression in nasopharyngeal carcinoma, to study the anti-tumor effects of serum- and glucocorticoid-inducible kinase 3 shRNA by inhibiting its expression in nasopharyngeal carcinoma cells and to discuss the potential implications of our findings. Methods: Serum- and glucocorticoid-inducible kinase 3 protein expression in nasopharyngeal carcinoma cell lines (CNE-1, CNE-2, HNE-1, HONE-1, and SUNE-1) and the human immortalized nasopharyngeal epithelium cell line NP69 were assayed by western blotting. Serum- and glucocorticoid-inducible kinase 3 expression in 42 paraffin-embedded nasopharyngeal carcinoma tissues were performed by immunohistochemistry. MTT assay, flow cytometry, and scratch tests were performed after CNE-2 cells were transfected with the best serum- and glucocorticoid-inducible kinase 3 shRNA plasmid selected by western blotting using lipofectamine to study its effect on cell proliferation, apoptosis, and migration. Results: Serum- and glucocorticoid-inducible kinase 3 was overexpressed in human nasopharyngeal carcinoma tissues and cells. Serum- and glucocorticoid-inducible kinase 3 expression decreased markedly after CNE-2 cells were transfected with the serum- and glucocorticoid-inducible kinase 3 shRNA, leading to strong inhibition of cell proliferation and migration. In addition, the apoptosis rate increased in CNE-2 cells after serum- and glucocorticoid-inducible kinase 3 knockdown. Conclusion: Serum- and glucocorticoid-inducible kinase 3 expression was more frequently observed as the nasopharyngeal epithelium progresses from normal tissue to carcinoma. This suggests that serum- and glucocorticoid-inducible kinase 3 contributes to the multistep process of NPC carcinogenesis. Serum- and glucocorticoid-inducible kinase 3 represents a target for nasopharyngeal carcinoma therapy, and a basis exists for the further investigation of this adjuvant treatment modality for nasopharyngeal carcinoma.


Resumo Introdução: A quinase 3 sérica induzida por glicocorticoide, uma serina/treonina quinase que funciona downstream da via de sinalização PI3K, desempenha um papel crítico nos processos neoplásicos. É expressa por vários tumores e contribui para a carcinogênese. Objetivo: Investigar a expressão de quinase 3 sérica induzida por glicocorticoide no carcinoma nasofaríngeo, estudar os efeitos antitumorais do shRNA da quinase 3 sérica induzida por glicocorticoide, que inibem sua expressão em células de carcinoma nasofaríngeo, e discutir as implicações potenciais de nossos achados. Método: A expressão de proteína quinase 3 sérica induzida por glicocorticoide em linhagens de células de carcinoma nasofaríngeo (CNE-1, CNE-2, HNE-1, HONE-1 e SUNE-1) e a linhagem de células humanas imortalizadas do epitélio nasofaríngeo NP69 foram avaliadas por Western blot. A expressão da quinase 3 sérica induzida por glicocorticoide em 42 tecidos de CNF embebidos em parafina foi feita por imuno-histoquímica. Testes com MTT, citometria de fluxo e testes de raspagem foram feitos após as células CNE-2 terem sido transfectadas com o melhor plasmídeo shRNA da quinase 3 sérica induzida por glicocorticoide selecionado por Western blot, com o uso de lipofectamina para estudar seu efeito na proliferação, apoptose e migração celular. Resultados: Foi observada uma sobre-expressão da quinase 3 sérica induzida por glicocorticoide em tecidos e células de carcinoma nasofaríngeo humanas. A expressão de quinase 3 sérica induzida por glicocorticoide diminuiu acentuadamente após as células CNE-2 terem sido transfectadas com o shRNA da quinase 3 sérica induzida por glicocorticoide, conduzindo a forte inibição de proliferação e migração celular. Além disso, a taxa de apoptose aumentou nas células CNE-2 após o knockdown da quinase 3 sérica induzida por glicocorticoide. Conclusão: A expressão de quinase 3 sérica induzida por glicocorticoide foi observada com maior frequência à medida que o epitélio nasofaríngeo progride de tecido normal para carcinoma. Isso sugere que a quinase 3 sérica induzida por glicocorticoide contribui para o processo multietapas da carcinogênese do carcinoma nasofaríngeo. A quinase 3 sérica induzida por glicocorticoide representa um alvo para a terapia do carcinoma nasofaríngeo e há uma base para a investigação adicional dessa modalidade de tratamento adjuvante para o carcinoma nasofaríngeo.


Subject(s)
Humans , Male , Female , Adult , Middle Aged , Nasopharyngeal Neoplasms/metabolism , Protein Serine-Threonine Kinases/metabolism , Immediate-Early Proteins/metabolism , Nasopharyngeal Carcinoma/metabolism , Immunohistochemistry , Cell Movement/drug effects , Nasopharyngeal Neoplasms/pathology , Nasopharyngitis/metabolism , Nasopharyngitis/pathology , Protein Serine-Threonine Kinases/pharmacology , Apoptosis , Immediate-Early Proteins/pharmacology , RNA, Small Interfering/metabolism , Cell Proliferation/drug effects , Nasopharyngeal Carcinoma/pathology
3.
Biol Res ; 52(1): 34, 2019 Jul 05.
Article in English | MEDLINE | ID: mdl-31277690

ABSTRACT

BACKGROUND: Psoralen is a coumarin-like and coumarin-related benzofuran glycoside, which is a commonly used traditional Chinese medicine to treat patients with kidney and spleen-yang deficiency symptom. Psoralen has been reported to show estrogen-like activity, antioxidant activity, osteoblastic proliferation accelerating activity, antitumor effects and antibacterial activity. However, the antitumor mechanism of psoralen is not fully understood. This study aimed to investigate the therapeutic efficacy of psoralen in human hepatoma cell line SMMC7721 and the mechanism of antitumor effects. RESULTS: Psoralen inhibited proliferation of SMMC7721 in a dose- and time-dependent manner, and promoted apoptosis. Further, psoralen activated the ER stress signal pathway, including the expansion of endoplasmic reticulum, increasing the mRNA levels of GRP78, DDIT3, ATF4, XBP1, GADD34 and the protein levels of GDF15, GRP78, IRE1α, XBP-1s in a time-dependent manner. Psoralen induces cell cycle arrest at G1 phase by enhancing CyclinD1 and reducing CyclinE1 expression. Moreover, TUDC couldn't inhibit the psoralen-induced ER stress in SMMC7721 cells. CONCLUSIONS: Psoralen can inhibit the proliferation of SMMC7721 cells and induce ER stress response to induce cell apoptosis, suggesting that psoralen may represent a novel therapeutic option for the prevention and treatment hepatocellular carcinoma.


Subject(s)
Antineoplastic Agents, Phytogenic/pharmacology , Carcinoma, Hepatocellular/drug therapy , Cell Proliferation/drug effects , Endoplasmic Reticulum Stress/drug effects , Ficusin/pharmacology , Liver Neoplasms/drug therapy , Apoptosis/drug effects , Carcinoma, Hepatocellular/pathology , Cell Line, Tumor , Endoplasmic Reticulum Chaperone BiP , Ficusin/chemistry , Ficusin/therapeutic use , Humans , Liver Neoplasms/pathology , Protein Serine-Threonine Kinases/pharmacology , Signal Transduction/drug effects
4.
Braz J Otorhinolaryngol ; 85(6): 705-715, 2019.
Article in English | MEDLINE | ID: mdl-30108027

ABSTRACT

INTRODUCTION: Serum- and glucocorticoid-inducible kinase 3, a serine/threonine kinase that functions downstream of the PI3K signaling pathway, plays a critical role in neoplastic processes. It is expressed by various tumors and contributes to carcinogenesis. OBJECTIVE: The objective was to investigate serum- and glucocorticoid-inducible kinase 3 expression in nasopharyngeal carcinoma, to study the anti-tumor effects of serum- and glucocorticoid-inducible kinase 3 shRNA by inhibiting its expression in nasopharyngeal carcinoma cells and to discuss the potential implications of our findings. METHODS: Serum- and glucocorticoid-inducible kinase 3 protein expression in nasopharyngeal carcinoma cell lines (CNE-1, CNE-2, HNE-1, HONE-1, and SUNE-1) and the human immortalized nasopharyngeal epithelium cell line NP69 were assayed by western blotting. Serum- and glucocorticoid-inducible kinase 3 expression in 42 paraffin-embedded nasopharyngeal carcinoma tissues were performed by immunohistochemistry. MTT assay, flow cytometry, and scratch tests were performed after CNE-2 cells were transfected with the best serum- and glucocorticoid-inducible kinase 3 shRNA plasmid selected by western blotting using lipofectamine to study its effect on cell proliferation, apoptosis, and migration. RESULTS: Serum- and glucocorticoid-inducible kinase 3 was overexpressed in human nasopharyngeal carcinoma tissues and cells. Serum- and glucocorticoid-inducible kinase 3 expression decreased markedly after CNE-2 cells were transfected with the serum- and glucocorticoid-inducible kinase 3 shRNA, leading to strong inhibition of cell proliferation and migration. In addition, the apoptosis rate increased in CNE-2 cells after serum- and glucocorticoid-inducible kinase 3 knockdown. CONCLUSION: Serum- and glucocorticoid-inducible kinase 3 expression was more frequently observed as the nasopharyngeal epithelium progresses from normal tissue to carcinoma. This suggests that serum- and glucocorticoid-inducible kinase 3 contributes to the multistep process of NPC carcinogenesis. Serum- and glucocorticoid-inducible kinase 3 represents a target for nasopharyngeal carcinoma therapy, and a basis exists for the further investigation of this adjuvant treatment modality for nasopharyngeal carcinoma.


Subject(s)
Immediate-Early Proteins/metabolism , Nasopharyngeal Carcinoma/metabolism , Nasopharyngeal Neoplasms/metabolism , Protein Serine-Threonine Kinases/metabolism , Adult , Apoptosis , Cell Movement/drug effects , Cell Proliferation/drug effects , Female , Humans , Immediate-Early Proteins/pharmacology , Immunohistochemistry , Male , Middle Aged , Nasopharyngeal Carcinoma/pathology , Nasopharyngeal Neoplasms/pathology , Nasopharyngitis/metabolism , Nasopharyngitis/pathology , Protein Serine-Threonine Kinases/pharmacology , RNA, Small Interfering/metabolism
5.
Biol. Res ; 52: 34, 2019. tab, graf
Article in English | LILACS | ID: biblio-1019499

ABSTRACT

BACKGROUND: Psoralen is a coumarin-like and coumarin-related benzofuran glycoside, which is a commonly used traditional Chinese medicine to treat patients with kidney and spleen-yang deficiency symptom. Psoralen has been reported to show estrogen-like activity, antioxidant activity, osteoblastic proliferation accelerating activity, antitumor effects and antibacterial activity. However, the antitumor mechanism of psoralen is not fully understood. This study aimed to investigate the therapeutic efficacy of psoralen in human hepatoma cell line SMMC7721 and the mechanism of antitumor effects. RESULTS: Psoralen inhibited proliferation of SMMC7721 in a dose- and time-dependent manner, and promoted apoptosis. Further, psoralen activated the ER stress signal pathway, including the expansion of endoplasmic reticulum, increasing the mRNA levels of GRP78, DDIT3, ATF4, XBP1, GADD34 and the protein levels of GDF15, GRP78, IRE1α, XBP-1s in a time-dependent manner. Psoralen induces cell cycle arrest at G1 phase by enhancing CyclinD1 and reducing CyclinE1 expression. Moreover, TUDC couldn't inhibit the psoralen-induced ER stress in SMMC7721 cells. CONCLUSIONS: Psoralen can inhibit the proliferation of SMMC7721 cells and induce ER stress response to induce cell apoptosis, suggesting that psoralen may represent a novel therapeutic option for the prevention and treatment hepatocellular carcinoma.


Subject(s)
Humans , Carcinoma, Hepatocellular/drug therapy , Cell Proliferation/drug effects , Endoplasmic Reticulum Stress/drug effects , Ficusin/pharmacology , Liver Neoplasms/drug therapy , Antineoplastic Agents, Phytogenic/pharmacology , Signal Transduction/drug effects , Protein Serine-Threonine Kinases/pharmacology , Apoptosis/drug effects , Carcinoma, Hepatocellular/pathology , Cell Line, Tumor , Ficusin/therapeutic use , Ficusin/chemistry , Liver Neoplasms/pathology
6.
Biol Res ; 51(1): 11, 2018 Apr 16.
Article in English | MEDLINE | ID: mdl-29661232

ABSTRACT

BACKGROUND: Gastric cancer occupies the fourth highest morbidity rate of cancers worldwide. Clinical therapies of gastric cancer remain limited because of uncertainty of mechanisms and shortness of effective medicine. Thus, new drug candidates for gastric cancer treatment is urgently needed. RESULTS: In this study, CMPD1 as a wildly used MK2 phosphorylation inhibitor was employed to find its impact on gastric cancer cell proliferation, apoptosis and cell cycle using colony formation assay and flow cytometry analysis. Along with its anti-proliferation effect on gastric cancer cell line MKN-45 and SGC7901, CMPD1 also induced massive apoptosis and significant G2/M phase arrest in a time-dependent and dose-dependent manner in MKN-45 cells respectively. Furthermore, Western blot confirmed that the expression of anti-apoptotic proteins Bcl-2 was decreased while BAX, cytochrome c release and cleaved PARP were increased. In addition, oncogene c-Myc was downregulated in response to CMPD1 treatment. CONCLUSIONS: Our results demonstrated that CMPD1 has anti-tumor effect on human gastric cancer cell line MKN-45 possibly via downregulating oncogene c-Myc expression and CMPD1 could be applied as a potential candidate for treating gastric malignancy. To the best of our knowledge, it is the first report of anti-tumor effect of CMPD-1 on human gastric cancer cells.


Subject(s)
Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Cell Proliferation/drug effects , G2 Phase Cell Cycle Checkpoints/drug effects , Intracellular Signaling Peptides and Proteins/pharmacology , Protein Serine-Threonine Kinases/pharmacology , SOX9 Transcription Factor/pharmacology , Stomach Neoplasms/drug therapy , Apoptosis Regulatory Proteins/pharmacology , Blotting, Western , Cell Line, Tumor , Cytochromes/drug effects , Down-Regulation/drug effects , Flow Cytometry/methods , Humans , Reproducibility of Results , Stomach Neoplasms/pathology , Up-Regulation/drug effects
7.
Acta Trop ; 177: 171-178, 2018 Jan.
Article in English | MEDLINE | ID: mdl-29037519

ABSTRACT

The Akt-like kinase of Leishmania spp. is a cytoplasmic orthologous protein of the serine/threonine kinase B-PKB/human-Akt group, which is involved in the cellular survival of these parasites. By the application of a computational strategy we obtained two specific inhibitors of the Akt-like protein of L. panamensis (UBMC1 and UBMC4), which are predicted to bind specifically to the pleckstrin domain (PH) of the enzyme. We show that the Akt-like of Leishmania panamensis is phospho-activated in parasites under nutritional and thermic stress, this phosphorylation is blocked by the UBMC1 and UMBC2 and such inhibition leads to cell death. Amongst the effects caused by the inhibitors on the parasites we found high percentage of hypodiploidy and loss of mitochondrial membrane potential. Ultrastructural studies showed highly vacuolated cytoplasm, as well as shortening of the flagellum, loss of nuclear membrane integrity and DNA fragmentation. Altogether the presented results suggest that the cell death caused by UMBC1 and UMBC4 may be associated to an apoptosis-like process. The compounds present an inhibitory concentration (IC50) over intracellular amastigotes of L. panamensis of 9.2±0.8µM for UBMC1 and 4.6±1.9µM for UBMC4. The cytotoxic activity for UBMC1 and UBMC4 in human macrophages derived from monocytes (huMDM) was 29±1.2µM and >40µM respectively. Our findings strongly support that the presented compounds can be plausible candidates as a new therapeutic alternative for the inhibition of specific kinases of the parasite.


Subject(s)
Apoptosis/drug effects , Drug Discovery , Leishmania guyanensis/chemistry , Macrophages/drug effects , Protein Kinase Inhibitors/pharmacology , Protein Serine-Threonine Kinases/antagonists & inhibitors , Protein Serine-Threonine Kinases/pharmacology , Animals , Humans
8.
Biol. Res ; 51: 11, 2018. graf
Article in English | LILACS | ID: biblio-950897

ABSTRACT

BACKGROUND: Gastric cancer occupies the fourth highest morbidity rate of cancers worldwide. Clinical therapies of gastric cancer remain limited because of uncertainty of mechanisms and shortness of effective medicine. Thus, new drug candidates for gastric cancer treatment is urgently needed. RESULTS: In this study, CMPD1 as a wildly used MK2 phosphorylation inhibitor was employed to find its impact on gastric cancer cell proliferation, apoptosis and cell cycle using colony formation assay and flow cytometry analysis. Along with its anti-proliferation effect on gastric cancer cell line MKN-45 and SGC7901, CMPD1 also induced massive apoptosis and significant G2/M phase arrest in a time-dependent and dose-dependent manner in MKN-45 cells respectively. Furthermore, Western blot confirmed that the expression of anti-apoptotic proteins Bcl-2 was decreased while BAX, cytochrome c release and cleaved PARP were increased. In addition, oncogene c-Myc was downregulated in response to CMPD1 treatment. CONCLUSIONS: Our results demonstrated that CMPD1 has anti-tumor effect on human gastric cancer cell line MKN- 45 possibly via downregulating oncogene c-Myc expression and CMPD1 could be applied as a potential candidate for treating gastric malignancy. To the best of our knowledge, it is the first report of anti-tumor effect of CMPD-1 on human gastric cancer cells.


Subject(s)
Humans , Stomach Neoplasms/drug therapy , Protein Serine-Threonine Kinases/pharmacology , Apoptosis/drug effects , Intracellular Signaling Peptides and Proteins/pharmacology , Cell Proliferation/drug effects , SOX9 Transcription Factor/pharmacology , G2 Phase Cell Cycle Checkpoints/drug effects , Antineoplastic Agents/pharmacology , Stomach Neoplasms/pathology , Down-Regulation/drug effects , Up-Regulation/drug effects , Blotting, Western , Reproducibility of Results , Cytochromes/drug effects , Cell Line, Tumor , Apoptosis Regulatory Proteins/pharmacology , Flow Cytometry/methods
9.
J Mol Cell Cardiol ; 43(3): 281-91, 2007 Sep.
Article in English | MEDLINE | ID: mdl-17643448

ABSTRACT

We aimed to define the relative contribution of both PKA and Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) cascades to the phosphorylation of RyR2 and the activity of the channel during beta-adrenergic receptor (betaAR) stimulation. Rat hearts were perfused with increasing concentrations of the beta-agonist isoproterenol in the absence and the presence of CaMKII inhibition. CaMKII was inhibited either by preventing the Ca(2+) influx to the cell by low [Ca](o) plus nifedipine or by the specific inhibitor KN-93. We immunodetected RyR2 phosphorylated at Ser2809 (PKA and putative CaMKII site) and at Ser2815 (CaMKII site) and measured [(3)H]-ryanodine binding and fast Ca(2+) release kinetics in sarcoplasmic reticulum (SR) vesicles. SR vesicles were isolated in conditions that preserved the phosphorylation levels achieved in the intact heart and were actively and equally loaded with Ca(2+). Our results demonstrated that Ser2809 and Ser2815 of RyR2 were dose-dependently phosphorylated under betaAR stimulation by PKA and CaMKII, respectively. The isoproterenol-induced increase in the phosphorylation of Ser2815 site was prevented by the PKA inhibitor H-89 and mimicked by forskolin. CaMKII-dependent phosphorylation of RyR2 (but not PKA-dependent phosphorylation) was responsible for the beta-induced increase in the channel activity as indicated by the enhancement of the [(3)H]-ryanodine binding and the velocity of fast SR Ca(2+) release. The present results show for the first time a dose-dependent increase in the phosphorylation of Ser2815 of RyR2 through the PKA-dependent activation of CaMKII and a predominant role of CaMKII-dependent phosphorylation of RyR2, over that of PKA-dependent phosphorylation, on SR-Ca(2+) release during betaAR stimulation.


Subject(s)
Adrenergic beta-Agonists/pharmacology , Calcium-Calmodulin-Dependent Protein Kinases/metabolism , Calcium/metabolism , Ryanodine/metabolism , Sarcoplasmic Reticulum/metabolism , Animals , Benzylamines/pharmacology , Calcium/pharmacology , Calcium-Calmodulin-Dependent Protein Kinase Type 2 , Calcium-Calmodulin-Dependent Protein Kinases/antagonists & inhibitors , Calcium-Calmodulin-Dependent Protein Kinases/pharmacology , Cyclic AMP-Dependent Protein Kinases , Dose-Response Relationship, Drug , Isoproterenol/pharmacology , Isoquinolines/pharmacology , Kinetics , Male , Nifedipine/pharmacology , Phosphorylation/drug effects , Protein Serine-Threonine Kinases/metabolism , Protein Serine-Threonine Kinases/pharmacology , Rats , Rats, Wistar , Sulfonamides/pharmacology
10.
Am J Physiol Renal Physiol ; 288(2): F245-52, 2005 Feb.
Article in English | MEDLINE | ID: mdl-15637347

ABSTRACT

A recently discovered family of protein kinases is responsible for an autosomal-dominant disease known as Gordon's syndrome or pseudohypoaldosteronism type II (PHA-II) that features hyperkalemia and hyperchloremic metabolic acidosis, accompanied by hypertension and hypercalciuria. Four genes have been described in this kinase family, which has been named WNK, due to the absence of a key lysine in kinase subdomain II (with no K kinases). Two of these genes, WNK1 and WNK4 located in human chromosomes 12 and 17, respectively, are responsible for PHA-II. Immunohystochemical analysis revealed that WNK1 and WNK4 are predominantly expressed in the distal convoluted tubule and collecting duct. The physiological studies have shown that WNK4 downregulates the activity of ion transport pathways expressed in these nephron segments, such as the apical thiazide-sensitive Na+-Cl- cotransporter and apical secretory K+ channel ROMK, as well as upregulates paracellular chloride transport and phosphorylation of tight junction proteins such as claudins. In addition, WNK4 downregulates other Cl- influx pathways such as the basolateral Na+-K+-2Cl- cotransporter and Cl-/HCO3- exchanger. WNK4 mutations behave as a loss of function for the Na+-Cl- cotransporter and a gain of function when it comes to ROMK and claudins. These dual effects of WNK4 mutations fit with proposed mechanisms for developing electrolyte abnormalities and hypertension in PHA-II and point to WNK4 as a multifunctional regulator of diverse ion transporters.


Subject(s)
Hypertension/physiopathology , Kidney Tubules/physiology , Potassium/pharmacokinetics , Protein Serine-Threonine Kinases/pharmacology , Sodium Chloride/pharmacokinetics , Down-Regulation , Humans , Intracellular Signaling Peptides and Proteins , Ion Transport/physiology , Minor Histocompatibility Antigens , Mutation , Protein Serine-Threonine Kinases/genetics , WNK Lysine-Deficient Protein Kinase 1
SELECTION OF CITATIONS
SEARCH DETAIL