Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 10.311
Filter
1.
J Med Chem ; 67(12): 9927-9949, 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38847373

ABSTRACT

Wee1 is a kinase that regulates cell cycle arrest in response to DNA damage. Wee1 inhibition is a potential strategy to suppress the growth of tumors with defective p53 or DNA repair pathways. However, the development of Wee1 inhibitors faces some challenges. AZD1775, the first-in-class Wee1 inhibitor, has poor kinase selectivity and dose-limiting toxicity. Here, we report the discovery of 12h, a highly selective and potent Wee1 inhibitor with a favorable pharmacokinetic profile. 12h showed strong antiproliferative effects against Lovo cells, a colorectal cancer cell line, both in vitro and in vivo. Moreover, 12h showed a clean kinase profile and effectively induced cell apoptosis. Our results suggest that 12h is a promising drug candidate for further development as a novel anticancer agent.


Subject(s)
Antineoplastic Agents , Cell Cycle Proteins , Cell Proliferation , Drug Design , Protein Kinase Inhibitors , Protein-Tyrosine Kinases , Humans , Protein-Tyrosine Kinases/antagonists & inhibitors , Protein-Tyrosine Kinases/metabolism , Cell Cycle Proteins/antagonists & inhibitors , Cell Cycle Proteins/metabolism , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/pharmacology , Antineoplastic Agents/pharmacokinetics , Antineoplastic Agents/chemistry , Animals , Cell Line, Tumor , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/pharmacokinetics , Protein Kinase Inhibitors/chemistry , Cell Proliferation/drug effects , Apoptosis/drug effects , Mice , Structure-Activity Relationship , Mice, Nude
2.
Ren Fail ; 46(2): 2365408, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38874119

ABSTRACT

Podocyte loss in glomeruli is a fundamental event in the pathogenesis of chronic kidney diseases. Currently, mitotic catastrophe (MC) has emerged as the main cause of podocyte loss. However, the regulation of MC in podocytes has yet to be elucidated. The current work aimed to study the role and mechanism of p53 in regulating the MC of podocytes using adriamycin (ADR)-induced nephropathy. In vitro podocyte stimulation with ADR triggered the occurrence of MC, which was accompanied by hyperactivation of p53 and cyclin-dependent kinase (CDK1)/cyclin B1. The inhibition of p53 reversed ADR-evoked MC in podocytes and protected against podocyte injury and loss. Further investigation showed that p53 mediated the activation of CDK1/cyclin B1 by regulating the expression of Wee1. Restraining Wee1 abolished the regulatory effect of p53 inhibition on CDK1/cyclin B1 and rebooted MC in ADR-stimulated podocytes via p53 inhibition. In a mouse model of ADR nephropathy, the inhibition of p53 ameliorated proteinuria and podocyte injury. Moreover, the inhibition of p53 blocked the progression of MC in podocytes in ADR nephropathy mice through the regulation of the Wee1/CDK1/cyclin B1 axis. Our findings confirm that p53 contributes to MC in podocytes through regulation of the Wee1/CDK1/Cyclin B1 axis, which may represent a novel mechanism underlying podocyte injury and loss during the progression of chronic kidney disorder.


Subject(s)
CDC2 Protein Kinase , Cell Cycle Proteins , Cyclin B1 , Doxorubicin , Mitosis , Podocytes , Protein-Tyrosine Kinases , Tumor Suppressor Protein p53 , Podocytes/metabolism , Podocytes/pathology , Animals , CDC2 Protein Kinase/metabolism , Tumor Suppressor Protein p53/metabolism , Mice , Protein-Tyrosine Kinases/metabolism , Protein-Tyrosine Kinases/antagonists & inhibitors , Doxorubicin/pharmacology , Cyclin B1/metabolism , Cell Cycle Proteins/metabolism , Disease Models, Animal , Humans , Male
3.
Nat Commun ; 15(1): 4984, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38862481

ABSTRACT

More than 10 million people suffer from lung diseases caused by the pathogenic fungus Aspergillus fumigatus. Azole antifungals represent first-line therapeutics for most of these infections but resistance is rising, therefore the identification of antifungal targets whose inhibition synergises with the azoles could improve therapeutic outcomes. Here, we generate a library of 111 genetically barcoded null mutants of Aspergillus fumigatus in genes encoding protein kinases, and show that loss of function of kinase YakA results in hypersensitivity to the azoles and reduced pathogenicity. YakA is an orthologue of Candida albicans Yak1, a TOR signalling pathway kinase involved in modulation of stress responsive transcriptional regulators. We show that YakA has been repurposed in A. fumigatus to regulate blocking of the septal pore upon exposure to stress. Loss of YakA function reduces the ability of A. fumigatus to penetrate solid media and to grow in mouse lung tissue. We also show that 1-ethoxycarbonyl-beta-carboline (1-ECBC), a compound previously shown to inhibit C. albicans Yak1, prevents stress-mediated septal spore blocking and synergises with the azoles to inhibit A. fumigatus growth.


Subject(s)
Antifungal Agents , Aspergillus fumigatus , Dyrk Kinases , Fungal Proteins , Protein Serine-Threonine Kinases , Protein-Tyrosine Kinases , Aspergillus fumigatus/genetics , Aspergillus fumigatus/drug effects , Aspergillus fumigatus/enzymology , Animals , Antifungal Agents/pharmacology , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , Protein Serine-Threonine Kinases/antagonists & inhibitors , Fungal Proteins/genetics , Fungal Proteins/metabolism , Fungal Proteins/antagonists & inhibitors , Mice , Protein-Tyrosine Kinases/genetics , Protein-Tyrosine Kinases/metabolism , Protein-Tyrosine Kinases/antagonists & inhibitors , Azoles/pharmacology , Aspergillosis/microbiology , Aspergillosis/drug therapy , Lung/microbiology , Spores, Fungal/drug effects , Spores, Fungal/genetics , Female
4.
AAPS J ; 26(4): 66, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38862853

ABSTRACT

Tyrosine kinase inhibitors (TKIs) have demonstrated significant efficacy against various types of cancers through molecular targeting mechanisms. Over the past 22 years, more than 100 TKIs have been approved for the treatment of various types of cancer indicating the significant progress achieved in this research area. Despite having significant efficacy and ability to target multiple pathways, TKIs administration is associated with challenges. There are reported inconsistencies between observed food effect and labeling administration, challenges of concomitant administration with acid-reducing agents (ARA), pill burden and dosing frequency. In this context, the objective of present review is to visit administration challenges of TKIs and effective ways to tackle them. We have gathered data of 94 TKIs approved in between 2000 and 2022 with respect to food effect, ARA impact, administration schemes (food and PPI restrictions), number of pills per day and administration frequency. Further, trend analysis has been performed to identify inconsistencies in the labeling with respect to observed food effect, molecules exhibiting ARA impact, in order to identify solutions to remove these restrictions through novel formulation approaches. Additionally, opportunities to reduce number of pills per day and dosing frequency for better patient compliance were suggested using innovative formulation interventions. Finally, utility of physiologically based pharmacokinetic modeling (PBPK) for rationale formulation development was discussed with literature reported examples. Overall, this review can act as a ready-to-use-guide for the formulation, biopharmaceutics scientists and medical oncologists to identify opportunities for innovation for TKIs.


Subject(s)
Food-Drug Interactions , Neoplasms , Protein Kinase Inhibitors , Humans , Protein Kinase Inhibitors/administration & dosage , Protein Kinase Inhibitors/pharmacokinetics , Neoplasms/drug therapy , Antineoplastic Agents/administration & dosage , Antineoplastic Agents/pharmacokinetics , Protein-Tyrosine Kinases/antagonists & inhibitors , Drug Administration Schedule
5.
JCO Precis Oncol ; 8: e2300721, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38848521

ABSTRACT

PURPOSE: Patients with metastatic ROS1 fusion-positive non-small cell lung cancer (NSCLC) are effectively treated with entrectinib, a multikinase inhibitor. Whether serial targeted gene panel sequencing of cell-free DNA (cfDNA) can identify response and progression along with mechanisms of acquired resistance to entrectinib is underexplored. METHODS: In patients with ROS1 fusion-positive NSCLC, coclinical trial plasma samples were collected before treatment, after two cycles, and after progression on entrectinib (global phase II clinical trial, ClinicalTrials.gov identifier: NCT02568267). Samples underwent cfDNA analysis using MSK-ACCESS. Variant allele frequencies of detectable alterations were correlated with objective response per RECIST v1.1 criteria. RESULTS: Twelve patients were included, with best response as partial response (n = 9, 75%), stable disease (n = 2, 17%), and progressive disease (PD; n = 1, 8%). A ROS1 fusion was variably detected in cfDNA; however, patients without a ROS1 fusion in cfDNA had no other somatic alterations detected, indicative of possible low cfDNA shedding. Clearance of the enrolling ROS1 fusion or concurrent non-ROS1 alterations (TP53, CDH1, NF1, or ARID1A mutations) was observed in response to entrectinib therapy. Radiologic PD was accompanied by redemonstration of a ROS1 fusion or non-ROS1 alterations. On-target resistance was rare; only one patient acquired ROS1 G2032R at the time of progression. Several patients acquired new off-target likely oncogenic alterations, including a truncating alteration in NF1. CONCLUSION: Serial cfDNA monitoring may complement radiographic assessments as determinants of response and resistance to entrectinib in ROS1 fusion-positive lung cancers in addition to detecting putative resistance mechanisms on progression.


Subject(s)
Benzamides , Carcinoma, Non-Small-Cell Lung , Indazoles , Lung Neoplasms , Protein-Tyrosine Kinases , Proto-Oncogene Proteins , Humans , Indazoles/therapeutic use , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Male , Proto-Oncogene Proteins/genetics , Female , Middle Aged , Benzamides/therapeutic use , Protein-Tyrosine Kinases/genetics , Protein-Tyrosine Kinases/antagonists & inhibitors , Aged , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/genetics , Cell-Free Nucleic Acids/blood , Cell-Free Nucleic Acids/genetics , Adult , Oncogene Proteins, Fusion/genetics , Sequence Analysis, DNA/methods
6.
Oncol Rep ; 52(2)2024 Aug.
Article in English | MEDLINE | ID: mdl-38904203

ABSTRACT

Monopolar spindle 1 kinase (Mps1, also known as TTK protein kinase) inhibitors exert marked anticancer effects against triple­negative breast cancer (TNBC) by causing genomic instability and cell death. As aneuploid cells are vulnerable to compounds that induce energy stress through adenosine monophosphate­activated protein kinase (AMPK) activation, the synergistic effect of Mps1/TTK inhibition and AMPK activation was investigated in the present study. The combined effects of CFI­402257, an Mps1/TTK inhibitor, and AICAR, an AMPK agonist, were evaluated in terms of cytotoxicity, cell­cycle distribution, and in vivo xenograft models. Additional molecular mechanistic studies were conducted to elucidate the mechanisms underlying apoptosis and autophagic cell death. The combination of CFI­402257 and AICAR showed selective cytotoxicity in a TNBC cell line. The formation of polyploid cells was attenuated, and apoptosis was increased by the combination treatment, which also induced autophagy through dual inhibition of the PI3K/Akt/mTOR and mitogen­activated protein kinase (MAPK) signaling pathways. Additionally, the combination therapy showed strongly improved efficacy in comparison with CFI­402257 and AICAR monotherapy in the MDA­MB­231 xenograft model. The present study suggested that the combination of CFI­402257 and AICAR is a promising therapeutic strategy for TNBC.


Subject(s)
AMP-Activated Protein Kinases , Aminoimidazole Carboxamide , Apoptosis , Autophagy , Cell Cycle Proteins , Protein Serine-Threonine Kinases , Ribonucleotides , Triple Negative Breast Neoplasms , Xenograft Model Antitumor Assays , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/pathology , Triple Negative Breast Neoplasms/metabolism , Humans , Female , Animals , Mice , Aminoimidazole Carboxamide/analogs & derivatives , Aminoimidazole Carboxamide/pharmacology , AMP-Activated Protein Kinases/metabolism , Cell Line, Tumor , Ribonucleotides/pharmacology , Protein Serine-Threonine Kinases/metabolism , Protein Serine-Threonine Kinases/antagonists & inhibitors , Cell Cycle Proteins/metabolism , Cell Cycle Proteins/antagonists & inhibitors , Cell Cycle Proteins/genetics , Apoptosis/drug effects , Autophagy/drug effects , Protein-Tyrosine Kinases/metabolism , Protein-Tyrosine Kinases/antagonists & inhibitors , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Cell Proliferation/drug effects , Signal Transduction/drug effects , Drug Synergism , Biphenyl Compounds , Pyrones , Thiophenes
7.
Genome Biol ; 25(1): 143, 2024 05 31.
Article in English | MEDLINE | ID: mdl-38822412

ABSTRACT

BACKGROUND: Targeted therapies exploiting vulnerabilities of cancer cells hold promise for improving patient outcome and reducing side-effects of chemotherapy. However, efficacy of precision therapies is limited in part because of tumor cell heterogeneity. A better mechanistic understanding of how drug effect is linked to cancer cell state diversity is crucial for identifying effective combination therapies that can prevent disease recurrence. RESULTS: Here, we characterize the effect of G2/M checkpoint inhibition in acute lymphoblastic leukemia (ALL) and demonstrate that WEE1 targeted therapy impinges on cell fate decision regulatory circuits. We find the highest inhibition of recovery of proliferation in ALL cells with KMT2A-rearrangements. Single-cell RNA-seq and ATAC-seq of RS4;11 cells harboring KMT2A::AFF1, treated with the WEE1 inhibitor AZD1775, reveal diversification of cell states, with a fraction of cells exhibiting strong activation of p53-driven processes linked to apoptosis and senescence, and disruption of a core KMT2A-RUNX1-MYC regulatory network. In this cell state diversification induced by WEE1 inhibition, a subpopulation transitions to a drug tolerant cell state characterized by activation of transcription factors regulating pre-B cell fate, lipid metabolism, and pre-BCR signaling in a reversible manner. Sequential treatment with BCR-signaling inhibitors dasatinib, ibrutinib, or perturbing metabolism by fatostatin or AZD2014 effectively counteracts drug tolerance by inducing cell death and repressing stemness markers. CONCLUSIONS: Collectively, our findings provide new insights into the tight connectivity of gene regulatory programs associated with cell cycle and cell fate regulation, and a rationale for sequential administration of WEE1 inhibitors with low toxicity inhibitors of pre-BCR signaling or metabolism.


Subject(s)
Precursor Cell Lymphoblastic Leukemia-Lymphoma , Humans , Precursor Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics , Histone-Lysine N-Methyltransferase/genetics , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Cell Cycle Proteins/antagonists & inhibitors , Cell Line, Tumor , Pyrimidines/pharmacology , Pyrimidines/therapeutic use , Pyrimidinones/pharmacology , Pyrimidinones/therapeutic use , Myeloid-Lymphoid Leukemia Protein/genetics , Pyrazoles/pharmacology , Pyrazoles/therapeutic use , Protein-Tyrosine Kinases/antagonists & inhibitors , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Cell Cycle/drug effects , Core Binding Factor Alpha 2 Subunit/genetics
8.
Drug Des Devel Ther ; 18: 2449-2460, 2024.
Article in English | MEDLINE | ID: mdl-38915863

ABSTRACT

WEE1 kinase is involved in the G2/M cell cycle checkpoint control and DNA damage repair. A functional G2/M checkpoint is crucial for DNA repair in cancer cells with p53 mutations since they lack a functional G1/S checkpoint. Targeted inhibition of WEE1 kinase may cause tumor cell apoptosis, primarily, in the p53-deficient tumor, via bypassing the G2/M checkpoint without properly repairing DNA damage, resulting in genome instability and chromosomal deletion. This review aims to provide a comprehensive overview of the biological role of WEE1 kinase and the potential of WEE1 inhibitor (WEE1i) for treating gynecological malignancies. We conducted a thorough literature search from 2001 to September 2023 in prominent databases such as PubMed, Scopus, and Cochrane, utilizing appropriate keywords of WEE1i and gynecologic oncology. WEE1i has been shown to inhibit tumor activity and enhance the sensitivity of chemotherapy or radiotherapy in preclinical models, particularly in p53-mutated gynecologic cancer models, although not exclusively. Recently, WEE1i alone or combined with genotoxic agents has confirmed its efficacy and safety in Phase I/II gynecological malignancies clinical trials. Furthermore, it has become increasingly clear that other inhibitors of DNA damage pathways show synthetic lethality with WEE1i, and WEE1 modulates therapeutic immune responses, providing a rationale for the combination of WEE1i and immune checkpoint blockade. In this review, we summarize the biological function of WEE1 kinase, development of WEE1i, and outline the preclinical and clinical data available on the investigation of WEE1i for treating gynecologic malignancies.


Subject(s)
Antineoplastic Agents , Cell Cycle Proteins , Genital Neoplasms, Female , Protein Kinase Inhibitors , Protein-Tyrosine Kinases , Humans , Protein-Tyrosine Kinases/antagonists & inhibitors , Protein-Tyrosine Kinases/metabolism , Genital Neoplasms, Female/drug therapy , Genital Neoplasms, Female/enzymology , Female , Cell Cycle Proteins/antagonists & inhibitors , Cell Cycle Proteins/metabolism , Antineoplastic Agents/pharmacology , Protein Kinase Inhibitors/pharmacology , Animals , DNA Damage/drug effects
9.
Protein Sci ; 33(6): e5004, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38723164

ABSTRACT

Dysregulation of RNA splicing processes is intricately linked to tumorigenesis in various cancers, especially breast cancer. Cdc2-like kinase 2 (CLK2), an oncogenic RNA-splicing kinase pivotal in breast cancer, plays a significant role, particularly in the context of triple-negative breast cancer (TNBC), a subtype marked by substantial medical challenges due to its low survival rates. In this study, we employed a structure-based virtual screening (SBVS) method to identify potential CLK2 inhibitors with novel chemical structures for treating TNBC. Compound 670551 emerged as a novel CLK2 inhibitor with a 50% inhibitory concentration (IC50) value of 619.7 nM. Importantly, Compound 670551 exhibited high selectivity for CLK2 over other protein kinases. Functionally, this compound significantly reduced the survival and proliferation of TNBC cells. Results from a cell-based assay demonstrated that this inhibitor led to a decrease in RNA splicing proteins, such as SRSF4 and SRSF6, resulting in cell apoptosis. In summary, we identified a novel CLK2 inhibitor as a promising potential treatment for TNBC therapy.


Subject(s)
Protein Kinase Inhibitors , Protein Serine-Threonine Kinases , Protein-Tyrosine Kinases , Triple Negative Breast Neoplasms , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/metabolism , Humans , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/chemistry , Protein Serine-Threonine Kinases/antagonists & inhibitors , Protein Serine-Threonine Kinases/metabolism , Protein Serine-Threonine Kinases/chemistry , Protein-Tyrosine Kinases/antagonists & inhibitors , Protein-Tyrosine Kinases/metabolism , Protein-Tyrosine Kinases/chemistry , Protein-Tyrosine Kinases/genetics , Female , Cell Line, Tumor , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Apoptosis/drug effects , Molecular Docking Simulation , Cell Proliferation/drug effects
10.
Cell Rep Med ; 5(6): 101578, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38776912

ABSTRACT

The clinical development of Kirsten rat sarcoma virus (KRAS)-G12C inhibitors for the treatment of KRAS-mutant lung cancer is limited by the presence of co-mutations, intrinsic resistance, and the emergence of acquired resistance. Therefore, innovative strategies for enhancing apoptosis in KRAS-mutated non-small cell lung cancer (NSCLC) are urgently needed. Through CRISPR-Cas9 knockout screening using a library of 746 crRNAs and drug screening with a custom library of 432 compounds, we discover that WEE1 kinase inhibitors are potent enhancers of apoptosis, particularly in KRAS-mutant NSCLC cells harboring TP53 mutations. Mechanistically, WEE1 inhibition promotes G2/M transition and reduces checkpoint kinase 2 (CHK2) and Rad51 expression in the DNA damage response (DDR) pathway, which is associated with apoptosis and the repair of DNA double-strand breaks, leading to mitotic catastrophe. Notably, the combined inhibition of KRAS-G12C and WEE1 consistently suppresses tumor growth. Our results suggest targeting WEE1 as a promising therapeutic strategy for KRAS-mutated NSCLC with TP53 mutations.


Subject(s)
Apoptosis , Carcinoma, Non-Small-Cell Lung , Cell Cycle Proteins , Lung Neoplasms , Mutation , Protein-Tyrosine Kinases , Proto-Oncogene Proteins p21(ras) , Tumor Suppressor Protein p53 , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/pathology , Humans , Protein-Tyrosine Kinases/genetics , Protein-Tyrosine Kinases/antagonists & inhibitors , Protein-Tyrosine Kinases/metabolism , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism , Proto-Oncogene Proteins p21(ras)/genetics , Proto-Oncogene Proteins p21(ras)/metabolism , Proto-Oncogene Proteins p21(ras)/antagonists & inhibitors , Lung Neoplasms/genetics , Lung Neoplasms/drug therapy , Lung Neoplasms/pathology , Cell Cycle Proteins/genetics , Cell Cycle Proteins/antagonists & inhibitors , Cell Cycle Proteins/metabolism , Mutation/genetics , Cell Line, Tumor , Animals , Apoptosis/drug effects , Apoptosis/genetics , Mice , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Mice, Nude , Xenograft Model Antitumor Assays
11.
Crit Rev Oncol Hematol ; 199: 104384, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38762217

ABSTRACT

A multitude of TKI has been developed and approved targeting various oncogenetic alterations. While these have provided improvements in efficacy compared with conventional chemotherapies, resistance to targeted therapies occurs. Mutations in the kinase domain result in the inability of TKI to inactivate the protein kinase. Also, gene amplification, increased protein expression and downstream activation or bypassing of signalling pathways are commonly reported mechanisms of resistance. Improved understanding of mechanisms involved in TKI resistance has resulted in the development of new generations of targeted agents. In a race against time, the search for new, more potent and efficient drugs, and/or combinations of drugs, remains necessary as new resistance mechanisms to the latest generation of TKI emerge. This review examines the various generations of TKI approved to date and their common mechanisms of resistance, focusing on TKI targeting BCR-ABL, epidermal growth factor receptor, anaplastic lymphoma kinase and BRAF/MEK tyrosine kinases.


Subject(s)
Drug Resistance, Neoplasm , Neoplasms , Protein Kinase Inhibitors , Humans , Protein Kinase Inhibitors/therapeutic use , Protein Kinase Inhibitors/pharmacology , Neoplasms/drug therapy , Neoplasms/genetics , Drug Resistance, Neoplasm/drug effects , Antineoplastic Agents/therapeutic use , Antineoplastic Agents/pharmacology , Molecular Targeted Therapy/methods , Protein-Tyrosine Kinases/antagonists & inhibitors , Protein-Tyrosine Kinases/metabolism
12.
Eur J Med Chem ; 273: 116504, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38795520

ABSTRACT

Monopolar spindle 1 (MPS1) has garnered significant attention due to its pivotal role in regulating the cell cycle. Anomalous expression and hyperactivation of MPS1 have been associated with the onset and advancement of diverse cancers, positioning it as a promising target for therapeutic interventions. This review focuses on MPS1 small molecule inhibitors from the past decade, exploring design strategies, structure-activity relationships (SAR), safety considerations, and clinical performance. Notably, we propose prospects for MPS1 degraders based on proteolysis targeting chimeras (PROTACs), as well as reversible covalent bonding as innovative MPS1 inhibitor design strategies. The objective is to provide valuable information for future development and novel perspectives on potential MPS1 inhibitors.


Subject(s)
Antineoplastic Agents , Cell Cycle Proteins , Neoplasms , Protein Serine-Threonine Kinases , Humans , Neoplasms/drug therapy , Neoplasms/pathology , Neoplasms/metabolism , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Cell Cycle Proteins/antagonists & inhibitors , Cell Cycle Proteins/metabolism , Structure-Activity Relationship , Protein Serine-Threonine Kinases/antagonists & inhibitors , Protein Serine-Threonine Kinases/metabolism , Protein-Tyrosine Kinases/antagonists & inhibitors , Protein-Tyrosine Kinases/metabolism , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/chemistry , Small Molecule Libraries/chemistry , Small Molecule Libraries/pharmacology , Small Molecule Libraries/chemical synthesis , Patents as Topic , Molecular Structure
13.
Bioorg Chem ; 148: 107459, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38761707

ABSTRACT

Lung cancer is a malignant tumor with high mortality and drug resistance. Therefore, it is urgent to explore natural and nontoxic drugs to treat lung cancer. In this study, the natural active ingredient AANL extracted from Agrocybe aegirita was used to modify nanoselenium by an oxidation-reduction method. Transmission electron microscope detection and infrared spectroscopy showed that a novel selenium nanocomposite named AANL-SeNPs was successfully prepared. The results of nanoscale characterization showed that AANL-SeNPs had good stability and uniform dispersion in aqueous solution by zeta potential and spectrum analysis. At the cellular level, we found that AANL-SeNPs significantly inhibited the cell viability of lung cancer cells, and the cell inhibition rate of 60 nM AANL-SeNPs was 39 % in H157 cells, 67 % in H147 cells, and 62 % in A549 cells. The IC50 value of AANL-SeNPs was 51.85 nM in A549 cells and 81.57 nM in H157 cells. Moreover, AANL-SeNPs could inhibit the cell proliferation and migration, and enhance the sensitivity of lung cancer cells to osimertinib and has no toxic to normal cells. In vivo, AANL-SeNPs significantly slowed tumor growth in tumor-bearing mice by establishing a subcutaneous transplantation tumor model for lung cancer, and the tumor size was smaller and was reduced about 79 % in 2 mg/kg AANL-SeNPs group compared with PBS group. Mechanistically, a total of 38 differentially expressed proteins were identified by data-independent acquisition mass spectrometry. A significantly upregulated protein, CDC-like kinase 2 (CLK2), was screened and validated for further analysis, which showed that the expression levels of CLK2 were increased in H157 and H1437 cells after AANL-SeNPs treatment. The results obtained in this study suggest that a novel selenium nanocomposite AANL-SeNPs, which inhibits lung cancer by upregulating the expression of CLK2.


Subject(s)
Antineoplastic Agents , Cell Proliferation , Lung Neoplasms , Nanocomposites , Protein-Tyrosine Kinases , Selenium , Up-Regulation , Humans , Lung Neoplasms/drug therapy , Lung Neoplasms/pathology , Nanocomposites/chemistry , Cell Proliferation/drug effects , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Protein-Tyrosine Kinases/antagonists & inhibitors , Protein-Tyrosine Kinases/metabolism , Animals , Selenium/chemistry , Selenium/pharmacology , Mice , Up-Regulation/drug effects , Drug Screening Assays, Antitumor , Protein Serine-Threonine Kinases/metabolism , Protein Serine-Threonine Kinases/antagonists & inhibitors , Dose-Response Relationship, Drug , Molecular Structure , Structure-Activity Relationship , Cell Survival/drug effects , Neoplasms, Experimental/drug therapy , Neoplasms, Experimental/pathology , Neoplasms, Experimental/metabolism , Cell Line, Tumor , Mice, Inbred BALB C , Mice, Nude
14.
Oncotarget ; 15: 313-325, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38753413

ABSTRACT

The diheteroarylamide-based compound 1C8 and the aminothiazole carboxamide-related compound GPS167 inhibit the CLK kinases, and affect the proliferation of a broad range of cancer cell lines. A chemogenomic screen previously performed with GPS167 revealed that the depletion of components associated with mitotic spindle assembly altered sensitivity to GPS167. Here, a similar screen performed with 1C8 also established the impact of components involved in mitotic spindle assembly. Accordingly, transcriptome analyses of cells treated with 1C8 and GPS167 indicated that the expression and RNA splicing of transcripts encoding mitotic spindle assembly components were affected. The functional relevance of the microtubule connection was confirmed by showing that subtoxic concentrations of drugs affecting mitotic spindle assembly increased sensitivity to GPS167. 1C8 and GPS167 impacted the expression and splicing of transcripts in pathways relevant to tumor progression, including MYC targets and the epithelial mesenchymal transition (EMT). Finally, 1C8 and GPS167 altered the expression and alternative splicing of transcripts involved in the antiviral immune response. Consistent with this observation, depleting the double-stranded RNA sensor DHX33 suppressed GPS167-mediated cytotoxicity on HCT116 cells. Our study uncovered molecular mechanisms through which 1C8 and GPS167 affect cancer cell proliferation as well as processes critical for metastasis.


Subject(s)
Cell Proliferation , Epithelial-Mesenchymal Transition , Protein Kinase Inhibitors , Protein-Tyrosine Kinases , Humans , Epithelial-Mesenchymal Transition/drug effects , Protein-Tyrosine Kinases/metabolism , Protein-Tyrosine Kinases/antagonists & inhibitors , Protein-Tyrosine Kinases/genetics , Protein Kinase Inhibitors/pharmacology , Cell Proliferation/drug effects , Cell Line, Tumor , Antineoplastic Agents/pharmacology , Protein Serine-Threonine Kinases/metabolism , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/antagonists & inhibitors , Thiazoles/pharmacology , Antiviral Agents/pharmacology , HCT116 Cells , DEAD-box RNA Helicases/metabolism , DEAD-box RNA Helicases/genetics , Gene Expression Profiling
15.
Int J Biol Macromol ; 269(Pt 1): 132024, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38704072

ABSTRACT

Dual-specificity tyrosine phosphorylation-regulated kinase 1 A (DYRK1A) plays an essential role in Tau and Aß pathology closely related to Alzheimer's disease (AD). Accumulative evidence has demonstrated DYRK1A inhibition is able to reduce the pathological features of AD. Nevertheless, there is no approved DYRK1A inhibitor for clinical use as anti-AD therapy. This is somewhat due to the lack of effective and safe chemotypes of DYRK1A inhibitors. To address this issue, we carried out in silico screening, in vitro assays and in vivo efficacy evaluation with the aim to discover a new class of DYRK1A inhibitors for potential treatment of AD. By in silico screening, we selected and purchased 16 potential DYRK1A inhibitors from the Specs chemical library. Among them, compound Q17 (Specs ID: AO-476/40829177) potently inhibited DYRK1A. The hydrogen bonds between compound Q17 and two amino acid residues named GLU239 and LYS188, were uncovered by molecular docking and molecular dynamics simulation. The cell-based assays showed that compound Q17 could protect the SH-SY5Y human neuroblastoma cell line from okadaic acid (OA)-induced injury by targeting DYRK1A. More importantly, compound Q17 significantly improved cognitive dysfunction of 3 × Tg-AD mice, ameliorated pathological changes, and attenuated Tau hyperphosphorylation as well as Aß deposition. In summary, our computational modeling strategy is effective to identify novel chemotypes of DYRK1A inhibitors with great potential to treat AD, and the identified compound Q17 in this study is worthy of further study.


Subject(s)
Alzheimer Disease , Dyrk Kinases , Molecular Docking Simulation , Protein Kinase Inhibitors , Protein Serine-Threonine Kinases , Protein-Tyrosine Kinases , Protein-Tyrosine Kinases/antagonists & inhibitors , Protein-Tyrosine Kinases/metabolism , Alzheimer Disease/drug therapy , Alzheimer Disease/pathology , Protein Serine-Threonine Kinases/antagonists & inhibitors , Protein Serine-Threonine Kinases/metabolism , Humans , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/chemistry , Animals , Mice , Molecular Dynamics Simulation , Cell Line, Tumor , tau Proteins/metabolism , Drug Discovery , Computer Simulation , Disease Models, Animal
18.
Expert Opin Ther Targets ; 28(4): 283-294, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38629385

ABSTRACT

INTRODUCTION: Epilepsy is a chronic neurological condition characterized by a persistent propensity for seizure generation. About one-third of patients do not achieve seizure control with the first-line treatment options, which include >20 antiseizure medications. It is therefore imperative that new medications with novel targets and mechanisms of action are developed. AREAS COVERED: Clinical studies and preclinical research increasingly implicate Non-receptor tyrosine kinases (nRTKs) in the pathogenesis of epilepsy. To date, several nRTK members have been linked to processes relevant to the development of epilepsy. Therefore, in this review, we provide insight into the molecular mechanisms by which the various nRTK subfamilies can contribute to the pathogenesis of epilepsy. We further highlight the prospective use of specific nRTK inhibitors in the treatment of epilepsy deriving evidence from existing literature providing a rationale for their use as therapeutic targets. EXPERT OPINION: Specific small-molecule inhibitors of NRTKs can be employed for the targeted therapy as already seen in other diseases by examining the precise molecular pathways regulated by them contributing to the development of epilepsy. However, the evidence supporting NRTKs as therapeutic targets are limiting in nature thus, necessitating more research to fully comprehend their function in the development and propagation of seizures.


Subject(s)
Anticonvulsants , Drug Development , Epilepsy , Molecular Targeted Therapy , Protein Kinase Inhibitors , Protein-Tyrosine Kinases , Humans , Epilepsy/drug therapy , Epilepsy/physiopathology , Animals , Anticonvulsants/pharmacology , Protein Kinase Inhibitors/pharmacology , Protein-Tyrosine Kinases/antagonists & inhibitors , Protein-Tyrosine Kinases/metabolism
19.
J Med Chem ; 67(9): 6922-6937, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38648167

ABSTRACT

Tauopathy, neuronal atrophy, and psychological impairments are hallmarks of neurodegenerative diseases, such as Alzheimer's disease, that currently lack efficacious clinical treatments capable of rectifying these issues. To address these unmet needs, we used rational drug design to combine the pharmacophores of DYRK1A inhibitors and isoDMTs to develop psychoplastogenic DYRK1A inhibitors. Using this approach, we discovered a nonhallucinogenic compound capable of promoting cortical neuron growth and suppressing tau hyperphosphorylation while also having the potential to mitigate the biological and psychological symptoms of dementia. Together, our results suggest that hybridization of the DYRK1A and psychoplastogen pharmacophores represents a promising strategy for identifying compounds that might address the cognitive as well as the behavioral and psychological symptoms of dementia.


Subject(s)
Alzheimer Disease , Dyrk Kinases , Protein Kinase Inhibitors , Protein Serine-Threonine Kinases , Protein-Tyrosine Kinases , tau Proteins , Alzheimer Disease/drug therapy , Protein-Tyrosine Kinases/antagonists & inhibitors , Protein-Tyrosine Kinases/metabolism , Protein Serine-Threonine Kinases/antagonists & inhibitors , Protein Serine-Threonine Kinases/metabolism , Humans , Animals , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/therapeutic use , Protein Kinase Inhibitors/chemical synthesis , tau Proteins/metabolism , tau Proteins/antagonists & inhibitors , Mice , Phosphorylation , Drug Design
20.
Drug Metab Dispos ; 52(7): 626-633, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38684371

ABSTRACT

In vitro metabolism studies of the spleen tyrosine kinase inhibitors AZ-A and AZ-B identified four unusual metabolites. M1 (mass-to-charge ratio 411) was formed by both molecules and was common to several analogs (AZ-C to AZ-H) sharing the same core structure, appearing to derive from the complete loss of a pendent 3,4-diaminotetrahydropyran ring and pyrazole ring cleavage resulting in a nonobvious metabolite. M2-M4 were formed by AZ-A and a subset of the other compounds only and apparently resulted from a sequential loss of H2 from parent. Initial attempts to isolate M3 for identification were unsuccessful due to sample degradation, and it was subsequently found that M2 and M3 underwent sequential chemical degradation steps to M4. M4 was successfully isolated and shown by mass spectrometry and NMR spectroscopy to be a tricyclic species incorporating the pyrazole and the 3,4-diaminotetrahydropyran groups. We propose that this arises from an intramolecular reaction between the primary amine on the tetrahydropyran and a putative epoxide intermediate on the adjacent pyrazole ring, evidence for which was generated in a ß-mercaptoethanol-trapping experiment. The loss of the tetrahydropyran moiety observed in M1 was found to be enhanced in an analog that was unable to undergo the intramolecular reaction step, leading us to propose two possible reaction pathways originating from the reactive intermediate. Ultimately, we conclude that the apparently complex and unusual metabolism of this series of compounds likely resulted from a single metabolic activation step forming an epoxide intermediate, which subsequently underwent intramolecular rearrangement and/or chemical degradation to form the final observed products. SIGNIFICANCE STATEMENT: The current work provides an unusual biotransformation example showing the potential for intramolecular reactions and chemical degradation to give the appearance of complex metabolism arising from a single primary route of metabolism.


Subject(s)
Biotransformation , Protein-Tyrosine Kinases , Syk Kinase , Syk Kinase/metabolism , Syk Kinase/antagonists & inhibitors , Humans , Protein-Tyrosine Kinases/antagonists & inhibitors , Protein-Tyrosine Kinases/metabolism , Protein Kinase Inhibitors/metabolism , Microsomes, Liver/metabolism , Intracellular Signaling Peptides and Proteins/metabolism , Intracellular Signaling Peptides and Proteins/antagonists & inhibitors , Pyrazoles/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...