Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 38
Filter
Add more filters











Publication year range
1.
Microbiol Spectr ; 12(6): e0024424, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38747631

ABSTRACT

Extreme environments, such as Antarctica, select microbial communities that display a range of evolutionary strategies to survive and thrive under harsh environmental conditions. These include a diversity of specialized metabolites, which have the potential to be a source for new natural product discovery. Efforts using (meta)genome mining approaches to identify and understand biosynthetic gene clusters in Antarctica are still scarce, and the extent of their diversity and distribution patterns in the environment have yet to be discovered. Herein, we investigated the biosynthetic gene diversity of the biofilm microbial community of Whalers Bay, Deception Island, in the Antarctic Peninsula and revealed its distribution patterns along spatial and temporal gradients by applying metagenome mining approaches and multivariable analysis. The results showed that the Whalers Bay microbial community harbors a great diversity of biosynthetic gene clusters distributed into seven classes, with terpene being the most abundant. The phyla Proteobacteria and Bacteroidota were the most abundant in the microbial community and contributed significantly to the biosynthetic gene abundances in Whalers Bay. Furthermore, the results highlighted a significant correlation between the distribution of biosynthetic genes and taxonomic diversity, emphasizing the intricate interplay between microbial taxonomy and their potential for specialized metabolite production.IMPORTANCEThis research on antarctic microbial biosynthetic diversity in Whalers Bay, Deception Island, unveils the hidden potential of extreme environments for natural product discovery. By employing metagenomic techniques, the research highlights the extensive diversity of biosynthetic gene clusters and identifies key microbial phyla, Proteobacteria and Bacteroidota, as significant contributors. The correlation between taxonomic diversity and biosynthetic gene distribution underscores the intricate interplay governing specialized metabolite production. These findings are crucial for understanding microbial adaptation in extreme environments and hold significant implications for bioprospecting initiatives. The study opens avenues for discovering novel bioactive compounds with potential applications in medicine and industry, emphasizing the importance of preserving and exploring these polyextreme ecosystems to advance biotechnological and pharmaceutical research.


Subject(s)
Metagenome , Microbiota , Antarctic Regions , Microbiota/genetics , Bacteria/genetics , Bacteria/classification , Bacteria/metabolism , Multigene Family , Biofilms , Phylogeny , Proteobacteria/genetics , Proteobacteria/metabolism , Proteobacteria/classification , Terpenes/metabolism , Bacteroidetes/genetics , Bacteroidetes/metabolism , Bacteroidetes/classification
2.
BMC Microbiol ; 21(1): 294, 2021 10 28.
Article in English | MEDLINE | ID: mdl-34711170

ABSTRACT

BACKGROUND: The Rhizobiales (Proteobacteria) order is an abundant and diverse group of microorganisms, being extensively studied for its lifestyle based on the association with plants, animals, and humans. New studies have demonstrated that the last common ancestor (LCA) of Rhizobiales had a free-living lifestyle, but the phylogenetic and metabolism characterization of basal lineages remains unclear. Here, we used a high-resolution phylogenomic approach to test the monophyly of the Aestuariivirgaceae family, a new taxonomic group of Rhizobiales. Furthermore, a deep metabolic investigation provided an overview of the main functional traits that can be associated with its lifestyle. We hypothesized that the presence of pathways (e.g., Glycolysis/Gluconeogenesis) and the absence of pathogenic genes would be associated with a free-living lifestyle in Aestuariivirgaceae. RESULTS: Using high-resolution phylogenomics approaches, our results revealed a clear separation of Aestuariivirgaceae into a distinct clade of other Rhizobiales family, suggesting a basal split early group and corroborate the monophyly of this group. A deep functional annotation indicated a metabolic versatility, which includes putative genes related to sugar degradation and aerobic respiration. Furthermore, many of these traits could reflect a basal metabolism and adaptations of Rhizobiales, as such the presence of Glycolysis/Gluconeogenesis pathway and the absence of pathogenicity genes, suggesting a free-living lifestyle in the Aestuariivirgaceae members. CONCLUSIONS: Aestuariivirgaceae (Rhizobiales) family is a monophyletic taxon of the Rhizobiales with a free-living lifestyle and a versatile metabolism that allows these microorganisms to survive in the most diverse microbiomes, demonstrating their adaptability to living in systems with different conditions, such as extremely cold environments to tropical rivers.


Subject(s)
Metagenome/genetics , Proteobacteria/genetics , Evolution, Molecular , Geologic Sediments/microbiology , Metabolic Networks and Pathways , Metagenomics , Phylogeny , Proteobacteria/classification , Proteobacteria/metabolism , Seawater/microbiology
3.
Mol Biol Rep ; 47(12): 9627-9636, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33159677

ABSTRACT

Seriola rivoliana intestinal microbiota (IM) was characterised under aquaculture conditions through 16S rRNA amplicon sequencing. Specimens of 30 days after hatching (DAH) were maintained in three tanks and fed under the same environmental conditions for characterisation 15 days prior to sampling. Three fish were randomly taken from each tank; total DNA extraction of the gut microbiota was performed to characterise microbial composition and its metabolic prediction. The V3 hypervariable region of the 16S rRNA was amplified and sequenced with Illumina pair-end technology. The prokaryotic components in the S. rivoliana intestine were dominated mainly by the phyla Proteobacteria, Firmicutes, Bacteroidetes, Cyanobacteria and Actinobacteria. No significant differences in beta diversity were detected in the three samples (tanks). However in alpha diversity, they were detected in juveniles of the same cohort within the same group, as exemplified by enrichment of certain bacterial groups, mainly of the Clostridia class, which were specific in each fish within the same tank. The metabolic prediction analyses suggested that S. rivoliana IM contribute to the metabolism of amino acids, carbohydrates, lipids, and immune system. This study provides the first IM characterisation under rearing conditions of S. rivoliana-a species with broad economic potential-and contributes to novel information for potential use of probiotics in future trials.


Subject(s)
Actinobacteria/metabolism , Bacteroidetes/metabolism , Cyanobacteria/metabolism , Firmicutes/metabolism , Perciformes/microbiology , Proteobacteria/metabolism , Actinobacteria/classification , Actinobacteria/genetics , Actinobacteria/isolation & purification , Amino Acids/immunology , Amino Acids/metabolism , Animals , Aquaculture , Bacteroidetes/classification , Bacteroidetes/genetics , Bacteroidetes/isolation & purification , Carbohydrate Metabolism , Carbohydrates/immunology , Cyanobacteria/classification , Cyanobacteria/genetics , Cyanobacteria/isolation & purification , DNA, Bacterial/genetics , Firmicutes/classification , Firmicutes/genetics , Firmicutes/isolation & purification , Gastrointestinal Microbiome/genetics , Gastrointestinal Microbiome/immunology , Immunity, Innate , Lipid Metabolism , Lipids/immunology , Perciformes/immunology , Perciformes/metabolism , Proteobacteria/classification , Proteobacteria/genetics , Proteobacteria/isolation & purification , RNA, Ribosomal, 16S/genetics , Symbiosis/immunology
4.
Cell Rep ; 31(12): 107813, 2020 06 23.
Article in English | MEDLINE | ID: mdl-32579939

ABSTRACT

Type VI secretion systems (T6SSs) are nanomachines used by bacteria to inject toxic effectors into competitors. The identity and mechanism of many effectors remain unknown. We characterized a Salmonella T6SS antibacterial effector called Tlde1 that is toxic in target-cell periplasm and is neutralized by its cognate immunity protein (Tldi1). Microscopy analysis reveals that cells expressing Tlde1 stop dividing and lose cell envelope integrity. Bioinformatic analysis uncovers similarities between Tlde1 and the catalytic domain of l,d-transpeptidases. Point mutations on conserved catalytic residues abrogate toxicity. Biochemical assays reveal that Tlde1 displays both l,d-carboxypeptidase activity by cleaving peptidoglycan tetrapeptides between meso-diaminopimelic acid3 and d-alanine4 and l,d-transpeptidase exchange activity by replacing d-alanine4 by a non-canonical d-amino acid. Phylogenetic analysis shows that Tlde1 homologs constitute a family of T6SS-associated effectors broadly distributed among Proteobacteria. This work expands our current knowledge about bacterial effectors used in interbacterial competition and reveals a different mechanism of bacterial antagonism.


Subject(s)
Anti-Bacterial Agents/pharmacology , Peptidoglycan/metabolism , Peptidyl Transferases/metabolism , Type VI Secretion Systems/metabolism , Bacterial Proteins/metabolism , Cell Division/drug effects , Escherichia coli/drug effects , Escherichia coli/metabolism , Evolution, Molecular , Periplasm/drug effects , Periplasm/metabolism , Proteobacteria/drug effects , Proteobacteria/metabolism , Salmonella typhimurium/drug effects , Salmonella typhimurium/metabolism
5.
Can J Microbiol ; 66(11): 641-652, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32574514

ABSTRACT

The Peruvian Andean Plateau, one of the main production areas of native varieties of Chenopodium quinoa, is exposed to abrupt decreases in environmental temperature, affecting crop production. Plant-growth-promoting rhizobacteria that tolerate low temperatures could be used as organic biofertilizers in this region. We aimed to bioprospect the native psychrotolerant bacteria of the quinoa rhizosphere in this region that show plant-growth-promoting traits. Fifty-one strains belonging to the quinoa rhizosphere were characterised; 73% of the total could grow at low temperatures (4, 6, and 15 °C), whose genetic diversity based on DNA amplification of interspersed repetitive elements (BOX) showed 12 different profiles. According to the 16S rRNA sequence, bacterial species belonging to the classes Beta- and Gammaproteobacteria were identified. Only three (6%) isolates identified as nonpathogenic bacteria exhibited plant-growth-promoting activities, like IAA production, phosphate solubilization, growth in a nitrogen-free medium, and ACC deaminase production at 6 and 15 °C. ILQ215 (Pseudomonas silesiensis) and JUQ307 (Pseudomonas plecoglossicida) strains showed significantly positive plant growth effects in aerial length (about 50%), radicular length (112% and 79%, respectively), and aerial and radicular mass (above 170% and 210%, respectively) of quinoa plants compared with the control without bacteria. These results indicate the potential of both psychrotolerant strains to be used as potential organic biofertilizers for quinoa in this region.


Subject(s)
Chenopodium quinoa/growth & development , Chenopodium quinoa/microbiology , Proteobacteria/isolation & purification , Soil Microbiology , Carbon-Carbon Lyases/metabolism , Cold Temperature , Nitrogen Fixation , Peru , Phosphates/metabolism , Plant Growth Regulators/metabolism , Proteobacteria/classification , Proteobacteria/genetics , Proteobacteria/metabolism , RNA, Ribosomal, 16S/genetics , Rhizosphere
6.
Biotechnol Lett ; 42(3): 341-356, 2020 Mar.
Article in English | MEDLINE | ID: mdl-31897850

ABSTRACT

Efforts to elucidate the relationships between microorganisms and metal corrosion were mainly directed to understanding the formation of biofilm structures grown on corroded surfaces. The emergence of high throughput DNA sequencing techniques has helped in the description of microbial species involved directly and indirectly in the corrosion processes of alloys. Coupled with sequencing from environmental samples, other methodologies such as metatranscriptome, metaproteomics and metabolomics have allowed a new horizon to be opened on the understanding of the role of corrosive microbial biofilm. Several groups of bacteria and archaea were identified, showing the dominance of Proteobacteria in several samples analyzed and members of groups that previously received less attention, such as Firmicutes and Bacteroidetes. Our research also shows that metagenomic studies describe the presence of various Archaea domain thermophilic and methanogenic groups associated with metal corrosion. Thus, opening the prospect of describing new microbial groups as possible participants in this current global concern.


Subject(s)
Archaea/metabolism , Bacteroidetes/metabolism , Firmicutes/metabolism , Metals/metabolism , Proteobacteria/metabolism , Corrosion
7.
Microb Pathog ; 139: 103851, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31715320

ABSTRACT

BACKGROUND: The presence of the human lung microbiota has been demonstrated in patients with different lung diseases, mainly in sputum samples. However, for study of the alveolar microbiota, a bronchoalveolar lavage (BAL) sample represents the lower respiratory tract (LRT) environment. It is currently unknown whether there is a specific alveolar microbiota profile in human lung diseases, such as pulmonary tuberculosis (TB) and interstitial pneumonia (IP). METHODS: BAL samples from six active TB patients, six IP patients and ten healthy volunteers were used for DNA extraction followed by amplification of the complete bacterial 16S ribosomal RNA gene (16S rDNA). The 16S rDNA was sequenced with a MiSeq Desktop Sequencer, and the data were analysed by QIIME software for taxonomic assignment. RESULTS: The alveolar microbiota in TB and IP patients and healthy volunteers was characterized by six dominant phyla, Firmicutes, Proteobacteria, Bacteroidetes, Actinobacteria, Fusobacteria and Cyanobacteria. A significant reduction in the abundance of Firmicutes was observed in IP patients. In TB and IP patients, the diversity of the alveolar microbiota was diminished, characterized by a significant reduction in the abundance of the Streptococcus genus and associated with increased Mycobacterium abundance in TB patients and diminished Acinetobacter abundance in IP patients with respect to their abundances in healthy volunteers. However, an important difference was observed between TB and IP patients: the Fusobacterium abundance was significantly reduced in TB patients. Exclusive genera that were less abundant in patients than in healthy volunteers were characterized for each study group. CONCLUSIONS: This study shows that the alveolar microbiota profile in BAL samples from TB and IP patients, representing infectious and non-infectious lung diseases, respectively, is characterized by decreased diversity.


Subject(s)
Lung Diseases, Interstitial/microbiology , Microbiota , Tuberculosis, Pulmonary/microbiology , Actinobacteria/isolation & purification , Actinobacteria/metabolism , Adult , Aged , Bacteroidetes/isolation & purification , Bacteroidetes/metabolism , Bronchoalveolar Lavage , Cyanobacteria/isolation & purification , Cyanobacteria/metabolism , Female , Firmicutes/isolation & purification , Firmicutes/metabolism , Fusobacteria/isolation & purification , Fusobacteria/metabolism , Healthy Volunteers , Humans , Male , Middle Aged , Proteobacteria/isolation & purification , Proteobacteria/metabolism , RNA, Bacterial/genetics , RNA, Bacterial/isolation & purification , RNA, Ribosomal, 16S/genetics , RNA, Ribosomal, 16S/isolation & purification , Respiratory System/microbiology , Sputum/microbiology , Young Adult
8.
ISME J ; 12(10): 2532-2543, 2018 10.
Article in English | MEDLINE | ID: mdl-29950702

ABSTRACT

The Deepwater Horizon (DWH) blowout resulted in the deposition to the seafloor of up to 4.9% of 200 million gallons of oil released into the Gulf of Mexico. The petroleum hydrocarbon concentrations near the wellhead were high immediately after the spill, but returned to background levels a few years after the spill. Microbial communities in the seafloor are thought to be responsible for the degradation of hydrocarbons, however, our knowledge is primarily based upon gene diversity surveys and hydrocarbon concentration in field sediment samples. Here, we investigated the oil degradation potential and changes in bacterial community by amending seafloor sediment collected near the DWH site with crude oil and both oil and Corexit dispersant. Polycyclic aromatic hydrocarbons were rapidly degraded during the first 30 days of incubation, while alkanes were degraded more slowly. With the degradation of hydrocarbons, the relative abundances of Colwelliaceae, Alteromonadaceae, Methylococales, Alcanivorax, Bacteriovorax, and Phaeobacter increased remarkably. However, the abundances of oil-degrading bacteria changed with oil chemistry. Colwelliaceae decreased with increasing oil degradation, whereas Alcanivorax and Methylococcales increased considerably. We assembled seven genomes from the metagenome, including ones belonging to Colwellia, Alteromonadaceae, Rhodobacteraceae, the newly reported genus Woeseia, and candidate phylum NC10, all of which possess a repertoire of genes for hydrocarbon degradation. Moreover, genes related to hydrocarbon degradation were highly enriched in the oiled treatment, suggesting that the hydrocarbons were biodegraded, and that the indigenous microflora have a remarkable potential for the natural attenuation of spilled oil in the deep-sea surface sediment.


Subject(s)
Biodegradation, Environmental , Geologic Sediments/microbiology , Petroleum Pollution/analysis , Petroleum/metabolism , Proteobacteria/classification , Water Pollutants, Chemical/metabolism , Gulf of Mexico , Louisiana , Proteobacteria/metabolism , Water Pollutants, Chemical/analysis
9.
Braz. j. biol ; Braz. j. biol;78(1): 108-116, Feb. 2018. tab, graf
Article in English | LILACS | ID: biblio-888831

ABSTRACT

Abstract Although Planktothrix agardhii often produces toxic blooms in eutrophic water bodies around the world, little is known about the fate of the organic matter released by these abundant Cyanobacteria. Thus, this study focused in estimating the bacterial consumption of the DOC and DON (dissolved organic carbon and dissolved organic nitrogen, respectively) produced by axenic P. agardhii cultures and identifying some of the bacterial OTUs (operational taxonomic units) involved in the process. Both P. agardhii and bacterial inocula were sampled from the eutrophic Barra Bonita Reservoir (SP, Brazil). Two distinct carbon degradation phases were observed: during the first three days, higher degradation coefficients were calculated, which were followed by a slower degradation phase. The maximum value observed for particulate bacterial carbon (POC) was 11.9 mg L-1, which consisted of 62.5% of the total available DOC, and its mineralization coefficient was 0.477 day-1 (t½ = 1.45 days). A similar pattern of degradation was observed for DON, although the coefficients were slightly different. Changes in the OTUs patterns were observed during the different steps of the degradation. The main OTUs were related to the classes Alphaproteobacteria (8 OTUs), Betaproteobacteria (2 OTUs) and Gammaproteobacteria (3 OTUs). The genus Acinetobacter was the only identified organism that occurred during the whole process. Bacterial richness was higher at the slower degradation phase, which could be related to the small amounts of DOM (dissolved organic matter) available, particularly carbon. The kinetics of the bacterial degradation of P. agardhii-originated DOM suggests minimal loss of DOM from the Barra Bonita reservoir.


Resumo Embora Planktothrix agardhii frequentemente forme florações tóxicas em corpos d'água pelo mundo, pouco ainda se sabe sobre o destino da matéria orgânica liberada por essa abundante Cyanobacteria. Assim, este estudo foi focado na estimativa do consumo bacteriano do carbono orgânico dissolvido (DOC) e nitrogênio orgânico dissolvido (DON) produzido por culturas axênicas de P. agardhii e identificação de algumas das unidades taxonômicas operacionais (OTUs) bacterianas envolvidas no processo. Ambos a linhagem de P. agardhii e o inóculo bacteriano foram amostrados do reservatório eutrófico de Barra Bonita (SP, Brasil). Foram observadas duas fases distintas da degradação do DOC: durante os três primeiros dias, coeficientes mais altos de degradação foram calculados, que foram então seguidos por uma fase mais lenta da degradação do carbono. O valor máximo calculado para o carbono bacteriano particulado (POC) foi de 11,9 mgL-1, o que equivale a aproximadamente 62,5% do DOC disponível para consumo, e o seu coeficiente de mineralização foi de 0,477 dia-1 (t1/2 = 1,45 dias). Um padrão similar de degradação foi observado para DON, embora os coeficientes sejam ligeiramente diferentes. Foram observadas mudanças nos padrões de OTUs durante os diferentes passos da degradação. As principais OTUs foram relacionadas às classes Alphaproteobacteria (8 OTUs), Betaproteobacteria (2 OTUs) e Gammaproteobacteria (3 OTUs). O gênero Acinetobacter foi o único organismo identificado que ocorreu durante todo o processo. A maior riqueza bacteriana foi observada durante a fase lenta de degradação, o que pode estar relacionado às pequenas quantidades de matéria orgânica dissovida (DOM) disponíveis, particularmente o carbono. A cinética da degradação bacteriana da MOD de P. agardhii, quando comparada ao tempo de retenção do reservatório, sugere que existe uma perda mínima após sua liberação em Barra Bonita.


Subject(s)
Carbon/metabolism , Cyanobacteria/metabolism , Cyanobacteria/chemistry , Proteobacteria/metabolism , Humic Substances/analysis , Nitrogen/metabolism , Biodegradation, Environmental , Carbon/analysis , Eutrophication , Nitrogen/analysis
10.
Curr Microbiol ; 75(6): 666-676, 2018 Jun.
Article in English | MEDLINE | ID: mdl-29344709

ABSTRACT

Recent papers have confirmed current environmental pollution and the continuous release of polychlorinated biphenyls (PCBs) despite the prohibition of its manufacture worldwide. As the dehalogenating microorganisms are able to remove halogens from various analogous compounds, the characterization of PCB metabolisms can improve the degradation of similar compounds. Thus, this study extensively evaluated the microbial community developed in methanogenic and iron-reducing reactors. The horizontal-flow anaerobic reactor (HAIB) with real waste of Aroclor (1 mL L-1) was fed with mineral medium, ethanol, and sodium formate. Bacteria belonging to Thermotogaceae (Thermotogae), Geobacteraceae, Chloroflexi, Proteobacteria, and Firmicutes (Clostridium) were identified in the HAIB reactor. Bacteria belonging to the Chloroflexi, Firmicutes, and Geobacteraceae are associated with the degradation of hydrocarbons and could be related to the Aroclor waste in this paper. Furthermore, 5.26 × 1012 cells gTVS-1 of iron-reducing bacteria were quantified by the most probable number method in the HAIB reactor, suggesting that this group has an important role in aromatic degradation. Moreover, the evaluation of methanogenic and iron-reducing microorganisms in batch reactors with Aroclor 1260 was performed and the biomass growth was not affected by the addition of PCB. The methane production reached 0.38 µmol CH4 gTVS-1 and the iron reduction attained 90% in batch reactors. Through microbial analyses from HAIB and batch reactors, lower diversity was evidenced in the presence of PCB. This paper indicates the relevant role of iron-reducing organisms and Chloroflexi, Geobacteraceae, and Firmicutes group in PCB metabolism.


Subject(s)
Bioreactors/microbiology , Iron/metabolism , Methanol/metabolism , Polychlorinated Biphenyls/metabolism , Chloroflexi/metabolism , Firmicutes/metabolism , Proteobacteria/metabolism
11.
Microbiologyopen ; 7(2): e00550, 2018 04.
Article in English | MEDLINE | ID: mdl-29057585

ABSTRACT

The effect of pressure and temperature on microbial communities of marine environments contaminated with petroleum hydrocarbons is understudied. This study aims to reveal the responses of marine bacterial communities to low temperature, high pressure, and contamination with petroleum hydrocarbons using seawater samples collected near an offshore Brazilian platform. Microcosms containing only seawater and those containing seawater contaminated with 1% crude oil were subjected to three different treatments of temperature and pressure as follows: (1) 22°C/0.1 MPa; (2) 4°C/0.1 MPa; and (3) 4°C/22 MPa. The effect of depressurization followed by repressurization on bacterial communities was also evaluated (4°C/22 MPaD). The structure and composition of the bacterial communities in the different microcosms were analyzed by PCR-DGGE and DNA sequencing, respectively. Contamination with oil influenced the structure of the bacterial communities in microcosms incubated either at 4°C or 22°C and at low pressure. Incubation at low temperature and high pressure greatly influenced the structure of bacterial communities even in the absence of oil contamination. The 4°C/22 MPa and 4°C/22 MPaD treatments resulted in similar DGGE profiles. DNA sequencing (after 40 days of incubation) revealed that the diversity and relative abundance of bacterial genera were related to the presence or absence of oil contamination in the nonpressurized treatments. In contrast, the variation in the relative abundances of bacterial genera in the 4°C/22 MPa-microcosms either contaminated or not with crude oil was less evident. The highest relative abundance of the phylum Bacteroidetes was observed in the 4°C/22 MPa treatment.


Subject(s)
Bacteroidetes/metabolism , Hydrocarbons/adverse effects , Microbiota/drug effects , Petroleum Pollution/adverse effects , Petroleum/adverse effects , Proteobacteria/metabolism , Aquatic Organisms/genetics , Aquatic Organisms/metabolism , Bacteroidetes/classification , Bacteroidetes/genetics , Cold Temperature , High-Throughput Nucleotide Sequencing , Microbiota/physiology , Proteobacteria/classification , Proteobacteria/genetics , RNA, Ribosomal, 16S/genetics , Seawater/microbiology
12.
Braz J Biol ; 78(1): 108-116, 2018 02.
Article in English | MEDLINE | ID: mdl-28699965

ABSTRACT

Although Planktothrix agardhii often produces toxic blooms in eutrophic water bodies around the world, little is known about the fate of the organic matter released by these abundant Cyanobacteria. Thus, this study focused in estimating the bacterial consumption of the DOC and DON (dissolved organic carbon and dissolved organic nitrogen, respectively) produced by axenic P. agardhii cultures and identifying some of the bacterial OTUs (operational taxonomic units) involved in the process. Both P. agardhii and bacterial inocula were sampled from the eutrophic Barra Bonita Reservoir (SP, Brazil). Two distinct carbon degradation phases were observed: during the first three days, higher degradation coefficients were calculated, which were followed by a slower degradation phase. The maximum value observed for particulate bacterial carbon (POC) was 11.9 mg L-1, which consisted of 62.5% of the total available DOC, and its mineralization coefficient was 0.477 day-1 (t½ = 1.45 days). A similar pattern of degradation was observed for DON, although the coefficients were slightly different. Changes in the OTUs patterns were observed during the different steps of the degradation. The main OTUs were related to the classes Alphaproteobacteria (8 OTUs), Betaproteobacteria (2 OTUs) and Gammaproteobacteria (3 OTUs). The genus Acinetobacter was the only identified organism that occurred during the whole process. Bacterial richness was higher at the slower degradation phase, which could be related to the small amounts of DOM (dissolved organic matter) available, particularly carbon. The kinetics of the bacterial degradation of P. agardhii-originated DOM suggests minimal loss of DOM from the Barra Bonita reservoir.


Subject(s)
Carbon/metabolism , Cyanobacteria/chemistry , Cyanobacteria/metabolism , Humic Substances/analysis , Nitrogen/metabolism , Proteobacteria/metabolism , Biodegradation, Environmental , Carbon/analysis , Eutrophication , Nitrogen/analysis
13.
Microb Ecol ; 73(2): 296-309, 2017 02.
Article in English | MEDLINE | ID: mdl-27726035

ABSTRACT

Microbes can modulate ecosystem function since they harbor a vast genetic potential for biogeochemical cycling. The spatial and temporal dynamics of this genetic diversity should be acknowledged to establish a link between ecosystem function and community structure. In this study, we analyzed the genetic diversity of bacterial phosphorus utilization genes in two microbial assemblages, microbialites and bacterioplankton of Lake Alchichica, a semiclosed (i.e., endorheic) system with marked seasonality that varies in nutrient conditions, temperature, dissolved oxygen, and water column stability. We focused on dissolved organic phosphorus (DOP) utilization gene dynamics during contrasting mixing and stratification periods. Bacterial alkaline phosphatases (phoX and phoD) and alkaline beta-propeller phytases (bpp) were surveyed. DOP utilization genes showed different dynamics evidenced by a marked change within an intra-annual period and a differential circadian pattern of expression. Although Lake Alchichica is a semiclosed system, this dynamic turnover of phylotypes (from lake circulation to stratification) points to a different potential of DOP utilization by the microbial communities within periods. DOP utilization gene dynamics was different among genetic markers and among assemblages (microbialite vs. bacterioplankton). As estimated by the system's P mass balance, P inputs and outputs were similar in magnitude (difference was <10 %). A theoretical estimation of water column P monoesters was used to calculate the potential P fraction that can be remineralized on an annual basis. Overall, bacterial groups including Proteobacteria (Alpha and Gamma) and Bacteroidetes seem to be key participants in DOP utilization responses.


Subject(s)
Bacteria/genetics , Genes, Bacterial/genetics , Genetic Variation , Lakes/microbiology , Phosphorus/metabolism , Phylogeny , Alkaline Phosphatase/genetics , Aquatic Organisms/genetics , Aquatic Organisms/metabolism , Bacteria/enzymology , Bacteria/metabolism , Bacteroidetes/genetics , Bacteroidetes/metabolism , Base Sequence , DNA, Bacterial/analysis , Ecosystem , Environment , Gene Expression Regulation, Bacterial , Genetic Markers/genetics , Mexico , Oxygen/chemistry , Phosphorus/chemistry , Phosphorus Compounds/chemistry , Phosphorus Compounds/metabolism , Polymerase Chain Reaction/methods , Proteobacteria/genetics , Proteobacteria/metabolism , RNA, Bacterial/analysis , Seasons , Sequence Analysis , Water/chemistry
14.
FEMS Microbiol Ecol ; 93(2)2017 02.
Article in English | MEDLINE | ID: mdl-27986827

ABSTRACT

The litterfall is the major organic material deposited in soil of Brazilian Caatinga biome, thus providing the ideal conditions for plant biomass-degrading microorganisms to thrive. Herein, the phylogenetic composition and lignocellulose-degrading capacity have been explored for the first time from a fosmid library dataset of Caatinga soil by sequence-based screening. A complex bacterial community dominated by Proteobacteria and Actinobacteria was unraveled. SEED subsystems-based annotations revealed a broad range of genes assigned to carbohydrate and aromatic compounds metabolism, indicating microbial ability to utilize plant-derived material. CAZy-based annotation identified 7275 genes encoding 37 glycoside hydrolases (GHs) families related to hydrolysis of cellulose, hemicellulose, oligosaccharides and other lignin-modifying enzymes. Taxonomic affiliation of genes showed high genetic potential of the phylum Acidobacteria for hemicellulose degradation, whereas Actinobacteria members appear to play an important role in celullose hydrolysis. Additionally, comparative analyses revealed greater GHs profile similarity among soils as compared to the digestive tract of animals capable of digesting plant biomass, particularly in the hemicellulases content. Combined results suggest a complex synergistic interaction of community members required for biomass degradation into fermentable sugars. This large repertoire of lignocellulolytic enzymes opens perspectives for mining potential candidates of biochemical catalysts for biofuels production from renewable resources and other environmental applications.


Subject(s)
Lignin/metabolism , Microbiota , Soil Microbiology , Soil/chemistry , Actinobacteria/metabolism , Animals , Biofuels , Biomass , Brazil , Cellulose/metabolism , Glycoside Hydrolases , Hydrolysis , Phylogeny , Proteobacteria/metabolism
15.
Antonie Van Leeuwenhoek ; 110(4): 489-499, 2017 Apr.
Article in English | MEDLINE | ID: mdl-28008548

ABSTRACT

Sponges offer an excellent model to investigate invertebrate-microorganism interactions. Furthermore, bacteria associated with marine sponges represent a rich source of bioactive metabolites. The aim of this study was to characterize the bacteria inhabiting a genus of sponges, Oscarella, and their potentiality for antimicrobial production. Bacterial isolates were recovered from different Oscarella specimens, among which 337 were phylogenetically identified. The culturable community was dominated by Proteobacteria and Firmicutes, and Vibrio was the most frequently isolated genus, followed by Shewanella. When tested for antimicrobial production, bacteria of the 12 genera isolated were capable of producing antimicrobial substances. The majority of strains were involved in antagonistic interactions and inhibitory activities were also observed against bacteria of medical importance. It was more pronounced in some isolated genera (Acinetobacter, Bacillus, Photobacterium, Shewanella and Vibrio). These findings suggest that chemical antagonism could play a significant role in shaping bacterial communities within Oscarella, a genus classified as low-microbial abundance sponge. Moreover, the identified strains may contribute to the search for new sources of antimicrobial substances, an important strategy for developing therapies to treat infections caused by multidrug-resistant bacteria. This study was the first to investigate the diversity and antagonistic activity of bacteria isolated from Oscarella spp. It highlights the biotechnological potential of sponge-associated bacteria.


Subject(s)
Anti-Infective Agents/metabolism , Antibiosis/physiology , Firmicutes/metabolism , Porifera/microbiology , Proteobacteria/metabolism , Shewanella/metabolism , Animals , Biodiversity , Brazil , Firmicutes/classification , Firmicutes/isolation & purification , Proteobacteria/classification , Proteobacteria/isolation & purification , RNA, Ribosomal, 16S/genetics , Seawater/microbiology , Shewanella/classification , Shewanella/isolation & purification
16.
PLoS One ; 11(8): e0161168, 2016.
Article in English | MEDLINE | ID: mdl-27548380

ABSTRACT

Turfs are widespread assemblages (consisting of microbes and algae) that inhabit reef systems. They are the most abundant benthic component in the Abrolhos reef system (Brazil), representing greater than half the coverage of the entire benthic community. Their presence is associated with a reduction in three-dimensional coral reef complexity and decreases the habitats available for reef biodiversity. Despite their importance, the taxonomic and functional diversity of turfs remain unclear. We performed a metagenomics and pigments profile characterization of turfs from the Abrolhos reefs. Turf microbiome primarily encompassed Proteobacteria (mean 40.57% ± s.d. 10.36, N = 1.548,192), Cyanobacteria (mean 35.04% ± s.d. 15.5, N = 1.337,196), and Bacteroidetes (mean 11.12% ± s.d. 4.25, N = 424,185). Oxygenic and anoxygenic phototrophs, chemolithotrophs, and aerobic anoxygenic phototrophic (AANP) bacteria showed a conserved functional trait of the turf microbiomes. Genes associated with oxygenic photosynthesis, AANP, sulfur cycle (S oxidation, and DMSP consumption), and nitrogen metabolism (N2 fixation, ammonia assimilation, dissimilatory nitrate and nitrite ammonification) were found in the turf microbiomes. Principal component analyses of the most abundant taxa and functions showed that turf microbiomes differ from the other major Abrolhos benthic microbiomes (i.e., corals and rhodoliths) and seawater. Taken together, these features suggest that turfs have a homogeneous functional core across the Abrolhos Bank, which holds diverse microbial guilds when comparing with other benthic organisms.


Subject(s)
Cyanobacteria/genetics , DNA, Bacterial/genetics , Metagenomics , Microbiota/genetics , Phylogeny , Proteobacteria/genetics , Ammonia/metabolism , Animals , Anthozoa/physiology , Bacteroidetes , Biodiversity , Brazil , Coral Reefs , Cyanobacteria/classification , Cyanobacteria/metabolism , DNA Barcoding, Taxonomic , Microbial Consortia/genetics , Nitrogen/metabolism , Photosynthesis , Pigments, Biological/biosynthesis , Principal Component Analysis , Proteobacteria/classification , Proteobacteria/metabolism , Seawater/microbiology , Sulfonium Compounds/metabolism , Sulfur/metabolism
17.
Chemosphere ; 161: 266-273, 2016 Oct.
Article in English | MEDLINE | ID: mdl-27441985

ABSTRACT

Bacteria from aquatic ecosystems significantly contribute to biogeochemical cycles, but details of their community structure in tropical mining-impacted environments remain unexplored. In this study, we analyzed a bacterial community from circumneutral-pH tropical stream sediment by 16S rRNA and shotgun deep sequencing. Carrapatos stream sediment, which has been exposed to metal stress due to gold and iron mining (21 [g Fe]/kg), revealed a diverse community, with predominance of Proteobacteria (39.4%), Bacteroidetes (12.2%), and Parcubacteria (11.4%). Among Proteobacteria, the most abundant reads were assigned to neutrophilic iron-oxidizing taxa, such as Gallionella, Sideroxydans, and Mariprofundus, which are involved in Fe cycling and harbor several metal resistance genes. Functional analysis revealed a large number of genes participating in nitrogen and methane metabolic pathways despite the low concentrations of inorganic nitrogen in the Carrapatos stream. Our findings provide important insights into bacterial community interactions in a mining-impacted environment.


Subject(s)
Bacteria/metabolism , Metabolic Networks and Pathways/drug effects , Mining , Rivers , Water Microbiology , Bacteria/classification , Bacteria/genetics , Bacteroidetes/classification , Bacteroidetes/genetics , Bacteroidetes/metabolism , Brazil , Geologic Sediments/chemistry , Geologic Sediments/microbiology , Iron/analysis , Iron/metabolism , Metagenomics , Phylogeny , Proteobacteria/classification , Proteobacteria/genetics , Proteobacteria/metabolism , RNA, Ribosomal, 16S/genetics , Rivers/chemistry , Rivers/microbiology , Tropical Climate , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/metabolism
18.
Appl Microbiol Biotechnol ; 100(7): 3371-84, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26825820

ABSTRACT

To provide new insight into the dark fermentation process, a multi-lateral study was performed to study the microbiology of 20 different lab-scale bioreactors operated in four different countries (Brazil, Chile, Mexico, and Uruguay). Samples (29) were collected from bioreactors with different configurations, operation conditions, and performances. The microbial communities were analyzed using 16S rRNA genes 454 pyrosequencing. The results showed notably uneven communities with a high predominance of a particular genus. The phylum Firmicutes predominated in most of the samples, but the phyla Thermotogae or Proteobacteria dominated in a few samples. Genera from three physiological groups were detected: high-yield hydrogen producers (Clostridium, Kosmotoga, Enterobacter), fermenters with low-hydrogen yield (mostly from Veillonelaceae), and competitors (Lactobacillus). Inocula, reactor configurations, and substrates influence the microbial communities. This is the first joint effort that evaluates hydrogen-producing reactors and operational conditions from different countries and contributes to understand the dark fermentation process.


Subject(s)
Bioreactors/standards , Fermentation , Hydrogen/metabolism , Microbial Consortia/genetics , RNA, Ribosomal, 16S/genetics , Anaerobiosis , Clostridium/classification , Clostridium/genetics , Clostridium/metabolism , Enterobacter/classification , Enterobacter/genetics , Enterobacter/metabolism , Firmicutes/classification , Firmicutes/genetics , Firmicutes/metabolism , High-Throughput Nucleotide Sequencing , Lactobacillus/classification , Lactobacillus/genetics , Lactobacillus/metabolism , Latin America , Proteobacteria/classification , Proteobacteria/genetics , Proteobacteria/metabolism , Thermotoga maritima/classification , Thermotoga maritima/genetics , Thermotoga maritima/metabolism , Veillonellaceae/classification , Veillonellaceae/genetics , Veillonellaceae/metabolism
19.
Geobiology ; 14(2): 176-89, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26663088

ABSTRACT

Lithified microbial structures (microbialites) have been present on Earth for billions of years. Lithification may impose unique constraints on microbes. For instance, when CaCO3 forms, phosphate may be captured via coprecipitation and/or adsorption and potentially rendered unavailable for biological uptake. Therefore, the growth of microbes associated with CaCO3 may be phosphorus-limited. In this study, we compared the effects of resource addition on biogeochemical functions of microbial communities associated with microbialites and photoautotrophic microbial communities not associated with CaCO3 deposition in Río Mesquites, Cuatro Ciénegas, México. We also manipulated rates of CaCO3 deposition in microbialites to determine whether lithification reduces the bioavailability of phosphorus (P). We found that P additions significantly increased rates of gross primary production (F2,13 = 103.9, P < 0.001), net primary production (F2,13 = 129.6, P < 0.0001) and ecosystem respiration (F2,13 = 6.44, P < 0.05) in the microbialites, while P addition had no effect on photoautotrophic production in the non-CaCO3 -associated microbial communities. Growth of the non-CaCO3-associated phototrophs was only marginally stimulated when nitrogen and P were added simultaneously (F1,36 = 3.98, P = 0.053). In the microbialites, resource additions led to some shifts in the abundance of Proteobacteria, Bacteroidetes and Cyanobacteria but mostly had little effect on bacterial community composition. Ca(2+) uptake rates increased significantly with organic carbon additions (F1,13 = 8.02, P < 0.05). Lowering of CaCO3 deposition by decreasing calcium concentrations in the water led to increased microbial biomass accumulation rates in terms of both organic carbon (F4,48 = 5.23, P < 0.01) and P (F6,48 = 13.91, P < 0.001). These results provide strong evidence in support of a role of lithification in controlling P limitation of microbialite communities.


Subject(s)
Bacteroidetes/metabolism , Calcium Carbonate/metabolism , Cyanobacteria/metabolism , Environmental Microbiology , Phosphorus/metabolism , Proteobacteria/metabolism , Bacteroidetes/growth & development , Biomass , Cyanobacteria/growth & development , Mexico , Nitrogen/metabolism , Proteobacteria/growth & development
20.
Environ Microbiol ; 17(5): 1487-96, 2015 May.
Article in English | MEDLINE | ID: mdl-25040623

ABSTRACT

Ornithine lipids (OLs) are phosphorus-free membrane lipids that can be formed by many bacteria but that are absent from archaea and eukaryotes. A function for OLs in stress conditions and in host-bacteria interactions has been shown in some bacteria. Some bacterial species have been described that can form OLs, but lack the known genes (olsBA) involved in its biosynthesis, which implied the existence of a second pathway. Here we describe the bifunctional protein OlsF from Serratia proteamaculans involved in OL formation. Expression of OlsF and its homologue from Flavobacterium johnsoniae in Escherichia coli causes OL formation. Deletion of OlsF in S. proteamaculans caused the absence of OL formation. Homologues of OlsF are widely distributed among γ-, δ- and ε-Proteobacteria and in the Cytophaga-Flavobacterium-Bacteroidetes group of bacteria, including several well-studied pathogens for which the presence of OLs has not been suspected, such as for example Vibrio cholerae and Klebsiella pneumonia. Using genomic data, we predict that about 50% of bacterial species can form OLs.


Subject(s)
Acyltransferases/metabolism , Lipids/genetics , Membrane Lipids/metabolism , Ornithine/analogs & derivatives , Serratia/enzymology , Bacteroidetes/metabolism , Cytophaga/metabolism , Flavobacterium/metabolism , Gene Deletion , Lipids/biosynthesis , Ornithine/biosynthesis , Ornithine/genetics , Proteobacteria/metabolism , Serratia/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL