Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 9.494
Filter
1.
PeerJ ; 12: e17555, 2024.
Article in English | MEDLINE | ID: mdl-38948215

ABSTRACT

Background: PLAUR has been found upregulated in various tumors and closely correlated with the malignant phenotype of tumor cells. The aim of this study was to investigate the relationship between PLAUR and clear cell renal cell carcinoma (ccRCC) and its potential mechanism of promoting tumor progression. Methods: The expression levels and clinical significance of PLAUR, along with the associated signaling pathways, were extensively investigated in ccRCC samples obtained from The Cancer Genome Atlas (TCGA). PLAUR expression in 20 pairs of ccRCC tumor tissues and the adjacent tissues was assessed using qRT-PCR and IHC staining. Additionally, a series of in vitro experiments were conducted to investigate the impact of PLAUR suppression on cellular proliferation, migration, invasion, cell cycle progression, and apoptosis in ccRCC. The Western blot analysis was employed to investigate the expression levels of pivotal genes associated with the PI3K/AKT/mTOR signaling pathway. Results: The expression of PLAUR was significantly upregulated in ccRCC compared to normal renal tissues, and higher PLAUR expression in ccRCC was associated with a poorer prognosis than low expression. The in-vitro functional investigations demonstrated that knockdown of PLAUR significantly attenuated the proliferation, migration, and invasion capabilities of ccRCC cells. Concurrently, PLAUR knockdown effectively induced cellular apoptosis, modulated the cell cycle, inhibited the EMT process, and attenuated the activation of the PI3K/AKT/mTOR signaling pathway. PLAUR may represent a key mechanism underlying ccRCC progression. Conclusions: The involvement of PLAUR in ccRCC progression may be achieved through the activation of the PI3K/AKT/mTOR signaling pathway, making it a reliable biomarker for the identification and prediction of ccRCC.


Subject(s)
Carcinoma, Renal Cell , Cell Proliferation , Disease Progression , Kidney Neoplasms , Phosphatidylinositol 3-Kinases , Proto-Oncogene Proteins c-akt , Signal Transduction , TOR Serine-Threonine Kinases , Humans , Carcinoma, Renal Cell/pathology , Carcinoma, Renal Cell/genetics , Carcinoma, Renal Cell/metabolism , TOR Serine-Threonine Kinases/metabolism , TOR Serine-Threonine Kinases/genetics , Kidney Neoplasms/pathology , Kidney Neoplasms/genetics , Kidney Neoplasms/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Proto-Oncogene Proteins c-akt/genetics , Phosphatidylinositol 3-Kinases/metabolism , Phosphatidylinositol 3-Kinases/genetics , Cell Proliferation/genetics , Cell Line, Tumor , Male , Female , Apoptosis , Cell Movement/genetics , Middle Aged , Gene Expression Regulation, Neoplastic , Prognosis , Up-Regulation
2.
Exp Cell Res ; 440(1): 114116, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38830568

ABSTRACT

During the progression of diabetic kidney disease, proximal tubular epithelial cells respond to high glucose to induce hypertrophy and matrix expansion leading to renal fibrosis. Recently, a non-canonical PTEN has been shown to be translated from an upstream initiation codon CUG (leucine) to produce a longer protein called PTEN-Long (PTEN-L). Interestingly, the extended sequence present in PTEN-L contains cell secretion/penetration signal. Role of this non-canonical PTEN-L in diabetic renal tubular injury is not known. We show that high glucose decreases expression of PTEN-L. As a mechanism of its function, we find that reduced PTEN-L activates Akt-2, which phosphorylates and inactivate tuberin and PRAS40, resulting in activation of mTORC1 in tubular cells. Antibacterial agent acriflavine and antiviral agent ATA regulate translation from CUG codon. Acriflavine and ATA, respectively, decreased and increased expression of PTEN-L to altering Akt-2 and mTORC1 activation in the absence of change in expression of canonical PTEN. Consequently, acriflavine and ATA modulated high glucose-induced tubular cell hypertrophy and lamininγ1 expression. Importantly, expression of PTEN-L inhibited high glucose-stimulated Akt/mTORC1 activity to abrogate these processes. Since PTEN-L contains secretion/penetration signals, addition of conditioned medium containing PTEN-L blocked Akt-2/mTORC1 activity. Notably, in renal cortex of diabetic mice, we found reduced PTEN-L concomitant with Akt-2/mTORC1 activation, leading to renal hypertrophy and lamininγ1 expression. These results present first evidence for involvement of PTEN-L in diabetic kidney disease.


Subject(s)
Diabetic Nephropathies , Glucose , Kidney Tubules, Proximal , Mechanistic Target of Rapamycin Complex 1 , PTEN Phosphohydrolase , Diabetic Nephropathies/metabolism , Diabetic Nephropathies/pathology , Diabetic Nephropathies/genetics , Animals , PTEN Phosphohydrolase/metabolism , PTEN Phosphohydrolase/genetics , Glucose/metabolism , Glucose/pharmacology , Kidney Tubules, Proximal/metabolism , Kidney Tubules, Proximal/pathology , Kidney Tubules, Proximal/drug effects , Mechanistic Target of Rapamycin Complex 1/metabolism , Mechanistic Target of Rapamycin Complex 1/genetics , Proto-Oncogene Proteins c-akt/metabolism , Proto-Oncogene Proteins c-akt/genetics , Down-Regulation/drug effects , Mice , Humans , Male , Mice, Inbred C57BL , Signal Transduction
3.
J Cell Mol Med ; 28(11): e18450, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38842133

ABSTRACT

Dynactin subunit 2 (DCTN2) has been reported to play a role in progression of several tumours; however, the involvement of DCTN2 in potential mechanism or the tumour immune microenvironment among various cancers still remains largely unknown. Therefore, the objective of this study was to comprehensively investigate the expression status and potential function of DCTN2 in various malignancies through different database, such as The Cancer Genome Atlas, the Genotype-Tissue Expression and Gene Expression Omnimus databases. We discovered that DCTN2 expression was high in many type of tumours tissues compared to adjacent non-tumour ones. High DCTN2 signified poor prognosis for patients with tumours. Additionally, Gene Set Enrichment Analysis (GSEA) analysis revealed that DCTN2 was positively correlated with oncogenic pathways, including cell cycle, tumour metastasis-related pathway, while it was negatively with anti-tumour immune signalling pathway, such as INF-γ response. More importantly, we elucidated the functional impact of DCTN2 on hepatocellular carcinoma (HCC) progression and its underlying mechanisms. DCTN2 expression was much higher in HCC tissues than in adjacent non-tumour tissues. Silencing DCTN2 dramatically suppressed the proliferative and metastasis capacities of tumour cell in vitro. Mechanistically, DCTN2 exerted tumour-promoting effects by modulating the AKT signalling pathway. DCTN2 knockdown in HCC cells inhibited AKT phosphorylation and its downstream targets as well. Rescue experiments revealed that the anti-tumour effects of DCTN2 knockdown were partially reversed upon AKT pathway activation. Overall, DCTN2 may be a potent biomarker signifying tumour prognosis and a promising therapeutic target for tumour treatment, particularly in HCC.


Subject(s)
Carcinoma, Hepatocellular , Cell Proliferation , Gene Expression Regulation, Neoplastic , Liver Neoplasms , Proto-Oncogene Proteins c-akt , Signal Transduction , Humans , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/pathology , Carcinoma, Hepatocellular/metabolism , Cell Line, Tumor , Cell Movement/genetics , Cell Proliferation/genetics , Dynactin Complex/metabolism , Dynactin Complex/genetics , Liver Neoplasms/genetics , Liver Neoplasms/pathology , Liver Neoplasms/metabolism , Prognosis , Proto-Oncogene Proteins c-akt/metabolism , Proto-Oncogene Proteins c-akt/genetics , Tumor Microenvironment/genetics
4.
J Cardiothorac Surg ; 19(1): 322, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38844975

ABSTRACT

AIM: The most common type of cancer that leads to death worldwide is lung cancer. Despite significant surgery and chemotherapy improvements, lung cancer patient's survival rate is still poor. The RNA polymerase I subunit D (POLR1D) gene can induce various cancers. A current study reported that POLR1D plays a vital role in cancer prognosis. However, its biological function in the development of lung cancer remains unclear. METHODS: Reverse transcription PCR (RT-PCR) measured the relative POLR1D protein expression level in lung cancer cell lines. Lung cancer cell proliferation, migration, and invasion were analyzed by performing cell counting kit-8 (CCK-8), and transwell. The phosphatidylinositol 3-kinase/serine-threonine kinase (PI3K/AKT) signaling pathway-related protein expressions were examined by Western blotting assay. RESULTS: POLR1D protein expression was elevated in lung cancer. Lung cancer cell loss-of-function tests showed that POLR1D silencing could attenuate cell viability both in SK-MES-1 and in H2170 cells. Furthermore, silencing POLR1D inhibited SK-MES-1 and H2170 cells proliferation, migration, and invasion. Moreover, SK-MES-1 and H2170 cells' migration and invasion capacity were potentially suppressed by the knockdown of POLR1D. The progression of multiple cancers has been implicated in the PI3K/AKT pathway. Here, we observed that POLR1D silencing suppressed lung cancer progression by inhibition of the PI3K-Akt pathway. CONCLUSIONS: The study speculated that POLR1D might provide a new potential therapeutic possibility for treating lung cancer patients via targeting PI3K/AKT.


Subject(s)
Cell Movement , Cell Proliferation , Lung Neoplasms , Phosphatidylinositol 3-Kinases , Proto-Oncogene Proteins c-akt , Signal Transduction , Humans , Cell Line, Tumor , Cell Movement/genetics , Cell Proliferation/genetics , Gene Expression Regulation, Neoplastic , Gene Silencing , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Lung Neoplasms/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Phosphatidylinositol 3-Kinases/genetics , Proto-Oncogene Proteins c-akt/metabolism , Proto-Oncogene Proteins c-akt/genetics , RNA Polymerase I/genetics , RNA Polymerase I/metabolism
5.
Int J Mol Sci ; 25(11)2024 May 27.
Article in English | MEDLINE | ID: mdl-38891994

ABSTRACT

The PI3K/AKT pathway plays a pivotal role in cellular processes, and its dysregulation is implicated in various cancers, including colorectal cancer. The present study correlates the expression levels of critical genes (PIK3CA, PTEN, AKT1, FOXO1, and FRAP) in 60 tumor tissues with clinicopathological and demographic characteristics. The results indicate age-related variation in FOXO1 gene expression, with higher levels observed in patients aged 68 and above. In addition, tumors originating from the rectum exhibit higher FOXO1 expression compared to colon tumors, suggesting region-specific differences in expression. The results also identify the potential correlation between PTEN, PIK3CA gene expression, and parameters such as tumor grade and neuroinvasion. The bioinformatic comparative analysis found that PTEN and FOXO1 expressions were downregulated in colorectal cancer tissue compared to normal colon tissue. Relapse-free survival analysis based on gene expression identified significant correlations, highlighting PTEN and FRAP as potential indicators of favorable outcomes. Our findings provide a deeper understanding of the role of the PI3K/AKT pathway in colorectal cancer and the importance of understanding the molecular basis of colorectal cancer development and progression.


Subject(s)
Colorectal Neoplasms , Gene Expression Regulation, Neoplastic , PTEN Phosphohydrolase , Proto-Oncogene Proteins c-akt , Signal Transduction , Humans , Colorectal Neoplasms/genetics , Colorectal Neoplasms/pathology , Colorectal Neoplasms/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Proto-Oncogene Proteins c-akt/genetics , Signal Transduction/genetics , Aged , Male , PTEN Phosphohydrolase/genetics , PTEN Phosphohydrolase/metabolism , Female , Middle Aged , Phosphatidylinositol 3-Kinases/metabolism , Phosphatidylinositol 3-Kinases/genetics , Class I Phosphatidylinositol 3-Kinases/genetics , Class I Phosphatidylinositol 3-Kinases/metabolism , Forkhead Box Protein O1/genetics , Forkhead Box Protein O1/metabolism , Adult , Aged, 80 and over
6.
Int J Mol Sci ; 25(11)2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38892296

ABSTRACT

As we move into the era of precision medicine, the growing relevance of genetic alterations to prostate cancer (PCa) development and treatment demonstrates the importance of characterizing preclinical models at the genomic level. Our study investigated the genomic characterization of eight PCa cell lines to understand which models are clinically relevant. We designed a custom AmpliSeq DNA gene panel that encompassed key molecular pathways targeting AR signaling, apoptosis, DNA damage repair, and PI3K/AKT/PTEN, in addition to tumor suppressor genes. We examined the relationship between cell line genomic alterations and therapeutic response. In addition, using DepMap's Celligner tool, we identified which preclinical models are most representative of specific prostate cancer patient populations on cBioPortal. These data will help investigators understand the genetic differences in preclinical models of PCa and determine which ones are relevant for use in their translational research.


Subject(s)
Genomics , Prostatic Neoplasms , Humans , Male , Prostatic Neoplasms/genetics , Prostatic Neoplasms/pathology , Prostatic Neoplasms/metabolism , Cell Line, Tumor , Genomics/methods , Signal Transduction , Phosphatidylinositol 3-Kinases/metabolism , Phosphatidylinositol 3-Kinases/genetics , PTEN Phosphohydrolase/genetics , PTEN Phosphohydrolase/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Proto-Oncogene Proteins c-akt/genetics , DNA Repair
7.
Poult Sci ; 103(7): 103866, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38833957

ABSTRACT

Avian pathogenic Escherichia coli (APEC) is the causative agent of chicken colibacillosis. Paeoniflorin, a natural ingredient extracted from Paeonia lactiflora, has a variety of pharmacological effects including anti-inflammatory and immunomodulatory. However, its effects and mechanism in APEC-induced acute lung injury (ALI) in chicken is not clear. The aim of this study was to investigate the protective effect of paeoniflorin on APEC-induced ALI and its possible mechanism. Paeoniflorin (25, 50, and 100 mg/kg) was administered by gavage for 5 d starting at 9 d of age and the chicken were infected with APEC by intraperitoneal injection at 12 d of age. The tissues were collected after APEC infection for 36 h for analysis. The results showed that paeoniflorin significantly alleviated the symptoms, increased the survival rate and body weight gain of APEC-infected chicken, and improved the histopathological damages, and reduced APEC loads in lung tissues. In addition, paeoniflorin restored the gene expression of ZO-1, Occludin and Claudin-3 during APEC infection. Moreover, paeoniflorin pretreatment significantly affected the endocannabinoid system (ECs) by increasing DAGL, decreasing MAGL, increasing secretion of 2-AG. Then, paeoniflorin significantly decreased the secretion of IL-1ß, IL-6 and TNF-α in lung tissues, and decreased the mRNA expression of CXCL8, CXCL12, CCL1, CCL5, and CCL17. In addition, paeoniflorin significantly reduced the phosphorylation levels of PI3K, AKT, P65, and IκB. In summary, we found that paeoniflorin inhibited APEC-induced ALI, and its mechanism may be through affecting ECs and inhibiting the activation of PI3K/AKT and NF-κB signaling pathways, which provides a new idea for the prevention and treatment of chicken colibacillosis.


Subject(s)
Acute Lung Injury , Chickens , Escherichia coli Infections , Glucosides , Monoterpenes , NF-kappa B , Phosphatidylinositol 3-Kinases , Poultry Diseases , Proto-Oncogene Proteins c-akt , Signal Transduction , Animals , Acute Lung Injury/prevention & control , Acute Lung Injury/etiology , Acute Lung Injury/veterinary , Acute Lung Injury/chemically induced , Acute Lung Injury/drug therapy , Glucosides/pharmacology , Glucosides/administration & dosage , Monoterpenes/pharmacology , Monoterpenes/administration & dosage , Poultry Diseases/prevention & control , Poultry Diseases/drug therapy , Signal Transduction/drug effects , Proto-Oncogene Proteins c-akt/metabolism , Proto-Oncogene Proteins c-akt/genetics , NF-kappa B/metabolism , NF-kappa B/genetics , Escherichia coli Infections/veterinary , Escherichia coli Infections/drug therapy , Phosphatidylinositol 3-Kinases/metabolism , Phosphatidylinositol 3-Kinases/genetics , Avian Proteins/metabolism , Avian Proteins/genetics , Dose-Response Relationship, Drug , Escherichia coli/drug effects
8.
Int J Nanomedicine ; 19: 6085-6098, 2024.
Article in English | MEDLINE | ID: mdl-38911502

ABSTRACT

Introduction: Endometriosis (EM) is an estrogen-dependent benign gynecologic disease affecting approximately 10% of reproductive-age women with a high recurrence rate, but lacks reliable biomarkers. No previous studies have investigated the possible use of extracellular vesicle (EV)-associated micro RNAs (miRNAs) from menstrual blood (MB) as candidate diagnostic or prognostic markers of EM. Methods: Specimens were obtained from endometriosis and non-endometriosis patients at the International Peace Maternity and Child Health Hospital in Shanghai. Microarray was used to screen differentially expressed miRNAs among peritoneal fluid (PF), fallopian tube fluid (FF), and MB. Dual-luciferase reporter gene assay was carried out to verify the relationship between miR-4443 and ACSS2. Cell proliferation and Transwell invasion assays were performed in vitro after intervention on miR-4443 and ACSS2 in hEM15A human endometrial stromal cells and primary human endometrial stromal cells (hESCs). Spearman correlation analysis, receiver operating characteristic (ROC) curve analysis, and survival analysis were applied to clinical data, including severity of symptoms and relapse of EM among EM patients. Results: EV-associated miR-4443 was abundant in MB of endometriosis patients. ACSS2 knockdown and miR-4443 overexpression promoted cell proliferation and migration via the PI3K/AKT pathway. miR-4443 levels in MB-EVs were positively correlated with the degree of dyspareunia (r=0.64; P<0.0001) and dysmenorrhea (r=0.42; P<0.01) in the endometriosis group. ROC curve analyses showed an area under the curve (AUC) of 0.741 (95% CI 0.624-0.858; P<0.05) for miR-4443 and an AUC of 0.929 (95% CI 0.880-0.978; P<0.05) for the combination of miR-4443 and dysmenorrhea. Conclusion: MB-derived EV-associated miR-4443 might participate in endometriosis development, thus providing a new candidate biomarker for the noninvasive prediction of endometriosis recurrence.


Subject(s)
Cell Proliferation , Endometriosis , Extracellular Vesicles , MicroRNAs , Phosphatidylinositol 3-Kinases , Proto-Oncogene Proteins c-akt , Humans , Endometriosis/metabolism , Endometriosis/genetics , Female , MicroRNAs/genetics , MicroRNAs/metabolism , Extracellular Vesicles/genetics , Extracellular Vesicles/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Proto-Oncogene Proteins c-akt/genetics , Adult , Phosphatidylinositol 3-Kinases/metabolism , Phosphatidylinositol 3-Kinases/genetics , Disease Progression , Cell Movement , Signal Transduction , Cell Line , Endometrium/metabolism , Endometrium/pathology
9.
J Agric Food Chem ; 72(25): 14349-14363, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38869217

ABSTRACT

Deoxynivalenol (DON) is a common agricultural mycotoxin that is chemically stable and not easily removed from cereal foods. When organisms consume food made from contaminated crops, it can be hazardous to their health. Numerous studies in recent years have found that hesperidin (HDN) has hepatoprotective effects on a wide range of toxins. However, few scholars have explored the potential of HDN in attenuating DON-induced liver injury. In this study, we established a low-dose DON exposure model and intervened with three doses of HDN, acting on male C57 BL/6 mice and AML12 cells, which served as in vivo and in vitro models, respectively, to investigate the protective mechanism of HDN against DON exposure-induced liver injury. The results suggested that DON disrupted hepatic autophagic fluxes, thereby impairing liver structure and function, and HDN significantly attenuated these changes. Further studies revealed that HDN alleviated DON-induced excessive autophagy through the mTOR pathway and DON-induced lysosomal dysfunction through the AKT/GSK3ß/TFEB pathway. Overall, our study suggested that HDN could ameliorate DON-induced autophagy flux disorders via the mTOR pathway and the AKT/GSK3ß/TFEB pathway, thereby reducing liver injury.


Subject(s)
Autophagy , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors , Glycogen Synthase Kinase 3 beta , Hesperidin , Liver , Mice, Inbred C57BL , Proto-Oncogene Proteins c-akt , TOR Serine-Threonine Kinases , Trichothecenes , Animals , TOR Serine-Threonine Kinases/metabolism , TOR Serine-Threonine Kinases/genetics , Trichothecenes/toxicity , Male , Glycogen Synthase Kinase 3 beta/metabolism , Glycogen Synthase Kinase 3 beta/genetics , Mice , Proto-Oncogene Proteins c-akt/metabolism , Proto-Oncogene Proteins c-akt/genetics , Liver/drug effects , Liver/metabolism , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/metabolism , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/genetics , Hesperidin/pharmacology , Autophagy/drug effects , Signal Transduction/drug effects , Humans , Chemical and Drug Induced Liver Injury/metabolism , Chemical and Drug Induced Liver Injury/drug therapy , Chemical and Drug Induced Liver Injury/prevention & control , Cell Line
10.
Biol Direct ; 19(1): 42, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38831379

ABSTRACT

Triple-negative breast cancer (TNBC) is more aggressive and has a higher metastasis rate compared with other subtypes of breast cancer. Due to the lack of drug-targetable receptors, chemotherapy is now the only available systemic treatment for TNBC. However, some patients might still develop drug resistance and have poor prognosis. Therefore, novel molecular biomarkers and new treatment targets are urgently needed for patients with TNBC. To provide molecular insights into TNBC progression, we investigated the function and the underlying mechanism of Defective in cullin neddylation 1 domain containing 5 (DCUN1D5) in the regulation of TNBC. By TCGA dataset and surgical specimens with immunohistochemical (IHC) staining method, DCUN1D5 was identified to be significantly upregulated in TNBC tumor tissues and negatively associated with prognosis. A series of in vitro and in vivo experiments were performed to confirm the oncogenic role of DCUN1D5 in TNBC. Overexpression of FN1 or PI3K/AKT activator IGF-1 could restore the proliferative and invasive ability induced by DCUN1D5 knockdown and DCUN1D5 could act as a novel transcriptional target of transcription factor Yin Yang 1 (YY1). In conclusion, YY1-enhanced DCUN1D5 expression could promote TNBC progression by FN1/PI3K/AKT pathway and DCUN1D5 might be a potential prognostic biomarker and therapeutic target for TNBC treatment.


Subject(s)
Phosphatidylinositol 3-Kinases , Proto-Oncogene Proteins c-akt , Triple Negative Breast Neoplasms , YY1 Transcription Factor , Animals , Female , Humans , Mice , Cell Line, Tumor , Disease Progression , Fibronectins , Gene Expression Regulation, Neoplastic , Mice, Nude , Phosphatidylinositol 3-Kinases/metabolism , Phosphatidylinositol 3-Kinases/genetics , Proto-Oncogene Proteins c-akt/metabolism , Proto-Oncogene Proteins c-akt/genetics , Signal Transduction , Transcriptional Activation , Triple Negative Breast Neoplasms/genetics , Triple Negative Breast Neoplasms/metabolism , YY1 Transcription Factor/metabolism , YY1 Transcription Factor/genetics
11.
PLoS Genet ; 20(6): e1011326, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38857279

ABSTRACT

The development of ectodermal organs begins with the formation of a stratified epithelial placode that progressively invaginates into the underlying mesenchyme as the organ takes its shape. Signaling by secreted molecules is critical for epithelial morphogenesis, but how that information leads to cell rearrangement and tissue shape changes remains an open question. Using the mouse dentition as a model, we first establish that non-muscle myosin II is essential for dental epithelial invagination and show that it functions by promoting cell-cell adhesion and persistent convergent cell movements in the suprabasal layer. Shh signaling controls these processes by inducing myosin II activation via AKT. Pharmacological induction of AKT and myosin II can also rescue defects caused by the inhibition of Shh. Together, our results support a model in which the Shh signal is transmitted through myosin II to power effective cellular rearrangement for proper dental epithelial invagination.


Subject(s)
Cell Adhesion , Cell Movement , Hedgehog Proteins , Myosin Type II , Signal Transduction , Animals , Mice , Hedgehog Proteins/metabolism , Hedgehog Proteins/genetics , Cell Adhesion/genetics , Myosin Type II/metabolism , Myosin Type II/genetics , Cell Movement/genetics , Epithelium/metabolism , Morphogenesis/genetics , Tooth/metabolism , Tooth/growth & development , Epithelial Cells/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Proto-Oncogene Proteins c-akt/genetics , Gene Expression Regulation, Developmental
12.
Sci Rep ; 14(1): 14145, 2024 06 19.
Article in English | MEDLINE | ID: mdl-38898042

ABSTRACT

This study probes the utility of biomarkers for microsatellite instability (MSI) detection and elucidates the molecular dynamics propelling colorectal cancer (CRC) progression. We synthesized a primer panel targeting 725 MSI loci, informed by The Cancer Genome Atlas (TCGA) and ancillary databases, to construct an amplicon library for next-generation sequencing (NGS). K-means clustering facilitated the distillation of 8 prime MSI loci, including activin A receptor type 2A (ACVR2A). Subsequently, we explored ACVR2A's influence on CRC advancement through in vivo tumor experiments and hematoxylin-eosin (HE) staining. Transwell assays gauged ACVR2A's role in CRC cell migration and invasion, while colony formation assays appraised cell proliferation. Western blotting illuminated the impact of ACVR2A suppression on CRC's PI3K/AKT/mTOR pathway protein expressions under hypoxia. Additionally, ACVR2A's influence on CRC-induced angiogenesis was quantified via angiogenesis assays. K-means clustering of NGS data pinpointed 32 MSI loci specific to tumor and DNA mismatch repair deficiency (dMMR) tissues. ACVR2A emerged as a pivotal biomarker, discerning MSI-H tissues with 90.97% sensitivity. A curated 8-loci set demonstrated 100% sensitivity and specificity for MSI-H detection in CRC. In vitro analyses corroborated ACVR2A's critical role, revealing its suppression of CRC proliferation, migration, and invasion. Moreover, ACVR2A inhibition under CRC-induced hypoxia markedly escalated MMP3, CyclinA, CyclinD1, and HIF1α protein expressions, alongside angiogenesis, by triggering the PI3K/AKT/mTOR cascade. The 8-loci ensemble stands as the optimal marker for MSI-H identification in CRC. ACVR2A, a central element within this group, deters CRC progression, while its suppression amplifies PI3K/AKT/mTOR signaling and angiogenesis under hypoxic stress.


Subject(s)
Activin Receptors, Type II , Cell Movement , Colorectal Neoplasms , Disease Progression , Microsatellite Instability , Colorectal Neoplasms/genetics , Colorectal Neoplasms/pathology , Colorectal Neoplasms/metabolism , Humans , Activin Receptors, Type II/genetics , Activin Receptors, Type II/metabolism , Animals , Cell Movement/genetics , Mice , Cell Line, Tumor , Cell Proliferation/genetics , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Signal Transduction , Male , High-Throughput Nucleotide Sequencing , Female , Proto-Oncogene Proteins c-akt/metabolism , Proto-Oncogene Proteins c-akt/genetics
13.
Int J Mol Sci ; 25(12)2024 Jun 09.
Article in English | MEDLINE | ID: mdl-38928092

ABSTRACT

Lung adenocarcinoma (LUAD) is the most widespread cancer in the world, and its development is associated with complex biological mechanisms that are poorly understood. Here, we revealed a marked upregulation in the mRNA level of C1orf131 in LUAD samples compared to non-tumor tissue samples in The Cancer Genome Atlas (TCGA). Depletion of C1orf131 suppressed cell proliferation and growth, whereas it stimulated apoptosis in LUAD cells. Mechanistic investigations revealed that C1orf131 knockdown induced cell cycle dysregulation via the AKT and p53/p21 signalling pathways. Additionally, C1orf131 knockdown blocked cell migration through the modulation of epithelial-mesenchymal transition (EMT) in lung adenocarcinoma. Notably, we identified the C1orf131 protein nucleolar localization sequence, which included amino acid residues 137-142 (KKRKLT) and 240-245 (KKKRKG). Collectively, C1orf131 has potential as a novel therapeutic marker for patients in the future, as it plays a vital role in the progression of lung adenocarcinoma.


Subject(s)
Adenocarcinoma of Lung , Cell Movement , Cell Proliferation , Gene Expression Regulation, Neoplastic , Lung Neoplasms , Proto-Oncogene Proteins c-akt , Signal Transduction , Humans , Adenocarcinoma of Lung/genetics , Adenocarcinoma of Lung/pathology , Adenocarcinoma of Lung/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Proto-Oncogene Proteins c-akt/genetics , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Lung Neoplasms/metabolism , Cell Proliferation/genetics , Cell Movement/genetics , Cell Line, Tumor , Epithelial-Mesenchymal Transition/genetics , Apoptosis/genetics , Disease Progression , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , A549 Cells
14.
Exp Cell Res ; 440(1): 114125, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38880324

ABSTRACT

Bladder cancer(BC) is one of the most prevalent cancers in the urinary tract, with high recurrence and fatality rates. Research indicates that go-ichi-ni-san complex subunit 1 (GINS1) crucially influences cancer progression by regulating DNA replication through cell cycle modulation. Thus, suppressing the active proliferation of cells in tumor tissues may require silencing GINS1. However, the consequences of GINS1 in bladder cancer aren't to be determined. In this paper, we examine the role and mechanism of GINS1 in the development of bladder cancer. GINS1 expression levels and prognostic relevance in bladder cancer were validated using Western blotting, immunohistochemistry, and Kaplan-Meier survival analysis. The influence of GINS1 on bladder cancer was investigated using a variety of approaches, including cell transfection, cell counts, transwell migrations, colony formation, and flow cytometry. Immunohistochemistry studies demonstrate that GINS1 expression is increased in bladder cancer tissues. GINS1 silencing resulted in an arrest of the cell cycle at the phase of G0/G1, which inhibited BC cell growth both in vitro and in vivo. GINS1 knockdown also hindered the AKT/mTOR pathway. Furthermore, increased GINS1 expression affects the cell cycle and stimulates the AKT/mTOR pathway, allowing BC to develop more quickly. Consequently, GINS1 occurs as a latent therapeutic target, particularly for individuals with BC.


Subject(s)
Cell Proliferation , Chromosomal Proteins, Non-Histone , Proto-Oncogene Proteins c-akt , Signal Transduction , TOR Serine-Threonine Kinases , Urinary Bladder Neoplasms , Urinary Bladder Neoplasms/pathology , Urinary Bladder Neoplasms/genetics , Urinary Bladder Neoplasms/metabolism , Humans , Proto-Oncogene Proteins c-akt/metabolism , Proto-Oncogene Proteins c-akt/genetics , TOR Serine-Threonine Kinases/metabolism , TOR Serine-Threonine Kinases/genetics , Chromosomal Proteins, Non-Histone/metabolism , Chromosomal Proteins, Non-Histone/genetics , Cell Proliferation/genetics , Animals , Cell Line, Tumor , Proto-Oncogene Proteins c-myc/metabolism , Proto-Oncogene Proteins c-myc/genetics , Gene Expression Regulation, Neoplastic , Mice , Disease Progression , Mice, Nude , Male , Female , Prognosis , Mice, Inbred BALB C , DNA-Binding Proteins
15.
Zhongguo Zhong Yao Za Zhi ; 49(7): 1888-1895, 2024 Apr.
Article in Chinese | MEDLINE | ID: mdl-38812201

ABSTRACT

This study observed the effects of Notoginseng Radix et Rhizoma on the phosphatidylinositol 3-kinase(PI3K)/protein kinase B(Akt)/mammalian target of rapamycin complex 1(mTORC1) signaling pathway and mitochondrial energy metabolism in the rat model of adriamycin-induced renal fibrosis with blood stasis syndrome to explore the mechanism of Notoginseng Radix et Rhizoma in protecting the kidney. Thirty male rats with adriamycin-induced renal fibrosis were randomized into model, low-, medium-, and high-dose Notoginseng Radix et Rhizoma, and positive control groups(n=6). Six clean SD male rats were selected into the normal group. The normal group and model group were administrated with normal saline, and other groups with corresponding drugs. After 8 weeks of treatment, the renal function, renal pathology, adenosine triphosphate(ATP) levels, Na~+-K~+-ATPase and Ca~(2+)-Mg~(2+)-ATPase activities, and the protein levels of ATP5B, mTORC1, 70 kDa ribosomal protein S6 kinase(P70S6K), P85, Akt, p-Akt, and SH2-containing inositol phosphatase(SHIP2) in the renal tissue were determined. Compared with the normal group, the model group showed elevated levels of blood urea nitrogen(BUN) and serum creatinine(SCr)(P<0.01). Compared with the model group, Notoginseng Radix et Rhizoma and the positive control lowered the levels of BUN and SCr, which were significant in the medium-and high-dose Noto-ginseng Radix et Rhizoma groups and the positive control group(P<0.05). Compared with the model group, Notoginseng Radix et Rhizoma and the positive control alleviated the pathological changes in the renal tissue, such as vacuolar and fibroid changes, glomerulus atrophy, cystic expansion of renal tubules, and massive infiltration of inflammatory cells. Compared with the normal group, the model group showed decreased mitochondrial ATP content and Na~+-K~+-ATPase and Ca~(2+)-Mg~(2+)-ATPase activities in the renal tissue(P<0.05), and medium-and high-dose Notoginseng Radix et Rhizoma and positive control mitigated such decreases(P<0.05). Compared with the model group, medium-and high-dose Notoginseng Radix et Rhizoma and the positive control up-regulated the protein levels of ATP5B and SHIP2 and down-regulated the protein levels of mTORC1, P70S6K, P85, Akt, and p-Akt(P<0.05 or P<0.01 or P<0.001). Notoginseng Radix et Rhizoma may exert an anti-fibrosis effect by inhibiting the activation of the PI3K/Akt/mTORC1 pathway to restore mitochondrial energy metabolism, thus protecting the kidney.


Subject(s)
Drugs, Chinese Herbal , Energy Metabolism , Mechanistic Target of Rapamycin Complex 1 , Mitochondria , Panax notoginseng , Proto-Oncogene Proteins c-akt , Rats, Sprague-Dawley , Animals , Male , Rats , Proto-Oncogene Proteins c-akt/metabolism , Proto-Oncogene Proteins c-akt/genetics , Mechanistic Target of Rapamycin Complex 1/metabolism , Panax notoginseng/chemistry , Mitochondria/drug effects , Mitochondria/metabolism , Energy Metabolism/drug effects , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/administration & dosage , Phosphatidylinositol 3-Kinases/metabolism , Phosphatidylinositol 3-Kinases/genetics , Rhizome/chemistry , Humans , Signal Transduction/drug effects , Kidney/drug effects , Kidney/metabolism , Renal Insufficiency/drug therapy , Renal Insufficiency/metabolism
16.
Zhongguo Zhong Yao Za Zhi ; 49(7): 1924-1931, 2024 Apr.
Article in Chinese | MEDLINE | ID: mdl-38812205

ABSTRACT

The Chinese medical mechanism of Huanglian Jieduo Decoction on treating Alzheimer's disease(AD) characterized by "toxin damaging brain collateral" is still unclear. This study aims to explore the mechanism of Huanglian Jieduo Decoction on regulating triggering receptor expressed on myeloid cells 2(TREM2)/protein kinase B(Akt)/glycogen synthase kinase 3ß(GSK3ß) pathway to improve the cognitive deficit in APP/PS1 transgenic mice. APP/PS1 mice of approximately nine months old were randomly divided into the model group, the low, medium, and high(2.5, 5, and 10 g·kg~(-1)) groups of Huanglian Jiedu Decoction, and 0.75 mg·kg~(-1) donepezil hydrochloride group, and the C57BL/6J mice with the same age were taken as the normal group. After one month of continuous oral administration, a Morris water maze was performed to detect the learning and memory ability of mice. Hematoxylin-eosin(HE) staining was applied to observe the morphology of neuronal cells in the cortical area of mice. Immunofluorescence was used to detect the protein expressions of ß-amyloid(Aß_(1-42)), CD86, and arginase 1(Arg1). The mRNA levels of interleukin(IL)-1ß, IL-6, and IL-10 in the cortex of mice were detected by real-time fluorescence quantitative polymerase chain reaction(RT-qPCR). The protein expressions of TREM2, phosphoinositide-3 kinase(PI3K), Akt, GSK3ß, and beta-catenin(ß-catenin) in mouse cortex were determined by Western blot. The results indicated that the escape latency of the model group was significantly prolonged, and the residence time in the target quadrant and the number of crossing the platform were significantly reduced compared with the normal group. Mice in the model group had a significantly lower number of neurons in the cortex and showed nuclear pyknosis and a significant increase in the expressions of Aß_(1-42) and CD86. The mRNA levels of IL-1ß and IL-6 in tissue were significantly increased, IL-10 were increased, while Arg1 were significantly decreased. The expression of TREM2, p-PI3K(Y607), p-Akt(T308), p-GSK3ß(Ser9), and ß-catenin in the cortex were significantly down-regulated. Compared with the model group, the escape latency of the mice in the administration group was significantly shortened, and the number of crossing the platform and the residence time in the target quadrant were significantly increased. Furthermore, the number of neurons in the cortex of mice was increased, and nuclear pyknosis was improved. Aß_(1-42) deposition was decreased significantly. The mRNA levels of IL-1ß, IL-6 and CD86 were significantly decreased, while IL-10 and Arg1 levels were significantly increased. The expression of TREM2, p-PI3K(Y607), p-Akt(T308), p-GSK3ß(Ser9), and ß-catenin protein in the cortex of each administration group was significantly up-regulated compared with the model group. In conclusion, Huanglian Jiedu Decoction reduced the expression of Aß_(1-42) and neuroinflammation to a neuro-protective effect, thereby improving the learning and memory ability in APP/PS1 mice, which may be related to the TREM2/Akt/GSK3ß signaling pathway.


Subject(s)
Alzheimer Disease , Cerebral Cortex , Drugs, Chinese Herbal , Glycogen Synthase Kinase 3 beta , Membrane Glycoproteins , Mice, Inbred C57BL , Mice, Transgenic , Proto-Oncogene Proteins c-akt , Receptors, Immunologic , Animals , Glycogen Synthase Kinase 3 beta/metabolism , Glycogen Synthase Kinase 3 beta/genetics , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/administration & dosage , Mice , Cerebral Cortex/metabolism , Cerebral Cortex/drug effects , Proto-Oncogene Proteins c-akt/metabolism , Proto-Oncogene Proteins c-akt/genetics , Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , Alzheimer Disease/genetics , Receptors, Immunologic/genetics , Receptors, Immunologic/metabolism , Membrane Glycoproteins/metabolism , Membrane Glycoproteins/genetics , Male , Signal Transduction/drug effects , Humans
17.
Exp Cell Res ; 439(1): 114060, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38719173

ABSTRACT

BACKGROUND: Tie1 orphan receptor has become a focus of research, Tie1 can form a polymer with Tie2, regulate the Ang/Tie2 pathway and play a vital role in pathological angiogenesis and tumor progression, the function of Tie1 has remained uncertain in the progression of cervical cancer (CC). Here, we investigated the functional influences of Tie1 overexpress on CC in vitro and in vivo. METHODS: We used Immunohistochemistry (IHC) analysis to detect the relative expression of Tie1 in CC, and we analyzed its connection with the overall survival (OS) and progression free survival (PFS)of CC patients. To prove the role of Tie1 in cell proliferation and metastatic, Tie1 expression in CC cell lines was upregulated by lentivirus. RESULTS: The high expression of Tie1 in tumor cells of cervical cancer tissues is significantly correlated with FIGO stage, differentiated tumors, tumors with diameters, deep stromal invasion. We found that cell progression was promoted in Tie1-overexpress CC cell lines in vivo and in vitro. Tie1 potentially exerts a commanding influence on the expression of markers associated with epithelial-mesenchymal transition (EMT) and the PI3K/AKT signaling pathway. CONCLUSIONS: Our research indicates that Tie1 is highly connected to CC progression as it may play a role in the EMT process through the PI3K/AKT signaling pathway.


Subject(s)
Cell Proliferation , Disease Progression , Epithelial-Mesenchymal Transition , Phosphatidylinositol 3-Kinases , Proto-Oncogene Proteins c-akt , Receptor, TIE-1 , Signal Transduction , Uterine Cervical Neoplasms , Animals , Female , Humans , Mice , Middle Aged , Cell Line, Tumor , Cell Movement/genetics , Cell Proliferation/genetics , Epithelial-Mesenchymal Transition/genetics , Gene Expression Regulation, Neoplastic , Mice, Inbred BALB C , Mice, Nude , Phosphatidylinositol 3-Kinases/metabolism , Phosphatidylinositol 3-Kinases/genetics , Proto-Oncogene Proteins c-akt/metabolism , Proto-Oncogene Proteins c-akt/genetics , Receptor, TIE-1/metabolism , Receptor, TIE-1/genetics , Uterine Cervical Neoplasms/pathology , Uterine Cervical Neoplasms/genetics , Uterine Cervical Neoplasms/metabolism
18.
J Physiol ; 602(12): 2839-2854, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38748517

ABSTRACT

Loss of muscle mass and function induced by sepsis contributes to physical inactivity and disability in intensive care unit patients. Limiting skeletal muscle deconditioning may thus be helpful in reducing the long-term effect of muscle wasting in patients. We tested the hypothesis that invalidation of the myostatin gene, which encodes a powerful negative regulator of skeletal muscle mass, could prevent or attenuate skeletal muscle wasting and improve survival of septic mice. Sepsis was induced by caecal ligature and puncture (CLP) in 13-week-old C57BL/6J wild-type and myostatin knock-out male mice. Survival rates were similar in wild-type and myostatin knock-out mice seven days after CLP. Loss in muscle mass was also similar in wild-type and myostatin knock-out mice 4 and 7 days after CLP. The loss in muscle mass was molecularly supported by an increase in the transcript level of E3-ubiquitin ligases and autophagy-lysosome markers. This transcriptional response was blunted in myostatin knock-out mice. No change was observed in the protein level of markers of the anabolic insulin/IGF1-Akt-mTOR pathway. Muscle strength was similarly decreased in wild-type and myostatin knock-out mice 4 and 7 days after CLP. This was associated with a modified expression of genes involved in ion homeostasis and excitation-contraction coupling, suggesting that a long-term functional recovery following experimental sepsis may be impaired by a dysregulated expression of molecular determinants of ion homeostasis and excitation-contraction coupling. In conclusion, myostatin gene invalidation does not provide any benefit in preventing skeletal muscle mass loss and strength in response to experimental sepsis. KEY POINTS: Survival rates are similar in wild-type and myostatin knock-out mice seven days after the induction of sepsis. Loss in muscle mass and muscle strength are similar in wild-type and myostatin knock-out mice 4 and 7 days after the induction of an experimental sepsis. Despite evidence of a transcriptional regulation, the protein level of markers of the anabolic insulin/IGF1-Akt-mTOR pathway remained unchanged. RT-qPCR analysis of autophagy-lysosome pathway markers indicates that activity of the pathway may be altered by experimental sepsis in wild-type and myostatin knock-out mice. Experimental sepsis induces greater variations in the mRNA levels of wild-type mice than those of myostatin knock-out mice, without providing any significant catabolic resistance or functional benefits.


Subject(s)
Mice, Inbred C57BL , Mice, Knockout , Muscle, Skeletal , Myostatin , Sepsis , Animals , Myostatin/genetics , Myostatin/metabolism , Sepsis/genetics , Sepsis/metabolism , Muscle, Skeletal/metabolism , Male , Mice , Autophagy , Muscular Atrophy/genetics , Muscular Atrophy/metabolism , Muscle Strength , TOR Serine-Threonine Kinases/metabolism , TOR Serine-Threonine Kinases/genetics , Proto-Oncogene Proteins c-akt/metabolism , Proto-Oncogene Proteins c-akt/genetics
19.
Int J Mol Sci ; 25(9)2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38731841

ABSTRACT

Plutella xylostella (Linnaeus) mainly damages cruciferous crops and causes huge economic losses. Presently, chemical pesticides dominate its control, but prolonged use has led to the development of high resistance. In contrast, the sterile insect technique provides a preventive and control method to avoid the development of resistance. We discovered two genes related to the reproduction of Plutella xylostella and investigated the efficacy of combining irradiation with RNA interference for pest management. The results demonstrate that after injecting PxAKT and PxCDK5, there was a significant decrease of 28.06% and 25.64% in egg production, and a decrease of 19.09% and 15.35% in the hatching rate compared to the control. The ratio of eupyrene sperm bundles to apyrene sperm bundles also decreased. PxAKT and PxCDK5 were identified as pivotal genes influencing male reproductive processes. We established a dose-response relationship for irradiation (0-200 Gy and 200-400 Gy) and derived the irradiation dose equivalent to RNA interference targeting PxAKT and PxCDK5. Combining RNA interference with low-dose irradiation achieved a sub-sterile effect on Plutella xylostella, surpassing either irradiation or RNA interference alone. This study enhances our understanding of the genes associated with the reproduction of Plutella xylostella and proposes a novel approach for pest management by combining irradiation and RNA interference.


Subject(s)
Cyclin-Dependent Kinase 5 , Moths , Proto-Oncogene Proteins c-akt , RNA Interference , Animals , Female , Male , Cyclin-Dependent Kinase 5/genetics , Cyclin-Dependent Kinase 5/metabolism , Fertility/radiation effects , Fertility/genetics , Insect Proteins/genetics , Insect Proteins/metabolism , Moths/genetics , Proto-Oncogene Proteins c-akt/metabolism , Proto-Oncogene Proteins c-akt/genetics , Reproduction/radiation effects , Reproduction/genetics
20.
PLoS One ; 19(5): e0289187, 2024.
Article in English | MEDLINE | ID: mdl-38809881

ABSTRACT

Recently, a low-level somatic mutation in the NRAS gene (c.182 A > G, Q61R) was identified in various specimens from patients with kaposiform lymphangiomatosis. However, it is unknown how these low-frequency mutated cells can affect the characterization and surrounding environment of their lesions. To understand the pathogenesis and association of these gene abnormalities, we established NRASQ61R mutated lymphatic endothelial cells transfected with lentivirus vector and undertook morphological and functional characterization, protein expression profiling, and metabolome analysis. NRASQ61R human dermal lymphatic endothelial cells showed poor tube formation, a low proliferation rate, and high migration ability, with an increase in the ratio of mutated cells. An analysis of signaling pathways showed inactivation of the PIK3/AKT/mTOR pathway and hyperactivation of the RAS/MAPK/ERK pathway, which was improved by MAPK kinase (MEK) inhibitor treatment. This study shows the theoretical circumstances induced in vitro by NRASQ61R-mutated cells in the affected lesions of kaposiform lymphangiomatosis patients.


Subject(s)
Endothelial Cells , GTP Phosphohydrolases , Membrane Proteins , Mutation , Humans , Endothelial Cells/metabolism , Endothelial Cells/pathology , GTP Phosphohydrolases/genetics , GTP Phosphohydrolases/metabolism , Membrane Proteins/genetics , Membrane Proteins/metabolism , Cell Proliferation/genetics , Signal Transduction/genetics , Cell Movement/genetics , TOR Serine-Threonine Kinases/metabolism , TOR Serine-Threonine Kinases/genetics , Proto-Oncogene Proteins c-akt/metabolism , Proto-Oncogene Proteins c-akt/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...